The High-Energy Photoproduction at GlueX: The States and Outlook

Zhenyu Zhang Wuhan University

IHEP, Beijing, China
2017. 6. 20

OUTLINE

- Introduction
- GlueX experiment and performance
- Meson photoproduction at GlueX
- Future plans and outlook

Standard Model

Quark, Gluons, and Strong Force

Hadron Physics and Quark Model

Quarks

Baryons

Ordinary hadrons

QCD vs QED

QED
Electromagnetic interaction

QCD
Strong interaction

anti blue

Photon
No charge
No charge No direct interaction

Gluon
color and anti-color 3 gluons and 4 gluons interactions

The exotic states can be strong proof for the existence of gluon predicted by QCD as the strong interaction mediator.

QCD Exotic States

Glue

Hadron modular states

In 1984, Prof. Jueping Liu constructed baryon current operators composed of five-quark field to investigate the resonance Lambda(1405) in the framework of QCD sum rules.

QCD Exotic States

GlueBalls

Multi-quark states

Hadron modular states

Classifying Mesons ${ }^{\bullet} \bullet$ ——Mass, Electric Charge, Quark Flavor...

Quantum numbers: $J^{P C}$

$$
\begin{aligned}
\vec{J} & =\vec{L}+\vec{S} \\
P & =(-1)^{L+1} \\
C & =(-1)^{L+S}
\end{aligned}
$$

Allowed JPC for $q \bar{q}$ mesons:

$$
0^{-+}, 1^{--}, 1^{+-}, 0^{++}, 2^{++} \ldots
$$

JPC not allowed for $q \bar{q}$ mesons:

$$
0^{+-}, 1^{-+}, 2^{+-} \ldots
$$

LQCD Meson Spectrum for Light Quarks

Search for hybrids

COMPASS: $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

PRL 104, 241803 (2010)

Search for hybrids (曷

Compass: PRL 104, 241803 (2010)

Compass: 1509.00992
$\xrightarrow{\begin{array}{c}\text { Unprecedented } \\ \text { statistics }\end{array}}$

Search for hybrids

COMPASS: $\pi^{-} p \rightarrow \eta^{\left({ }^{\prime}\right)} \pi^{-} p$

The Photoproduction Mechanisms and

 the Decay Modes of Exotic Hybrids| $\rho \pi, \rho \omega$ | \rightarrow | π_{1} |
| :--- | :--- | :--- |
| $\omega \omega, \rho \rho$ | \rightarrow | η_{1} |
| $\omega \omega, \rho \rho, \phi \omega$ | $\longrightarrow \eta^{\prime}{ }_{1}$ | |
| $\rho \mathrm{P}$ | \rightarrow | b_{0} |
| $\omega \mathrm{P}$ | \rightarrow | h_{0} |
| $\omega \mathrm{P}, \phi \mathrm{P}$ | \longrightarrow | $\mathrm{h}^{\prime}{ }_{0}$ |
| $\omega \pi, \rho \eta, \rho \mathrm{P}$ | \rightarrow | b_{2} |
| $\rho \pi, \omega \eta, \omega \mathrm{P}$ | $\rightarrow \mathrm{h}_{2}$ | |
| $\rho \pi, \omega \eta, \phi \mathrm{P}$ | $\rightarrow \mathrm{h}^{\prime}{ }_{2}$ | |

$$
\begin{aligned}
& \pi_{1} \rightarrow \pi \rho, \pi b_{1}, \pi f_{1}, \pi \eta^{\prime}, \eta a_{1} \\
& \eta_{1} \rightarrow \eta f_{2}, a_{2} \pi, \eta f_{1}, \eta \eta^{\prime}, \pi(1300) \pi, a_{1} \pi, \\
& \eta_{1}^{\prime} \rightarrow K^{*} K, K_{1}(1270) K, K_{1}(1410) \mathrm{K}, \eta \eta^{\prime} \\
& b_{2} \rightarrow \omega \pi, a_{2} \pi, \rho \eta, f_{1} \rho, a_{1} \pi, h_{1} \pi, b_{1} \eta \\
& h_{2} \rightarrow \rho \pi, b_{1} \pi, \omega \eta, f_{1} \omega \\
& h_{2}^{\prime} \rightarrow K_{1}(1270) K, K_{1}(1410) K, K_{2}^{*} K, \phi \eta, f_{1} \phi \\
& b_{0} \rightarrow \pi(1300) \pi, h_{1} \pi, f_{1} \rho, b_{1} \eta \\
& h_{0} \rightarrow b_{1} \pi, h_{1} \eta \\
& h_{0}^{\prime} \rightarrow K_{1}(1270) K, K(1460) K, h_{1} \eta
\end{aligned}
$$

The meson photoproduction is a promising experimental technique to search for exotic hybrid mesons.

