

Design and Construction of CPPF System in CMS L1 Trigger Phase I Upgrade

Zhen-An LIU*, Libo CHENG, Chunjie WANG,

Pengcheng CAO, Jingzhou ZHAO

TrigLab, IHEP

Dec. 22-24 2017

Outline

- Backgrounds with CMS L1 Trigger
- IHEP Task in CMS L1 Phase I Upgrade
- CPPF Module Design with full functionalities
- CPPF System Installation at P5
- Data analysis
- Summary

Backgrounds with CMS L1 Trigger

Legasy L1 Trigger System

- Aim of Phase I Upgrade
 - Adding Overlap tracking in Muon Overlap Region
 - VME uTCA: uTCA mudularities(reduced number of modules)
 - Unified link protocol: 10Gbps
 - Standardized Synchronization

Standardization: only 5 module types MP7,CTP7,MTF7,TwinMux,CPPF

Phase1 Trigger

HARDWARE & FIRMARE

- Drastically increased uniformity compared to Legacy trigger.
- ► 6 hardware platforms
 - ► MP7, CTP7, MTF7
 - ► AMC502, TWINMUX, CPPF
- AMC13 : Crate-level Clock/TTC distribution and local EVENT building
- Integration and commissioning time significantly reduced by firmware sharing.

Promote hardware & firmware standardisation across L1

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP

2016/12/17

4

Unified Link Protocol: 10Gbps

Concentration + Preprocessing + Unified Processing

Optical Links

- Standard rate/protocol within trigger borders
 - ► 10 Gpbs, 8b/10b encoding, asynchronous
- ► Heterogeneous TPG to L1 links
 - ► ECAL: 4.8 Gbps, sync
 - ► HCAL, HF: 6.4 Gbps, sync
 - ► DT: 480 Mbps, sync
 - ► RPC: 1.6 Gbps, sync
 - ► CSC: 3.2 Gbps, sync
- Link firmware sharing where appropriate/possible

L1 & TPGs: Standardise link protocols

8

Phase1 Trigger

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP

2016/12/17

Standardized Synchronization

Phase1 Trigger

SYSTEM-LEVEL SYNCHRONISATION

- No unique strategy
 - TPGs either send inject a BX0 marker in data or 'on request' special patterns.
 - Intra-L1 subsystem links are aligned exploiting the 10G link protocol (commas)
 - Multiple strategies (carry over, injection)
- Uniformity enforced (somehow) at software level
- ► Lack of common strategy.

L1T & TPGs: Standardise synchronisation procedure

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP

2016/12/17

Muon Fan-out to TwinMUX+CPPF

我们的

位置

升级后的L1触发系统

TwinMUX:

concentrati on for Barrel DT and RPC

CPPF:Concen tration, Pre -Process, Fan -out system for Endcap RPC

IHEP Tasks in L1 Trigger Phase I upgrade

Object: Design a Module and Construct a system for L1 trigger pre-processing of the RPC data for both barrel-endcap overlap region, and EndCap region in order to increase the trigger efficiency.

Tasks(IHEP):

- 1. Design a hardware CPPF module with the ability of data Concentration, Pre-Processing and Fanout (CPPF, one of the 5 modules in CMS L1 trigger, see lower left).
- 2. Functionality Firmware development and control software development,
- 3. CPPF system construction and installation
- 4. Trigger Data analysis

CPPF module design

- Data Bandth
 - Supports 360Gb/s input
 - Supports 240Gb/s output
- XC7VX415T-2 (Virtex-7)
 - Core processor
 - 48 GTH Transceiver,
- XC7K70T-2 (Kintex-7)
 - Control processor, configuration and management of the board
- AT32UC3A1512 (Atmel)
 - IPcontrol (MMC, Module Management Controller)

CPPF Block Diagram

CLHC: CMS实验Phase IL1触发升级

Prototype mudule of CPPF

CLHC: CMS实验Phase I L1触发升级

Firmware development

- In two Xilinx FPGA:
 - Virtex-7: Core chip.
 Implemented with main functions of CPPF subsystem, including: GTH Transceiver, preprocess algorithm, TTC/TTS, UDP /IP(IPBus) ethnet transmission
 - Kintex-7: Control chip, controlling other chips in the board

