Probe CP violation in $H\gamma\gamma$ coupling through interference

Xia WAN (万霞) Shaanxi Normal University

collaborate with Youkai Wang (SNNU), on progress

EW and Flavor Physics @CEPC 10 Nov., 2017

Outline

Introduction

CP violation	Effective Field Theory (EFT)	Constraints of CP violation in Higgs couplings

• Probe CP violation in $H\gamma\gamma$ coupling

Interference between $gg \rightarrow H \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$

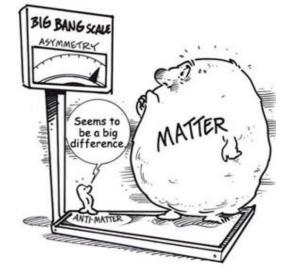
A new observable A_{int} in SM and CP violation cases

• Summary

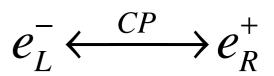
CP violation in Cosmology

• Matter-antimatter asymmetry.

$$\eta \equiv \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \sim 10^{-10}$$



- Sakharov's conditions:
- 1. Baryon number violation.
- 2. C and CP violation.
- 3. Interactions out of thermal equilibrium.



CP violation in SM

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W^{+}_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.} \quad V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 $\theta_{12}, \theta_{23}, \theta_{13}, \delta$

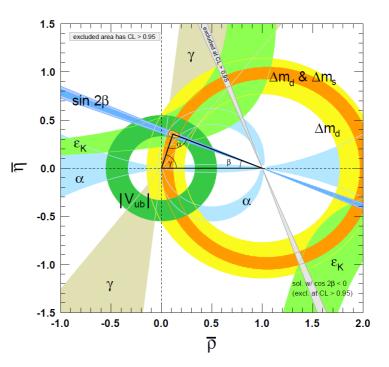
M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49 (1973) 652

$$J = c_{12}c_{23}c_{13}^2 s_{12}s_{23}s_{13}\sin\delta = (3.04^{+0.21}_{-0.20}) \times 10^{-5}.$$

C. Jarlskog, Z.Phys. C29 (1985) 491-497

Baryon asymmetry $\sim 10^{-20} \ll \eta$

M.E. Shaposhnikov, Nucl. Phys. B287 (1987) 757



CP violation from Higgs dynamics

• SM

 $\theta_{12}, \theta_{23}, \theta_{13}, \pmb{\delta}$

$$V_{CKM} = U_u^{\dagger} U_d,$$

$$\lambda_u = U_u D_u W_u^{\dagger}, u_L^i \to U_u^{ij} u_L^j,$$

• For Example, 2HDM, SUSY

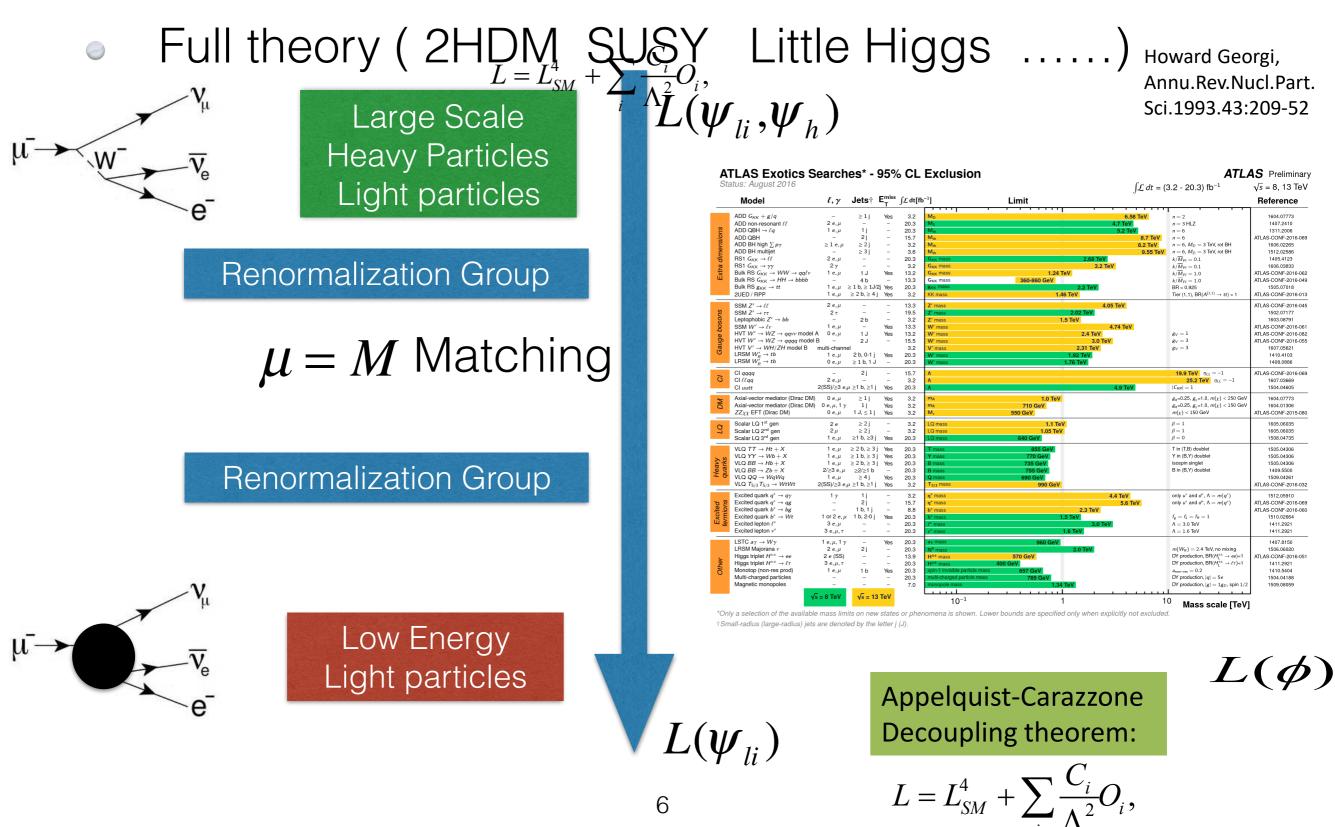
$$\Phi_{i} = \begin{pmatrix} \varphi_{i}^{+} \\ (v_{i} + \eta_{i} + i\chi_{i})/\sqrt{2} \end{pmatrix} \qquad i = 1, 2 \qquad \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} = R \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ h_{3} \end{pmatrix}$$