Search for exotic hybrids
 व

Evidence exists for JPC=1-+ amplitudes, but interpretation clearly not conclusive

Search for a pattern of hybrid states in many final states

Approximate $J^{P C}$ Mass (MeV)			Final States
π_{1}	1900	1^{-+}	$\omega \pi \pi^{\dagger}, \underline{3 \pi^{\dagger}} 5 \pi, \eta 3 \pi^{\dagger}, \widehat{\eta^{\prime} \pi^{\dagger}}$
η_{1}	2100	1^{-+}	$4 \pi, \eta 4 \pi, \eta \eta \pi \pi^{\dagger}$
η_{1}^{\prime}	2300	1^{-+}	$K K \pi \pi^{\dagger}, K K \pi^{\dagger}, K K \omega^{\dagger}$
b_{0}	2400	0^{+-}	4π
h_{0}	2400	0^{+-}	$\omega \pi \pi^{\dagger}, \eta 3 \pi, K K \pi \pi$
h_{0}^{\prime}	2500	0^{+-}	$K K \pi \pi^{\dagger}, \eta 3 \pi$
b_{2}	2500	2^{+-}	$4 \pi, \eta \pi \pi^{\dagger}$
h_{2}	2500	2^{+-}	$\omega \pi \pi^{\dagger}, 3 \pi^{\dagger}$
h_{2}^{\prime}	2600	2^{+-}	$K K \pi \pi^{\dagger}, K K \pi^{\dagger}$

Hybrid Meson Search Strategy

The High-Energy Photoproduction

- Unique production Glueg mechanism with access to exotic JPC

- Access to hybrid masses up to $\sim 2.8 \mathrm{GeV}$
- Large acceptance for multiparticle final states
- Identification of exotic JPC through amplitude analyses
- Ability to study many final states simultaneously

Exchange particle	Final states		
\mathcal{P}	0^{++}	$2^{+-}, 0^{+-}$	b°, h, h^{\prime}
π°	0^{-+}	2^{+-}	$b_{2}^{\circ}, h_{2}, h_{2}^{\prime}$
$\pi^{ \pm}$	0^{-+}	1^{-+}	$\pi_{1}^{ \pm}$
ω	1^{--}	1^{-+}	$\pi_{1}, \eta_{1}, \eta_{1}^{\prime}$

Can couple to all 3 exotic nonets

$$
\begin{aligned}
& 1^{-+} \pi_{1}, \eta_{1} \ldots \sim 2.0-2.4 \mathrm{GeV} / \mathrm{c}^{2} \\
& 0^{+-} b_{\circ}, h_{\mathrm{o}} \ldots \sim 2.3-2.5 \mathrm{GeV} / \mathrm{c}^{2} \\
& 2^{+-} b_{2}, h_{2} \ldots \sim 2.4-2.6 \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

Thomas Jefferson National Accelerator Facility

(Jefferson Lab)

JLab: A Laboratory for Nuclear Science

Nuclear Structure

Medical Imaging

Cryogenics

Fundamental Forces \& Symmetries

Nuclear Astrophysics

Theory \& Computation Jefferson Laظ

The $12-\mathrm{GeV}$ upgrade at Jefferson Lab

Hall D: The new experiment hall at JLab GlueX: The spectrometer in the Hall D The long-term aim:

- The $12-\mathrm{GeV}$ upgrade is completed in Feb. 2016
- Accelerator: $2.2 \mathrm{GeV} /$ pass
- Halls A, B, C: $1-5$ turns $<11 \mathrm{GeV}$
- Hall D: 5.5 turns $\rightarrow 12 \mathrm{GeV}$
- Halls A\&D started data taking in 2016 spring
- Halls B\&C started data taking in 2017 spring

Understand quark-gluon interactions

 search for exotic hybrid mesons

LONG RANGE PLAN for NUCLEAR SCIENCE

Here are the recommendations of the 2015 Long Range Plan.