Block diagram CPPF FPGA fFirmware including DAQ

CLHC: CMS实验Phase IL1触发升级

Functionalities

- How the Cluster and angle transformation is made
- PreProcessing
 - DeMuxplexing
 - Cluster Finding
 - Angle calculation and transformation
 - Concentration from 1.6Gbps to 10Gbps
 - Fan-out

RPC cluster angle transformation

CLHC: CMS实验Phase I L1触发升级

How the DeMUX and Synch is made

Trìgger Lab

CLHC: CMS实验Phase IL1触发升级

CPPF/EMTI Mapping

- Each CPPF board response for 90°
 RPC overlap region data transmission.
- There are 19 input channels in each CPPF.
 Each input channel responds for receiving a sector RPC data from LB with 1.6Gbps.
- There are 12 output channels in each CPPF.
 Each output channel respond for 6 chambers transmitting to EMTF with 10Gbps.

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP Workshop:CPPF

CPPF firmware development-DAQ

- Two dataflows:
- RPC data transmission:
 - Receiving Link Board RPC data@1.6Gbps
 - Preprocessing received data, including clusterization and angle conversion
 - Transmitting preprocessed data to EMTF/OMTF@10Gbps
- \blacktriangleright Dag data recording:
 - Recording received data after alignment and preprocessed data before transmitting
 - Packed them and send to AMC13 by the CPPF DAQ module@5Gbps

CPPF SWATCH implementation

- SWATCH: SoftWar for Automating conTrol of Common Hardware
- CPPF is one of customized user of SWATCH
 - Controlling:
 - □ FSM configuration
 - > Monitoring:
 - □ Five Monitoring objects

cppf Status: Good State machine: runControl::Running									
System		Proce	essors	Object Details	Ports				
Selected object CPPFp1	CPPFp1 CPPFp2	Con	Component Status: Good Monitoring: Enabled		C = 5000ms last 0s ago				
	CPPFp3		Monitorables		Stub Info	Stub Info			
	CPPFp4		algo		Path	cppf.CPPFp1			
	CPPFn1		readout ttc inputPorts outputPorts State machine	Hardware	CPPF				
Input Port	CPPFn2 CPPFn3				Role	CPPFp1			
Output Po	CPPFn4				Creator	cppf::cppfsystem::CppfProcessor			
	AMC13			ts	URI	chtcp-2.0://ctrl-s2c16-17-01:10203?target=10.176.130.170:50001			
				Address table	file:///nfshome0/cppfdev/cactus/cactusprojects/cppf/addrtab /cppf.xml				
			runContro	I::Running	Crate	CPPF			
					Slot	3			

CPPF SWATCH Ce	II) Operations) Run Control	HALTED	
Commands			
> Default	Test mode	engage	
Operations	cppf_base/v24	ENGAGED	
Run Control	FED Map (string)	setup	
Control Panels	1200&11%1201&11%1202&11%1203&11%120 4&11%1205&11%1206&11%1207&11%1208&1		
Monitoring	1%1209&11%1212&11%1213&11%1214&11%1 215&11%1216&11%1217&11%1218&11%1219	SYNCHRONIZED	
Peers	Run Number (unsigned long)	configure	
DB	306155	CONFIGURED	
MON	Run Settings Key (string) Cppf_rs_base/v7	align stop	
	TTC Map (string) {HO=3, FPIXP=3, LTC_TRG=0, LPM_RPC=0, EE+=3, DTUP=0, FPIXM=3, EE-=3, CALSTAGE1=0, CALTRIGUP=3, MUTFUP=3, LPM_HCAL=0, CTPPS=3, TIBTID=3, DT+=3,	ALIGNED stop start stop RUMING pause vesume	
		(PAUSED)	

