

Pixel sensor prototypes design for CEPC vertex detector

Ying ZHANG (张颖)

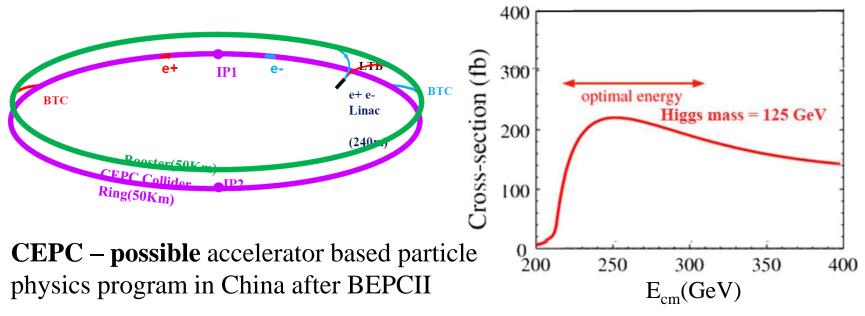
On behalf of the CEPC VTX study group

12-13 October 2017, NME'2017, IHEP, Beijing

Outline

Introduction on CEPC vertex detector

R&D activities


- CMOS pixel sensor
- > SOI pixel sensor
- Summary and outlook

Introduction

CEPC – SppC

- Phase 1: e⁺ e⁻ Higgs [Z] factory two detectors, 1M H events in ~10yrs Circular Electron Positron Collider (CEPC)
 - > E_{cm} ≈ 240 GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole
 - > Precise measurement of the Higgs boson and the Z boson
- Phase 2: a discovery machine for new physics; pp collision with E_{cm} ≈ 50-100 TeV Supper proton-proton Collider (SppC)

Ref: CEPC-SppC workshop, X. LOU, Sep. 2, 2016, Beijing, China.

CEPC accelerator layout option comparison

	Option	Pretzel	Sawtooth effect	Beam loading	Dynamic Aperture	Orbit Correction	H luminosity	Z-pole luminosity	AC power	SRF syetem compatible for H and Z
Pre-CD	R Baseline		Very high	Low	Very small	Very hard	Low	Very low	High	Difficult
	Single Ring (SR)	*	*	****	*	*	***	*		~~~
	CEPC Partial Double Ring Layout	No	High	Very High	Medium	Hard	Medium	Medium	Low	Difficult
	Partial Double Ring (PDR)	****	**	*	***	**	***	***	****	***
	CEPC Measor Participants Ring Layor	No	High	High	Medium	Medium	Medium	High	Low	Difficult
	Advanced Partial Double Ring (APDR)	****	***	***	***	***	***	****	****	***
CDR B	aseline	No	Vey Low	Low	Large	Easy	High	Very High	Low	Very good
	Full Parrtial Double Ring (FPDR)	*****	*****	****	****	****	****	*****	****	****

Ref: J.Gao, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

Physics driven requirements

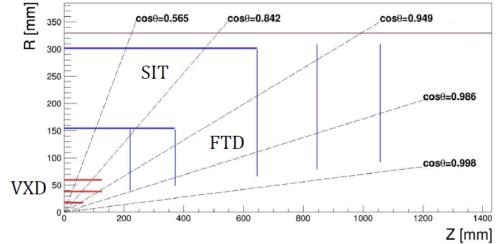
Table 2.1 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T})\sim 2 imes 10^{-5}$
$H \rightarrow \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	IIdekei	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H\to b\bar{b},\;c\bar{c},\;gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \mu \mathrm{m}$
$H \to q\bar{q}, VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3$ – 4%
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

• Efficient tagging of heavy quarks (b/c) and τ leptons

→ Impact parameter resolution, $\sigma_{r\emptyset} = a \oplus \frac{b}{(p \cdot sin^{3/2}\theta)} \mu m$

Design constrains on vertex (to achieve a=5 and b=10, B=3.5T)


- > spatial resolution near the interaction point $\sigma_{sp} \leq 3 \ \mu m$
- > material budget $\leq 0.15\% X_0$ /layer
- > first layer located at a radius: ~1.6 cm