RECOMMENDATION I

The progress achieved under the guidance of the 2007 Long Range Plan has reinforced U.S. world leadership in nuclear science. The highest priority in this 2015 Plan is to capitalize on the investments made.

- With the imminent completion of the CEBAF 12-GeV Upgrade, its forefront program of using electrons to unfold the quark and gluon structure of hadrons and nuclei and to probe the Standard Model must be realized.

GlueX Collaboration

http://portal.gluex.org/GlueX/Home.html ~120 members from 25 institutions of 8 counties

GlueX Collaboration

http://portal.gluex.org/GlueX/Home.html ~120 members from 27 institutions of 9 counties

GluE

Linearly polarised photon beam

Linearly polarized photons via coherent bremsstrahlung from diamond radiator off liquid hydrogen peaking at 9 GeV

GlueX detector

Detector resolutions:

Photons: $\sigma_{E} / E \sim 6 \% / \sqrt{E} \oplus 2 \%$
Tracks: $\sigma_{p} / p \sim 1-3 \%$
Receptance: $1^{\circ}-120^{\circ}$

Liquid hydrogen target and start counter

CDC and FDC

Straw tube drift chamber

Interleaved planes of field/sense
wires and planes of cathode strips

Detector Performance

Drift chambers exceed design position resolution

BCAL and FCAL

Scintillating fibers in the interstitial layers of lead \quad F8-00 lead glass, $4 \times 4 \times 45 \mathrm{~cm}$

Fast silicon photomultipliers (SiPMs)

Detector Performance

Calorimeters approaching design energy resolution

Spring 2016:

Detector commissioning and engineering runs

Initial physics data ($\approx \mathbf{8 0}$ h) First results presented here

Spring 2017:

The first physics runs

GlueX-I [low-intensity]: 2017-18

Meson Photoproduction

- Meson photoproduction: almost 50 years at SLAC, DESY, and Cambridge
- Growing vigorously recently: JLab, ELSA, and MAMI
- Understanding the properties of strong interaction in the nonperturbative regime
- Search for exotic hybrid mesons
- Provide constraints on "background" to baryon resonance extraction in the low energy regime
- Beam asymmetry Σ provides insight into dominant production mechanism

High-Energy Meson Photoproduction: VMD \& Regge-cut phenomenology

GlueX \& JPAC: Experiment \& Theory

Psuedoscalar mesons π^{0} / η Photoproduction

$$
\begin{gathered}
\frac{d \sigma}{d t}=\sigma_{\perp}+\sigma_{\|}=|\rho+\omega|^{2}+|b+h|^{2} \\
\Sigma=\frac{|\omega+\rho|^{2}-|h+b|^{2}}{|\omega+\rho|^{2}+|h+b|^{2}}
\end{gathered}
$$

The high intensity, linearly polarized photon beam of GlueX/Hall D will provide important new constraints on Regge models

There are no previous measurements of the $\boldsymbol{\Sigma}$ asymmetry for $\gamma \mathbf{p} \rightarrow \eta p$ with $\mathrm{E}_{\mathrm{y}}>\mathbf{3} \mathrm{GeV}$

Event Selection

- Loose timing cuts
- Proton requirements:
- $p_{\text {proton }} \mathbf{>} \mathbf{2 5 0} \mathbf{~ M e V}$

Cuts

- Originates from target region
- CDC dE/dx contour
- $\mathrm{yp} \rightarrow \mathrm{pyY}$ cuts

- $\Delta \phi$, Missing Mass squared, Missing energy, beam energy ($\mathrm{E}_{\mathrm{\gamma}}>4.0 \mathrm{GeV}$), only two photons reconstructed, Missing mass off proton, coherent beam energy $\left(8.4<\mathrm{E}_{\mathrm{\gamma}}<9.0 \mathrm{GeV}\right)$
ω Backgrounds

- Continuum background between π^{0} and $\boldsymbol{\eta}$ is negligible.
- The largest background is $\gamma p \rightarrow \omega p, \omega \rightarrow \Pi^{0} \gamma$ with a missing photon. To get the background shape, we simulated this reaction then normalized to the ω leakage peak.
- Our exclusive measurements and cuts ensure very low backgrounds: for the eta the dilution is only 0.38%, while for the Π^{0} it is negligible.