CP-even: η_1, η_2 CP-odd: $A = -\sin\beta\chi_1 + \cos\beta\chi_2$

 $\mu = M$

Effective Field, Theory

Howard Georgi. Sci.1993.43:209-52



Dimension-six operators

$$\mathcal{L}_{D=6} \equiv \sum_{i} \bar{c}_{i} \bar{O}_{i} = \Delta \mathcal{L}_{SILH} + \Delta \mathcal{L}_{CP} + \cdots$$

$$\begin{split} \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_H}{2v^2} \partial^{\mu} \big(H^{\dagger} H \big) \partial_{\mu} \big(H^{\dagger} H \big) + \frac{\bar{c}_T}{2v^2} \left(H^{\dagger} \overleftrightarrow{D^{\mu}} H \big) \Big(H^{\dagger} \overleftrightarrow{D}_{\mu} H \Big) - \frac{\bar{c}_6 \lambda}{v^2} \left(H^{\dagger} H \big)^3 \\ &+ \left(\left(\frac{\bar{c}_u}{v^2} y_u H^{\dagger} H \, \bar{q}_L H^c u_R + \frac{\bar{c}_d}{v^2} y_d H^{\dagger} H \, \bar{q}_L H d_R + \frac{\bar{c}_l}{v^2} y_l H^{\dagger} H \, \bar{L}_L H l_R \right) + h.c. \end{split} \\ &+ \frac{i \bar{c}_W g}{2m_W^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i \bar{c}_B g'}{2m_W^2} \left(H^{\dagger} \overleftrightarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) \\ &+ \frac{i \bar{c}_{HW} g}{m_W^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i \bar{c}_{HB} g'}{m_W^2} \left(D^{\mu} H \right)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{\bar{c}_{\gamma} g'^2}{m_W^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_g g_S^2}{m_W^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}, \end{split}$$

$$\begin{split} \Delta \mathcal{L}_{CP} &= \frac{i \tilde{c}_{HW} g}{m_W^2} \, (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) \tilde{W}^i_{\mu\nu} + \frac{i \tilde{c}_{HB} g'}{m_W^2} \, (D^{\mu} H)^{\dagger} (D^{\nu} H) \tilde{B}_{\mu\nu} \\ &+ \frac{\tilde{c}_{\gamma} {g'}^2}{m_W^2} \, H^{\dagger} H B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{\tilde{c}_g \, g_S^2}{m_W^2} \, H^{\dagger} H G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \\ &+ \frac{\tilde{c}_{3W} \, g^3}{m_W^2} \, \epsilon^{ijk} W^{i\,\nu}_{\mu} W^{j\,\rho}_{\nu} \tilde{W}^{k\,\mu}_{\rho} + \frac{\tilde{c}_{3G} \, g_S^3}{m_W^2} \, f^{abc} G^{a\,\nu}_{\mu} G^{b\,\rho}_{\nu} \tilde{G}^{c\,\mu}_{\rho} \,, \end{split}$$

$$\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}, \ F = W, B, G.$$

B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, JHEP 1010 (2010) 085 R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, M. Spira, JHEP07(2013)035

$$iIm(\bar{c}_f)y_f\bar{q}\gamma_5 qH$$

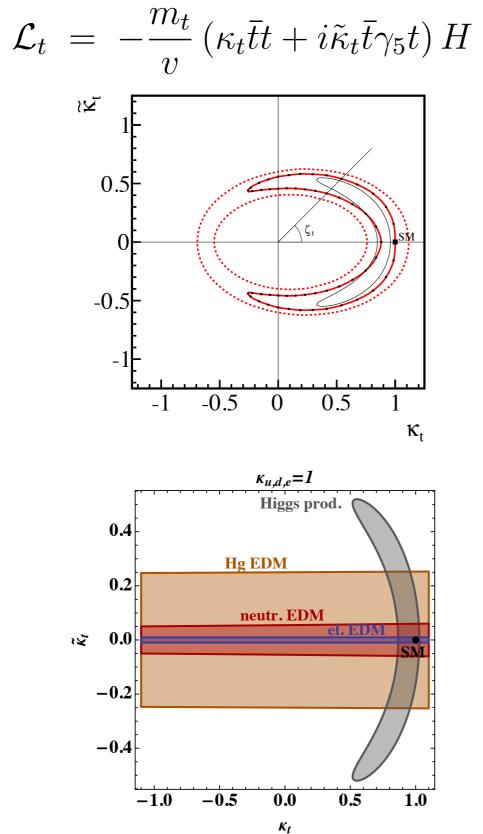
$$\bar{c}_f \sim \mathcal{O}(1) \tilde{c}_{HW}, \tilde{c}_{HB} \sim \frac{1}{16\pi^2} \mathcal{O}(1) \tilde{c}_{\gamma}, \tilde{c}_g \sim \frac{1}{16\pi^2} \mathcal{O}(1)$$