CEPC vertex detector concept

Baseline design for the pre-CDR: ILD-like but different forward region design

- > 3 layers of double-sided pixels
- > $\sigma_{SP} = 2.8 \ \mu m$, inner most layer
- readout time < 20 µs</p>

VXD Geometry

	R (mm)	z (mm)	$ \cos \theta $	$\sigma_{ m SP}$ (μ m)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	20
Layer 2	18	62.5	0.96	2.8	20
Layer 3	37	125.0	0.96	4	20
Layer 4	39	125.0	0.95	4	20
Layer 5	58	125.0	0.91	4	20
Layer 6	60	125.0	0.90	4	20

Beam induced backgrounds

Results of the Single Ring Scheme

Background Type	Generators	Sub-type	Particle Flux at VTX [$cm^{-2}BX^{-1}$]	Particle Energy [GeV]	Priority	
Synchrotron	Geant4;	Dipole	~ 10 ¹⁰	~ 0.001	***	
Radiation	BDSIM	Quadrupole	~ 10 ⁶	~ 0.007		
Beam	BBBrem;	Radiative Bhabha	~ 10	~ 120	**	
Lost Particles	SAD	Beam Gas Scattering	t	t		
Peametrablung	Guinea-	Pairs	~ 10 ⁻²	~ 0.05	_	
Beamstrahlung	Pig++; PYTHIA6	Hadrons	~ 10 ⁻⁵	~ 2	*	

- The synchrotron radiation is the most important beam induced backgrounds in the single ring scheme
 - Require to reduce the critical energy and radiation power in the double ring scheme

2017-4-20

CEPC-SPPC Workshop, CCNU, Wuhan

3

Ref: Q. Xiu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

Pixel sensor challenges

- To achieve S.P. resolution
 - Digital pixel ~ 16um
 - Analog pixel ~ 20um (power pulsing mode in ILC)
- To lower the material budget
 - Sensor thickness ~ 50um
 - Heat load < 50 mW/cm² constrained by air cooling
- To tackle beam-related background
 - 20us/frame?
 - 300krad/year & 3×10¹²neq/ (cm²·year)?

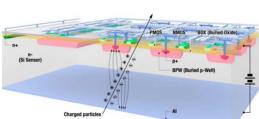
Physics driven requirements	Running constraints	Sensor specifications
$\sigma_{s.p.}$ 2.8um Material budget 0.15% X ₀ /layer		> Small pixel 16um
Material budget 0.15% X ₀ /layer		> Thinning <mark>50</mark> um
	> Air cooling	> low power 50mW/cm ²
r of Inner most layer 16mm	> beam-related background	> fast readout 20us?
L	> radiation damage	
		≤1 Mrad/ year ?
		$\leq 1 \times 10^{12} n_{eq} / (cm^2 year)$?

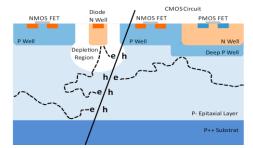
Ref: Y. Lu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

R&D activities

Pixel sensor R&D activities

Unprecedented specifications


- Severer low power constraint than ILD
 - ILD duty cycle 1ms/199ms
 - CEPC needs a reduction by a factor of 4
- > Higher s.p. resolution than ALICE-ITS upgrade
 - 1/3 pixel size of ALICE pixel sensor


HR-CMOS pixel sensor

- > Towards compete CMOS & thick, fully depleted substrate
- More in-pixel functional circuitry → faster read-out & less power, radiation tolerance
- > TowerJazz CIS 0.18 µm process

SOI pixel sensor

- > Fully depleted substrate: 50 µm thick, larger signal charge
- > Develop in-pixel circuit for minimum layout area
- LAPIS 0.2 µm process

11

C Rev.Hori

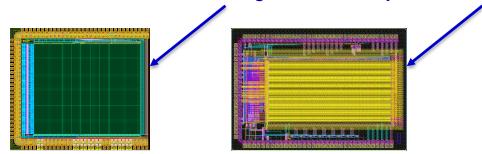
R&D activities

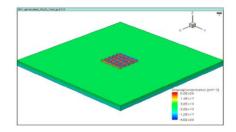
- > CMOS pixel sensor
- > SOI pixel sensor