Final -t distributions

SLAC: PRD 1, 27 (1970)

Beam Asymmetry: Method

$\frac{d \sigma}{d \phi_{\text {proton }}} \propto 1-P \Sigma \cos 2\left(\phi_{\text {proton }}-\phi_{\gamma}\right)$

$$
\begin{aligned}
Y_{\perp} \propto N_{\perp}\left(1+P_{\perp} \Sigma \cos 2 \phi_{\text {proton }}\right) & \phi_{\gamma}
\end{aligned}=90^{\circ} .
$$

Meson Production Plane

Plane Parallel to Lab Floor
(same as PARA polarization plane)

Beam Asymmetry: Method

$$
\begin{aligned}
& Y_{\perp} \propto N_{\perp}\left(1+P_{\perp} \Sigma \cos 2 \phi_{\text {proton }}\right) \phi_{\gamma}=90^{\circ} \\
& Y_{\|} \propto N_{\|}\left(1-P_{\|} \Sigma \cos 2 \phi_{\text {proton }}\right) \quad \phi_{\gamma}=0^{\circ}
\end{aligned}
$$

$$
\frac{Y_{\perp}-F_{\mathbf{R}} Y_{\|}}{Y_{\perp}+F_{\mathbf{R}} Y_{\|}}=\frac{\left(P_{\perp}+P_{\|}\right) \Sigma \cos 2 \phi_{\text {proton }}}{2-\left(P_{\perp}-P_{\|}\right) \Sigma \cos 2 \phi_{\text {proton }}}
$$

Repeat in bins of -t for both $\boldsymbol{\pi}^{\mathbf{0}}$ and $\boldsymbol{\eta}$

$$
F_{\mathrm{R}}=\frac{N_{\perp}}{N_{\|}}
$$

Beam Asymmetry: Results

- Measured asymmetries consistent with previous SLAC data
- Our measured Σ asymmetries are close to 1, with little evidence of -t dependence
- Don't observe prominent dip in beam asymmetry at $-t=0.5$ $(\mathrm{GeV} / \mathrm{c})^{2}$ as seen in the cross section
- Our data are somewhat consistent with the JPAC and Laget calculations

W

Vector meson ω Photoproduction

Vector meson ω Photoproduction

$$
\mathcal{A}^{\pi \gamma}=-\frac{1}{2} P \cos 2(\Phi-\phi) \quad \mathcal{A}^{3 \pi}=P \cos 2(\Phi-\phi)
$$

Expected:

$$
\Sigma\left(\pi^{+} \pi^{-} \Pi^{0}\right) / \Sigma\left(\pi^{0} \gamma\right)
$$

$$
=-2
$$

Measured:

$$
\begin{array}{r}
\Sigma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \Sigma\left(\pi^{0} \gamma\right) \\
\quad=-1.88 \pm 0.13
\end{array}
$$

ρ Photoproduction

J. Ballam et al., PRD 7, 3150 (1973)

Full analysis of angular distributions is under way.

J/世 Photoproduction near threshold

GlueX Energy Range

Four photon final states

scalar and tensor mesons Photoproduction

Program and upgrades

Experiment	Description	Beam Time (days)
GlueX I	Study spectrum of light mesons and gluonic excitations (low intensity)	80
GlueX II	Study of hadron decays to strange final states (high intensity)	$200+220\left(^{*}\right.$)
Primakoff eta	Eta radiative decay width	79
CPP	Charged pion polarizability measurement	25
Jlab Eta Factory	Rare eta decays	42 (conditional)

(*) May run concurrently

Sund and and

- GlueX is installed, commissioned and all detector systems are exceed or near design specifications.
- The engineering and the first physics runs have been taken successfully.
- The linearly polarized photon beam asymmetry Σ for π^{0} / η photoproduction have measured. A broad meson photoproduction project is under way, including beam asymmetries, cross sections and spin density matrix elements analysis.
- DIRC detector for enhanced π / K separation will be installed starting this summer. Online computer farm will be added for high intensity running. High resolution calorimeter is needed for parts of the JEF program.
- The broader program of exotic mesons is in sight. New ideas and new collaborators are welcome.