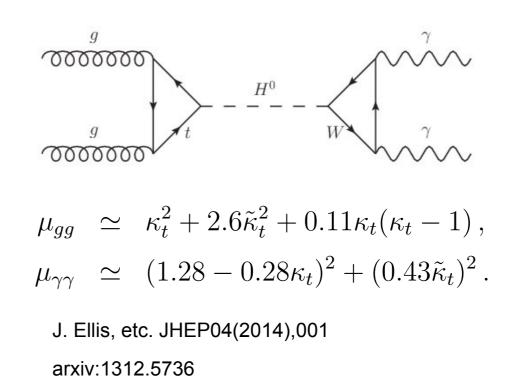
C. Arzt, M.B. Einhorn, J. Wudka Nucl.Phys. B433 (1995) 41-66

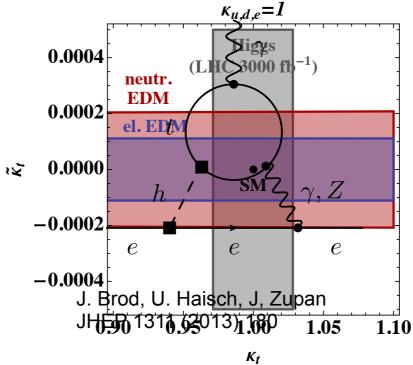
Sensitivity to probe CP violation

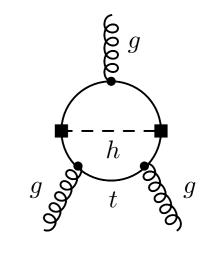
	SM	CP-odd coupling	sensitivity
$Hf\bar{f}$	tree	tree	
HZZ, HWW	tree	loop	X
$H\gamma\gamma, Hgg$	loop	loop	