13

12 October 2017, NME'2017, IHEP, Beijing

CMOS pixel sensor R&D activities


TCAD simulation on charge collection

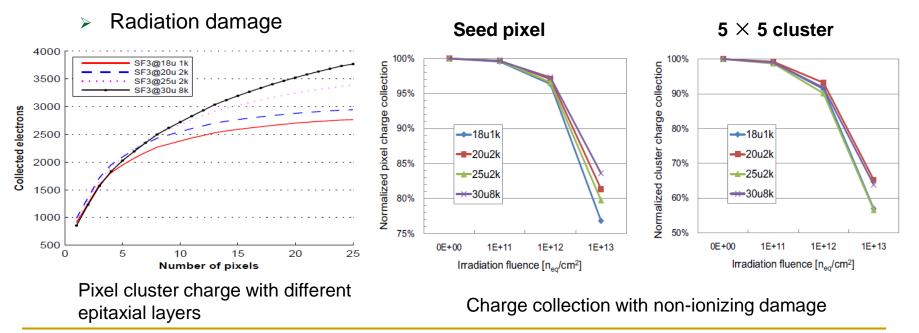

First submission in Nov. 2015


- Exploratory prototype, analog pixel
- Sensor optimization and radiation tolerance study

Second submission in May 2017

- > Tow prototypes with digital pixels (in-pixel discriminator)
- > Tow different readout schemes: rolling shutter & asynchronous

CPS – Charge collection simulation

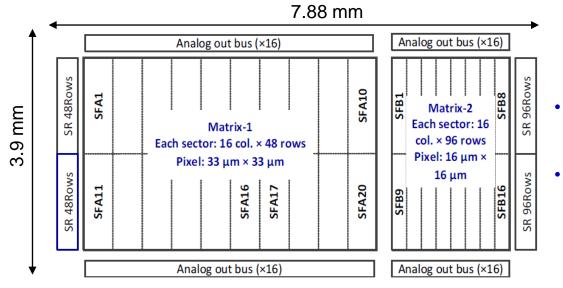

Motivation:

Y. ZHANG et al., NIMA 831 (2016) 99-104

Guide the diode geometry optimization and study radiation damage with different types of epitaxial layer

Simulated with different parameters

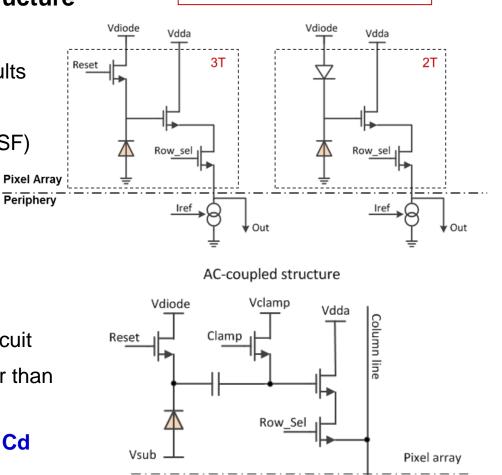
- Hit position
- Diode geometry
- > Thickness and resistivity of the epitaxial layer



12 October 2017, NME'2017, IHEP, Beijing

First CPS prototype design

- Goals: sensing optimization and in-pixel pre-amplifier study
- Floorplan overview
 - > Two independent matrices: Matrix-1 with $33 \times 33 \ \mu\text{m}^2$ pixels (except one sector SFA20 with 16×16 μm^2 pixels), Matrix-2 with 16×16 μm^2 pixels.
 - Matrix-1 includes 3 sectors with in-pixel pre-amplifier
 - > SFA20 in Matrix-1 contains pixel with AC-coupled pixels



- TowerJazz 0.18 µm CIS process November 2015 submission
- Chip received in 2016 June, test in progress