CPPF System Integration

• Hardware

- All 8 CPPF are installed at P5
- We have 14 CPPF boards in CERN
- Functionalities
 - Full function except the DAQ
 - Basic SWATCH functions for CPPF.
 - Full SWATCH function to be finished soon.
- Testing done with success
 - Full test in B14, B904
 - Joint test with OMTF and EMTF in B904
 - Joint test with LB and EMTF in P5

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP

Markchan(CDDE

Data taking running

Including 8 CPPF boards installed in 1 microTCA crate :

- Left picture shows the CPPF boards was installed in CMS USC55
- □ Right picture shows the CPPF SWATCH in CMS central

CPPF offline software design

June-Dec 2017 Data taking has finished

Based on CMSSW, including, Libo is working on

CPPF Unpacker: including RX data and TX data

□ Basic version by Flip

CPPF Emulator

Basic version by Alejandro Segura

Temporary result of CPPF data analysis

- Comparision between CPPF RX data and Legacy
 - Legacy only recorded data: less than 0.5%
 - Problematic links: GTH reset problem or spliter problem
 - In investigating
 - CPPF only recorded data:~0.4%, mainly in BX=-2, -1
 - Legacy with a problem in recording multiple hits when happened in BX=0 and BX=-1 or BX=-2.

More analysis still in progressing

Reasonable

CPPF data analysis in 2018

 Comparision of CPPF TX data and Emulator data
 CPPF unpacked hits can be found corresponding hits in Emulator, regardless of:

•The value of Theta of some hits in Unpacker is shift by 1 unit

•The value of Phi of some hits in Unpacker is shift by 900 units

The Emulator with some hits that not existed in unpacker, including:

•Some hits are repeated twice in emulator, but only exist once in unpacker.

•Some hits are totally not existed in unpacker but in emulator.

Summary-Milestone

Milestone:

- 2014: completed the 1st version of CPPF design in IHEP.
- 2015: produced the 1st version of CPPF prototype and tested at CERN. Completed the 2nd version prototype and tested at CERN.
- 2016: completed the mass production and test of 10 CPPF modules in IHEP, the software development, and the test of CPPF system at CERN.
- **2017**: complete the installation and test of CPPF in CMS, cosmic test, and collision data taking of year 2017 with no problem.
- 2018: data analysis

Summary

- With good communication with CMS Trigger Team and help from colleagues, we have finished 2013-2016
 - CPPF Concept Prototype Design
 - CPPF Production Prototype Design
 - Firmware Development
 - Software Development
 - Joint testing Production, and
- In 2017
 - Installation,
 - Commissioning (cosmic, LHC beam)
 - Data taking successful with no CPPF error
- Performance verification is undergoing

Thank You!

Backups

More on firmware

- Version Upgrade
 - CPPF firmware was upgraded to newly version of MP7 firmware(V2_2_0).
 - MP7butler test showed works well for the new firmware in TTC and IPBus.
- RX and TX
 - Using elastic buffer design for RX, and can correctly receive data from LB according to test in 904. but in P5 seems have some problems for 3 boards, trying to find the problems.
 - Using 10g Tx mode in MP7 firmware, and also transmitter function seems correct according to test in 904 with OMTF, and in P5 with EMTF.
- Algorithm
 - Mapping for RPC region data from LB to CPPF receiver was finished under test.
 - CII module including alignment, Dmux, clusterization functions implemented by Karol's group.
 - Mapping for clusterization result and concentration the result to transmitter were finished under test

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP

2016/12/17

高能所CMS Phase 9上1 触发升级小结

- 高能所在CMS合作中发挥了重要作用
 - CMS Phase I触发升级只有5种新插件,高能所承担了CPPF的设计
 - CPPF由高能所独立设计
 - CPPF满足MTCA新标准
 - 承担MTCA机箱CPPF系统建造
- 进展:2016年完成了预期任务
 - CPPF插件最终定型
 - CPPF完成量产与调试
 - 完成与RPC-LB, OMTF7和EMTF的联调测计
 - 正在进行软件编写与完善,
 - 基本完成了控制软件SWATCH的编写
- 2017年计划
 - 2017年2月初完成CPPF系统的调试
 - 为2017年3/4月份的系统集成做准备

谢谢大家!