Experimental Constraints: $Ht\bar{t}$



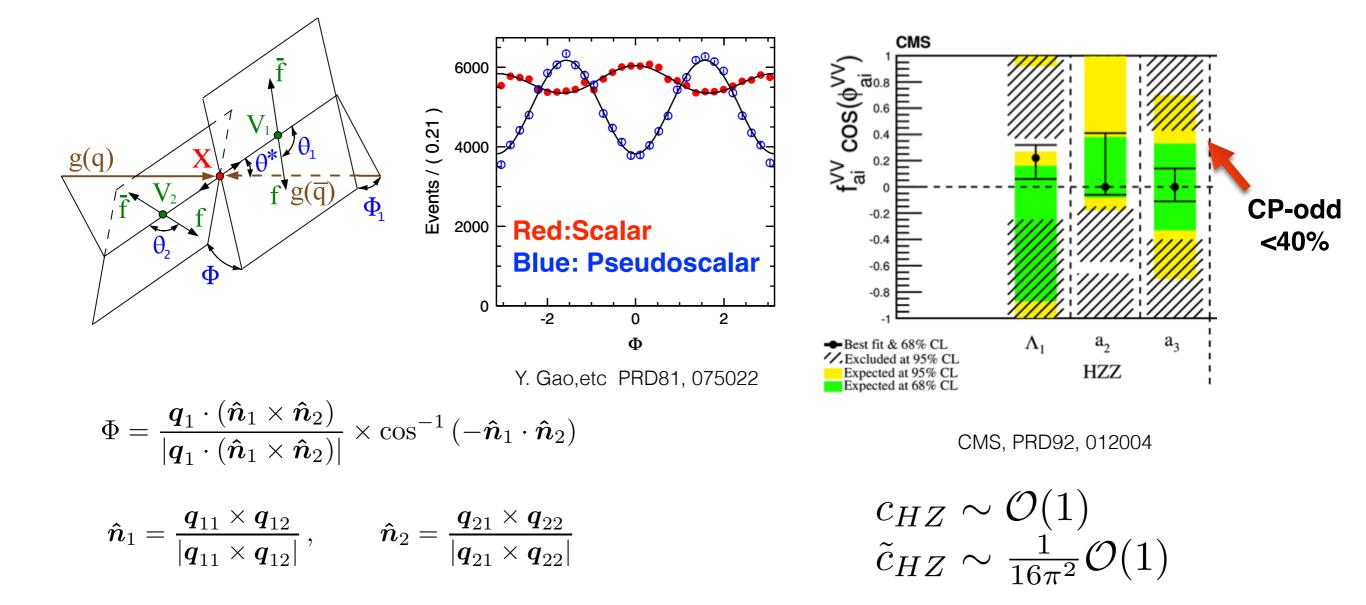






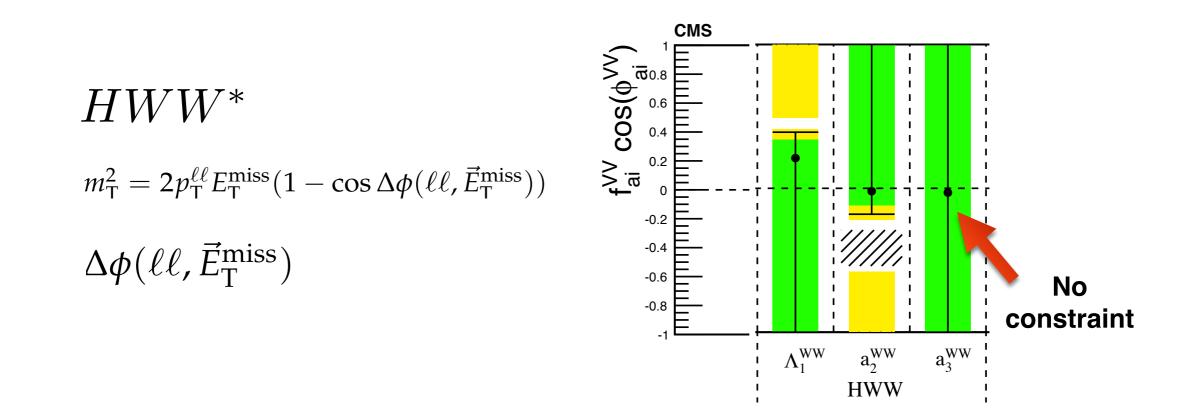
Experimental Constraints: HZZ

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$$



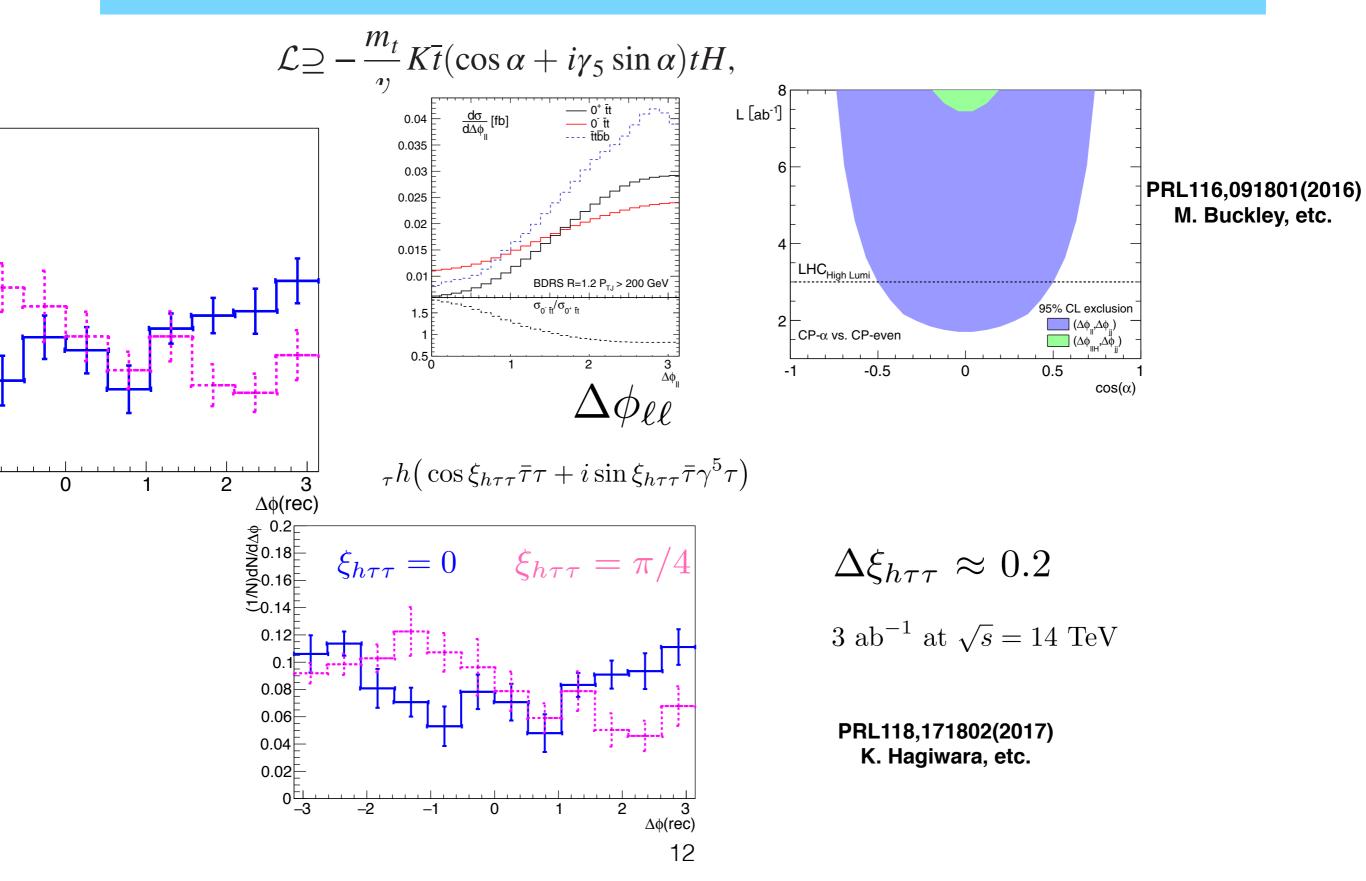
Experimental Constraints: HWW

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$$

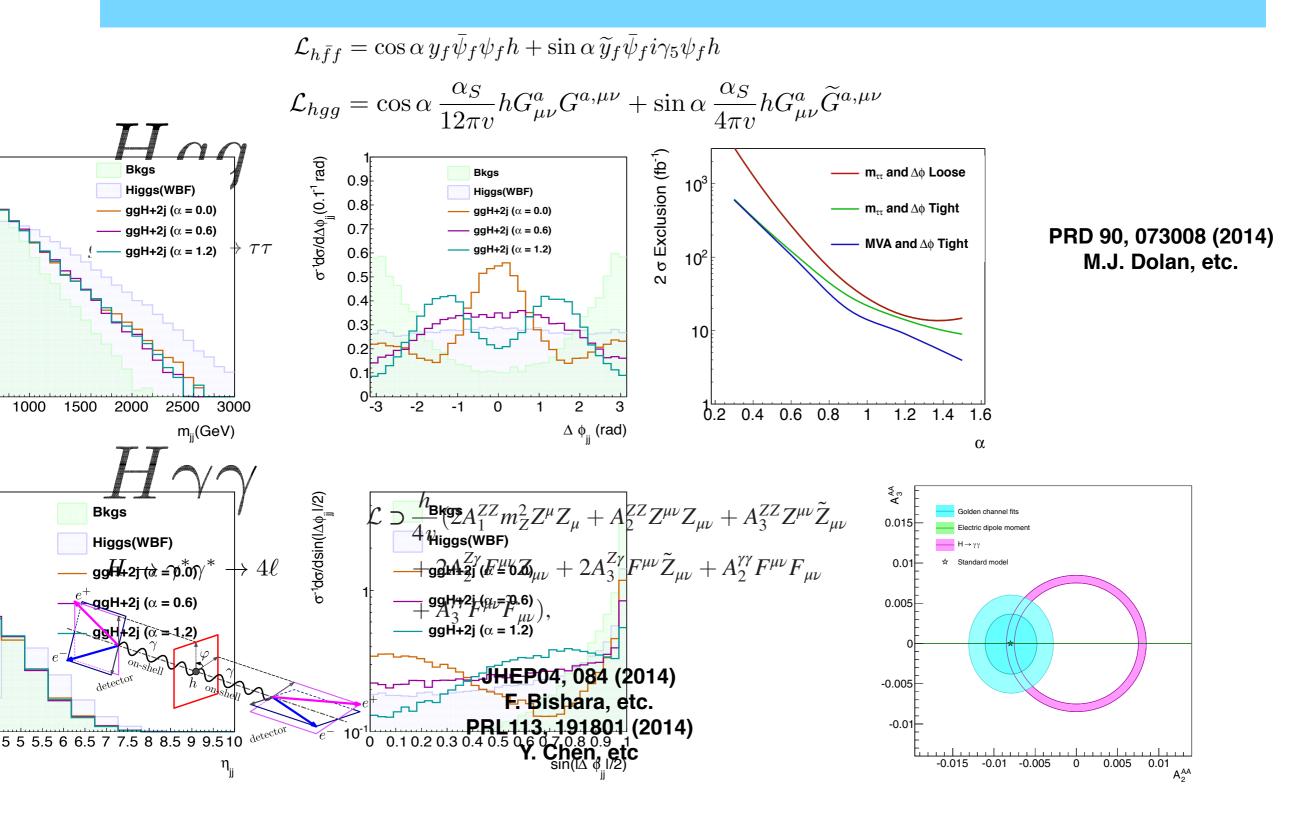