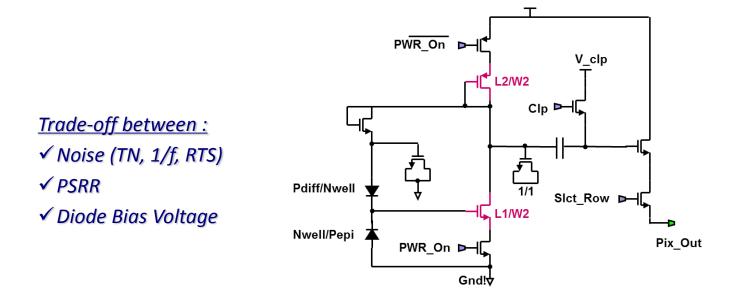
First CPS prototype design — pixel structures

DC-coupled SF pixels: 2T/3T structure

- different diode geometries
- → to verify the TCAD simulation results
- > two biasing modes (2T/3T)
- > two transistor types (nmos/pmos SF)

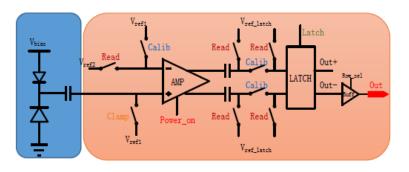
Y. ZHANG, Y. ZHOU (IHEP)

AC-coupled pixel

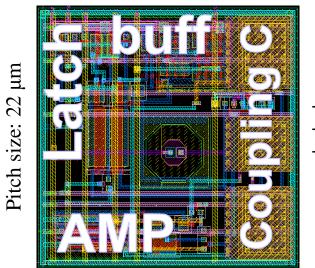

- sensing node AC-coupled with circuit
- diode bias voltage could be higher than power supply, i.e. up to 10 V
- → larger depletion region & lower Cd
- → higher SNR

Pheriphery

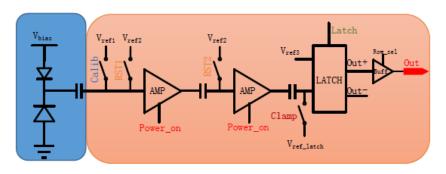
First CPS prototype design — pixel structures

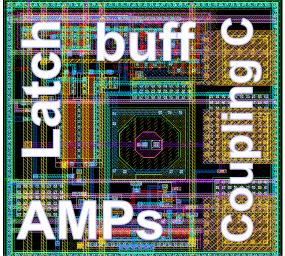

In-pixel pre-amplifier

- > Common source amplifier with AC feedback, CDS in pixel
- > Only active when the row is selected to be read \rightarrow power saving
- Using a twin-well process only NMOS can be used, while both types of transistors are used in our prototype



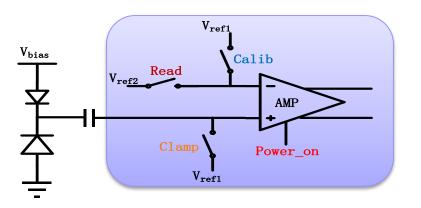
2nd submission – rolling shutter prototype


Digital pixels in rolling-shutter readout mode: 2 different versions


Version 1: differential amplifier + latch

- Same amount of transistors;
- Offset cancellation technique;
- Version 2 has higher signal gain, but suffers "more" from "Latch" input voltage distortion.

Version 2: two stage CS amplifiers + latch



Pitch size: 22 µm

Y. ZHOU (IHEP)

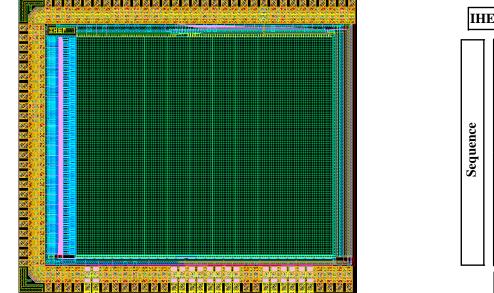
2nd submission – rolling shutter prototype