Trigger Lab

CLHC: CMS实验Phase IL1触发升级

L1 Trigger upgrade (Phase I project, IHEP)

After months of collision data taking in June, the CMS collaboration confirmed that the CPPF system works successfully.

- The first system which is designed and constructed independently by Chinese institute being used in CMS Experiment
- The data transfer rate increased from 1.6Gb/s to 10Gb/s, the highest speed at present.
- It is compliant to uTCA specification

A special interview report on this success was given by Chinese Science.Net with a title "Chinese force in CMS experiment (CMS实验里的中国力量)". Reports also on IHEP and CAS web pages.

SWATCH control based on lpbus

- IPbus协议
 - 针对CMS实验, CERN开发的一款基于UDP的可靠以太网传输协议, 实现 对 μTCA机箱的远程控制。
 - 基于IP访问硬件设备,采用A32/D32总线标准
- 上位机
 - μHAL: C++ Micro Hardware Access Library,提供访问FPGA固件中寄存器和 RAM的接口
 - XML语言定义寄存器和RAM 的地址
 - 采用Python脚本的方式控制 CPPF插件

基于Ipbus的µTCA机箱控制系统拓扑结构图

CLHC: CMS实验Phase I L1触发升级

系统测试:完成10.0Gbps传输 测试

- 完成CPPF与MTF-7异步参考时钟 下10.0Gbps传输性能的测试
- 异步模式如图所示,选用本地参考时钟

•_MTF-7接收板接收到的信号的眼图

CLHC: CMS实验Phase IL1触发升级

系统测试·RPC光轩数据的测试

- 测试地点
 - CMS P5实验现场
- 测试链路
 - RPC Link Board -> Passive Splitter -> CPPF
- 测试结果
 - 一共测试41条RPC光纤
 - 4条的RPC光纤在50%的分光比下有误码,60%的分光比,误码的光纤数更少
 - CMS实验中使用60%的分光比,误码率更低,符合实验要求

系统测试:数据合并测试

- 地点
 - 北京实验室
 - CERN CMS电子学实验室
 - 法国904大楼
- 测试
 - 单项测试
 - 发送端
 - 模拟RPC数据的发送 ,满足RPC数据格式
 - 接收端
 - 接收24路1.6 Gb/s 数据,每六路合并为 1路10.0 Gb/s,进行自 动检测。
 - 角度转换测试
 - 综合联调测试
- 测试结果
 - 完全成功(12月15日)

- partition data 0...7 RPC数 15 据 17...18 格 19...23 8...11 - partition number 12...14 - partition delay - "End of data", - "half partition" (unused) 17...18 - LB number
- 19...23 unused 式
 - 24 BCØ
 - 25...31 BCN (least significant bits)

Data Source AMC 13 Concentration

Trìgger Lab

Summary

• Design and Construction

- Hardware
 - CPPF Installation
 - 14 fully tested, 8 for installation + 4 for spares and 2 test
 - Hardware features
 - 36 inputs in 3 MiniPods/fiber bounds
 - 24 outputs in 2 MinoPods/fiber bounds(one for EMTF, one for OMTF)
 - Present Application for EMTF
 - 24 inputs in 2 MiniPods(19 fibers in deed)
 - 12 outputs in 1 MiniPod(12 fibers, 9 for EMTF sector, 3 for neighbors)
 - Further for OMTF
 - Another 12 outputs in a MiniPod
 - Modification with GTH module
- Firmware
 - Version Upgrade
 - CPPF firmware was based on MP7 firmware
 - MP7butler used for firmware in TTC and IPBus early time.
 - Function
 - Synch + Alignment + DEMUX + Cluster + Angle.C + Concentr.
- Software
 - SWATCH for running
 - MP7Botler for early testing

- Trigger Data analysis
 - Unpacker
 - Emulator
 - Analysis

CLHC: CMS实验Phase I L1触发升级 LIUZA: CLHCP Workshop:CPPF