CMS, PRD92, 012004

Some theoretical proposals

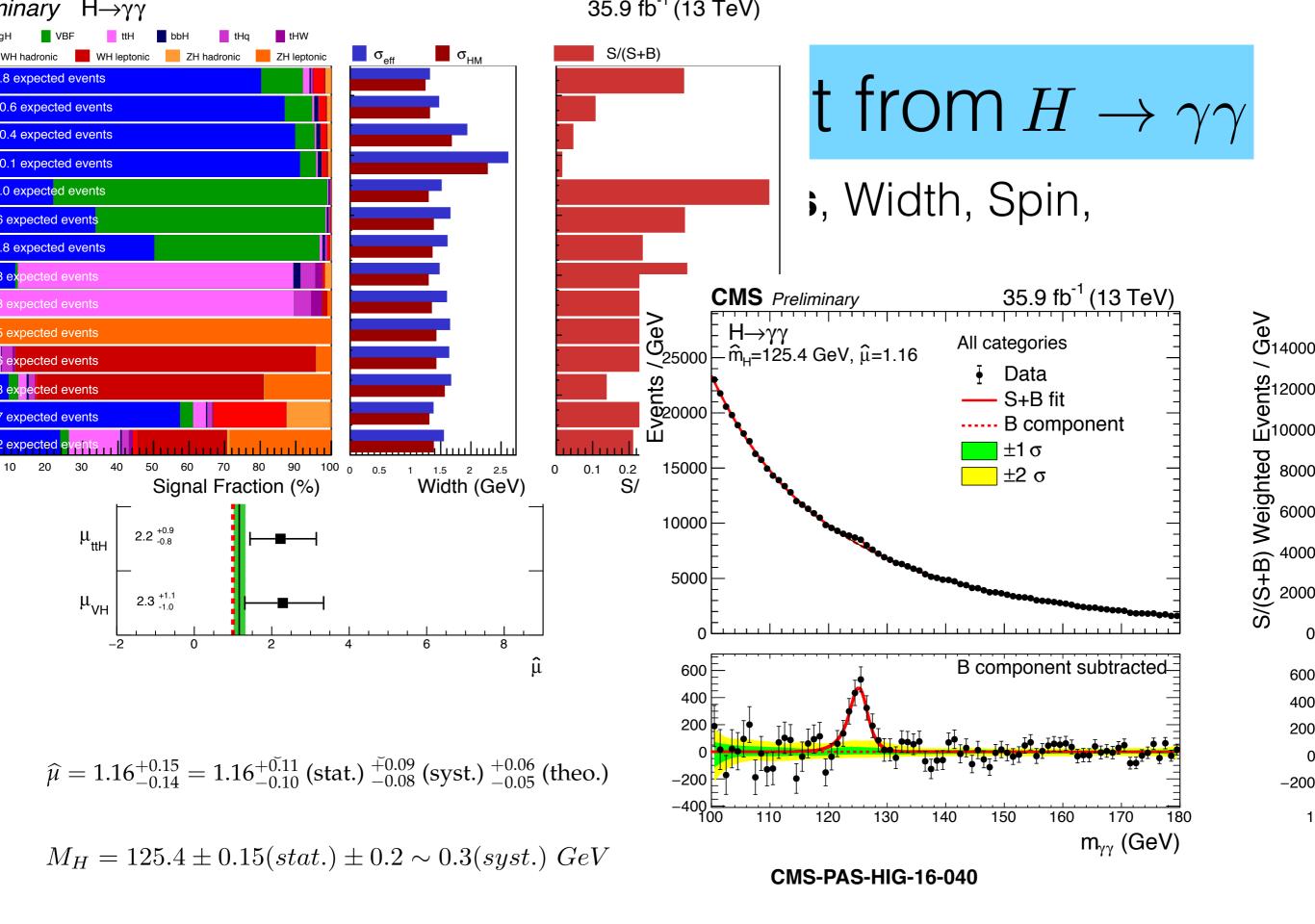


Some theoretical proposals



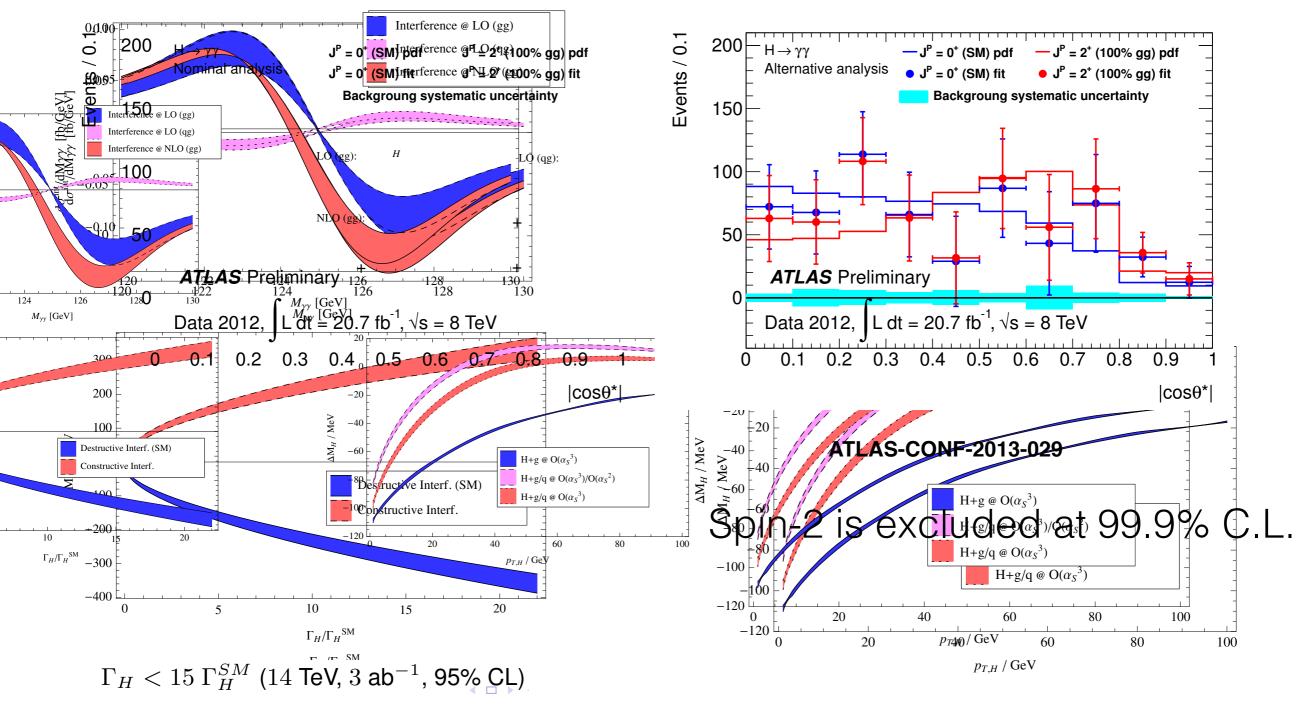
Methods and Feasibility

coupling	decay channel	sensitive	feasibility		feasibility
		observable	@LHC,	@HL-LHC	@CEPC
HWW	$H \to WW \to 2\ell 2\nu$	$\Delta \phi_{\ell\ell}$			
$Htar{t}$	$H \to t\bar{t} \to 2\ell 2\nu b\bar{b}$	$\Delta \phi_{\ell\ell}$	X		
H au au	$H \to \tau \tau \to \pi^+ \pi^- 2\nu$	$\Delta \phi_{\pi^+\pi^-}$			
HZZ	$H \to ZZ \to 4\ell$	$\Delta \phi$			
Hgg	$gg \to Hjj$	$\Delta \phi_{jj}$			
$H\gamma\gamma$	$H \to \gamma \gamma \to 4\ell$	$\Delta \phi$	X		
4					



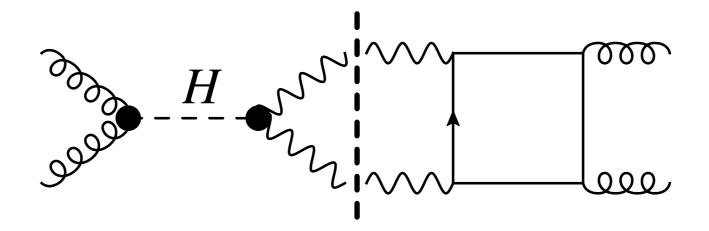
Precise measurement from $H \to \gamma \gamma$