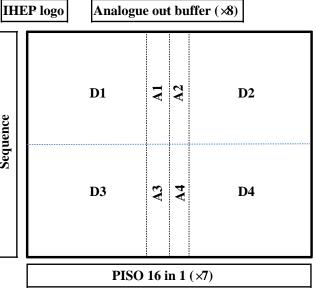

Version 1:

Y. ZHOU (IHEP)

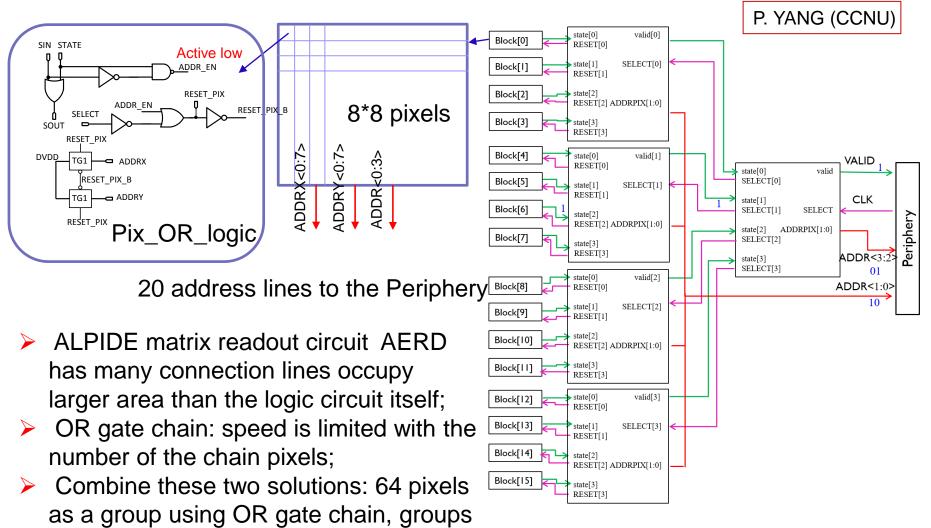
Differential Amplifier Noise simulation: Input DC level: 600 mV Biasing current: 3.7 μ A Gain: 8.3 RMS noise: 1.962 mV ENC: \approx 7 e⁻ (for best case; highly relaied on the equivalent C_{sensing point}) Readout speed: 100 ns/row

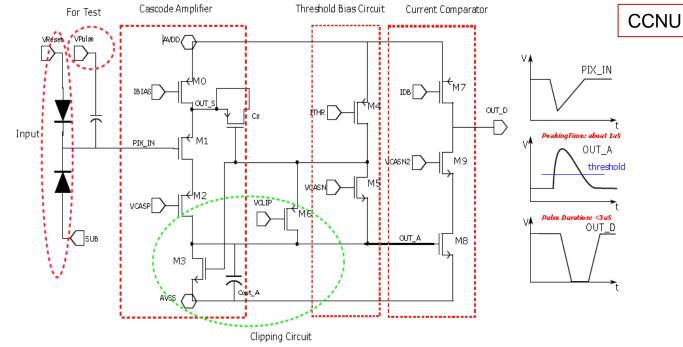
Version 2:




Single-end CS Amplifier Noise simulation: Input DC level: 520 mV Gain: 8 RMS noise: 1.566 mV ENC: 6.3 e- (for best case) Readout speed: 80 ns/row

2nd Submission: rolling-shutter mode prototype


Y. ZHOU (IHEP)


- $-3 \times 3.3 \text{ mm}^2$;
- 96 \times 112 pixels with 8 sub-matrix
- Processing speed: 11.2 μs/frame for 100 ns/row;
- Output data speed: 160 MHz;
- Power:3.7 μ A/pixel;