Include Signal strength, Mass, Width, Spin

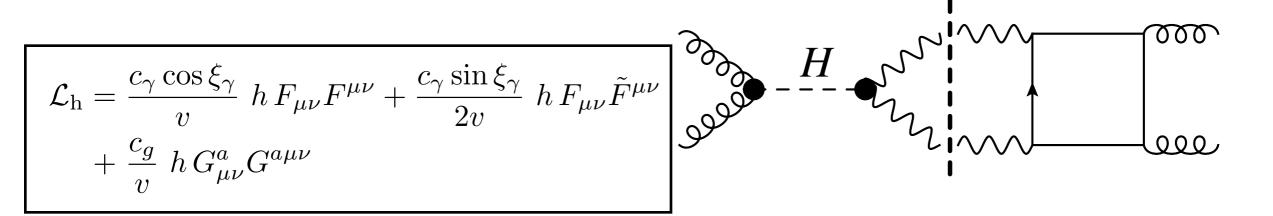


L.Dixon, etc. PRL111,111802

Probe CP violation in $H\gamma\gamma$ coupling through interference



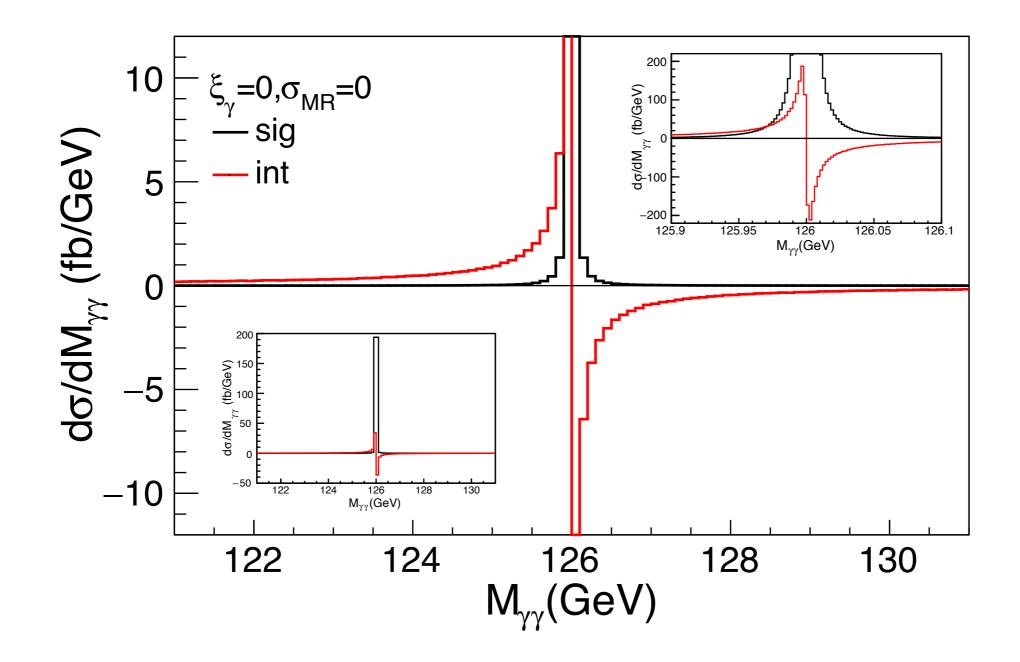
Interference



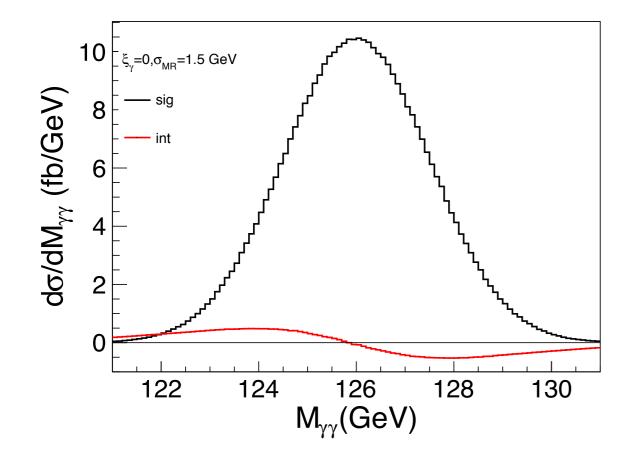
$$\mathcal{M} = -e^{-ih_{3}\xi_{\gamma}}\delta_{h_{1}h_{2}}\delta_{h_{3}h_{4}}\frac{M_{\gamma\gamma}^{4}}{v^{2}}\frac{4c_{g}c_{\gamma}}{M_{\gamma\gamma}^{2} - M_{H}^{2} + iM_{H}\Gamma_{H}} \quad \mathcal{A}_{box}^{++++} = \mathcal{A}_{box}^{----} = 1 \qquad z = \cos\theta$$
$$+ 4\alpha\alpha_{s}\delta^{ab}\sum_{f=u,d,c,s,b}Q_{f}^{2}\mathcal{A}_{box}^{h_{1}h_{2}h_{3}h_{4}}, \qquad -1 + z\ln\left(\frac{1+z}{1-z}\right) - \frac{1+z^{2}}{4}\left[\ln^{2}\left(\frac{1+z}{1-z}\right) + \pi^{2}\right]$$

$$\frac{d\sigma_{int}}{dM_{\gamma\gamma}} \propto \frac{(M_{\gamma\gamma}^2 - M_H^2) \operatorname{Re}\left(c_g c_\gamma\right) + M_H \Gamma_H \operatorname{Im}\left(c_g c_\gamma\right)}{(M_{\gamma\gamma}^2 - M_H^2) + M_H^2 \Gamma_H^2} \\ \times \int dz \left[\mathcal{A}_{box}^{++++} + \mathcal{A}_{box}^{++--}\right] \cos \xi_\gamma,$$

Lineshape of Interference (SM)