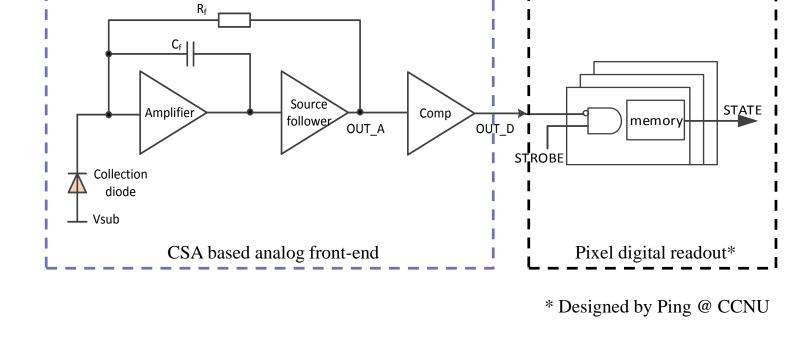
2nd Submission: asynchronous mode prototype

using AERD structure to readout

Asynchronous mode prototype – front-end I

- Signal charge creates negative voltage step $\Delta V_{PIX_{-IN}}$ at input node(PIX_IN).
- From OUT_A baseline voltage to point where discriminated output OUT_D flips when $I_{M8} > I_{DB}$.

$$\Delta V_{OUT_A} \approx \frac{C_s \bullet \Delta V_{PIX_IN}}{C_{OUT_A}} = \frac{C_s}{C_{OUT_A}} \bullet \frac{Q_{in}}{C_{PIX_IN}}$$

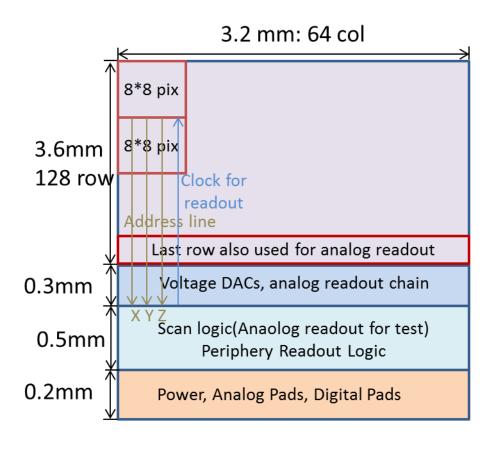

Simulation results

- ENC: 8 e⁻
- Power cons.: 61 nA/pixel
- Threshold: 140 e⁻
- Peaking time < 1 us
- Pulse duration $< 3 \ \mu s$

> Pixel size: $25 \times 25 \ \mu m^2$

CSA based front-end circuit

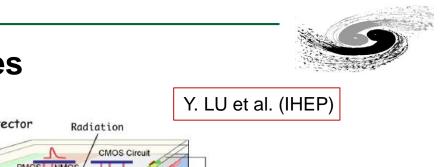
Signal process chain


Asynchronous mode prototype – front-end II

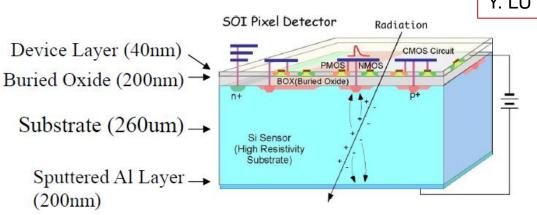
Y. ZHANG (IHEP)

Asynchronous mode prototype overview

MIC4 chip:


P. YANG et al. (CCNU)

- \succ 3.2 \times 3.7 mm²
- \succ 128 \times 64 pixels
- Integration time: < 5 µs</p>
- Power consumption: < 80 mW/cm²
- Chip periphery
 - Band gap
 - Voltage DAC
 - Current DAC
 - LVDS
 - Custom designed PADs



R&D activities

- > CMOS pixel sensor
- SOI pixel sensor

SOI pixel sensor R&D activities

INTPIX2P5 prototype for the sensor depletion study, 2015

- Fully depleted around 190 V
- Seed/cluster ration decrease with V_{bias}

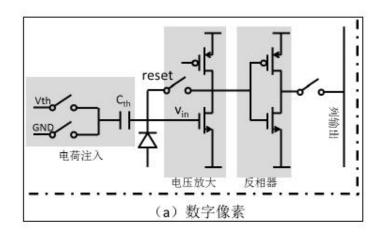
CPV prototypes for CEPC

- > CPV1/2, 2015/2016
- > Small pixel size, 16 μm pitch
- Focus on Sensing diode + Front end
- Digital pixel (in-pixel hit discrimination)

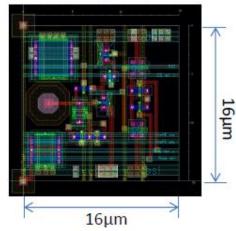
SOI pixel sensor R&D activities

Y. LU et al. (IHEP)

A comparison of digital pixels


	ASTRAL	ALPIDE	CPV
Process technology	0.18 µn	0.2 <i>µm</i> SOI	
Readout strategy	Rolling shutter	asynchronous	Rolling shutter
Readout time	20 µs	<2 µs	
Power	85 mW/cm ²	39 mW/cm ²	Analog power < 10 mW/cm ²
Pixel size	$22 \times 33 \ \mu m^2$	$28 \times 28 \ \mu m^2$	$16 \times 16 \mu m^2$
Spatial resolution	atial resolution $\approx 5 \mu m$		
Total signal for MIP	≈ <i>1200 e⁻ (20µm</i> epi-l	<pre>≈4000 e⁻ (back thinning to 50µm, fully depleted)</pre>	

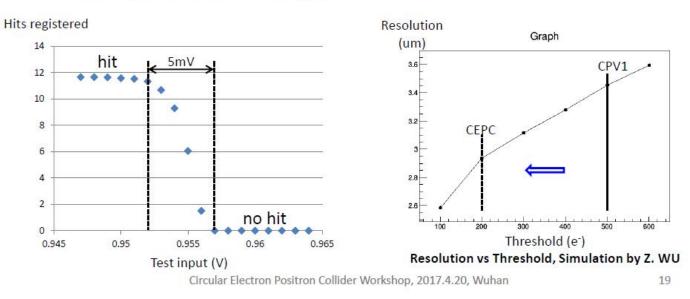
- Unique opportunity to explore very compact pixel circuit
 - 3 times larger MIP signal
 - Possibly smaller cluster size


Ref: Y. Lu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

First SOI pixel prototype

- First digital pixel of 16um pitch
- CS voltage amplifier, gain ~ 10
- Inverter as discriminator
- Threshold charge injected to sensing node
- Pixel array: 64*32 (digital) + 64*32 (analog)
- Double-SOI process for shielding and radiation enhancement
- Submitted June, 2015

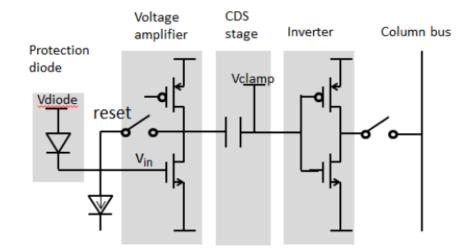
Ref: Y. Lu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.


Y. LU et al. (IHEP)

First SOI pixel prototype

Single pixel test

- Chip circuit function verified on single pixel
 - Voltage gain of amplifier ~ 10 $\,$
 - Threshold scan
 - Temporal noise ~ 50e⁻ (< 20 e⁻ expected)
- Bias voltage not applicable due to a design fault
 - Diode capacitance 3 times larger



Ref: Y. Lu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

Y. LU et al. (IHEP)

Second SOI pixel prototype design

- Protection diode added
 - Enable full depletion on sensor
- In-pixel CDS stage inserted
 - improve RTC and FPN noise
 - replace the charge injection threshold
- Submitted June, 2016

Ref: Y. Lu, Circular Electron Positron Collider workshop, Wuhan, April 19-21, 2017.

Summary and outlook

- Pixel sensor is the core component for VTX
 - R&D started along the physics driven requirement
 - > Running constraints not settle yet

CMOS pixel sensors prototypes

- Exploratory prototype under test
- 2nd CPS submission under fabrication, targeting on highly compact digital pixels and fast readout development

Two compact SOI pixel sensor prototypes

- Fully depletion of SOI verified
- Circuit function verified on single pixel
- Evaluation of digital pixel array underway
- Optimization study of vertex system needed

Possible change of sensor design

- > Beam related background level
- > Impact of partial-double ring scheme, with time-stamp of microsecond

Thanks for your attention !