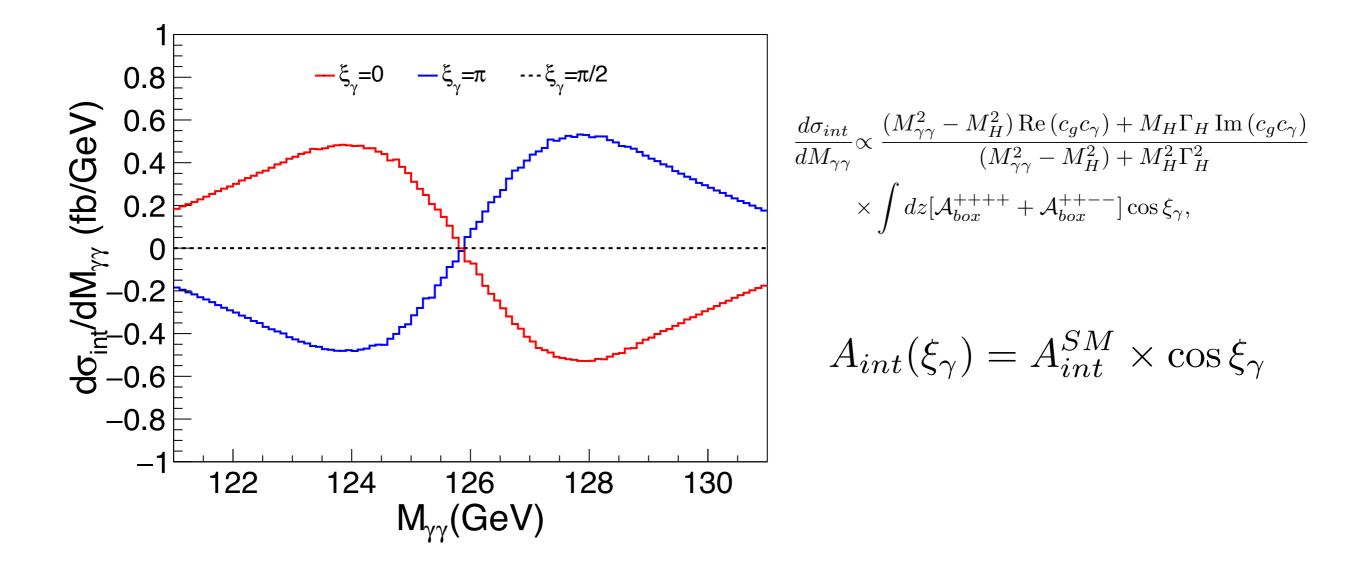
After mass resolution (SM)



$$A_{int}(\xi_{\gamma}) = \frac{\int dM_{\gamma\gamma} \frac{d\sigma_{int}}{dM_{\gamma\gamma}} \Theta(M_{\gamma\gamma} - M_H)}{\int dM_{\gamma\gamma} \frac{d\sigma_{sig}}{dM_{\gamma\gamma}}} ,$$
$$\Theta(x) \equiv \begin{cases} -1, \ x < 0\\ 1, \ x > 0 \end{cases}$$

σ_{MR}	A_{int}^{SM} denominator	A_{int}^{SM} numerator	A_{int}^{SM}
(GeV)	(fb)	(fb)	(%)
0	39.3	14.3	36.3
1.1	39.3	4.1	10.4
1.3	39.3	3.8	9.6
1.5	39.3	3.5	8.8
1.7	39.3	3.2	8.2
1.9	39.3	3.0	7.5

Lineshape of CP-violating $H\gamma\gamma$ coupling



Significance

Significance =
$$\frac{|A_{int} - A_{int}^{SM}|}{\sqrt{|\delta A_{int}|^2 + |\delta A_{int}^{SM}|^2}}$$

$$\delta A_{int} = A_{int} \times \frac{1}{\sqrt{L}} \sqrt{\frac{1}{|\sigma_{int}^I|} + \frac{1}{\sigma_{sig}^I}} ,$$

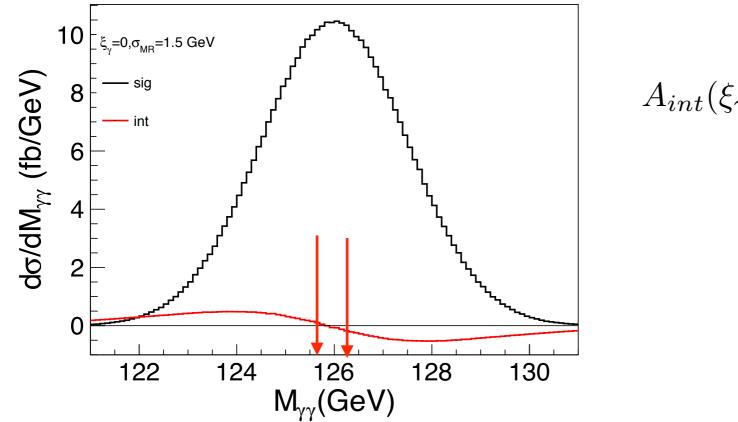
$$\sigma_{int}^{I} = \int^{I} dM \frac{d\sigma_{int}}{dM}, \ \sigma_{sig}^{I} = \int^{I} dM \frac{d\sigma_{sig}}{dM},$$

ξ_γ	$A_{int}(\%)$	Significance $(L = 30fb^{-1})$
0	8.8	_
π	-8.8	9
$\frac{\pi}{2}$	0	7

/2

 $\xi_{\gamma} \notin [\pi/2, 3\pi/2]$ at 99.9% C.L.

Mass uncertainty



$$A_{int}(\xi_{\gamma}) = \frac{\int dM_{\gamma\gamma} \frac{d\sigma_{int}}{dM_{\gamma\gamma}} \Theta(M_{\gamma\gamma} - M_H)}{\int dM_{\gamma\gamma} \frac{d\sigma_{sig}}{dM_{\gamma\gamma}}} ,$$
$$\Theta(x) \equiv \begin{cases} -1, \ x < 0\\ 1, \ x > 0 \end{cases}$$

 $M_H = 125.4 \pm 0.15(stat.) \pm 0.2 \sim 0.3(syst.) \ GeV$

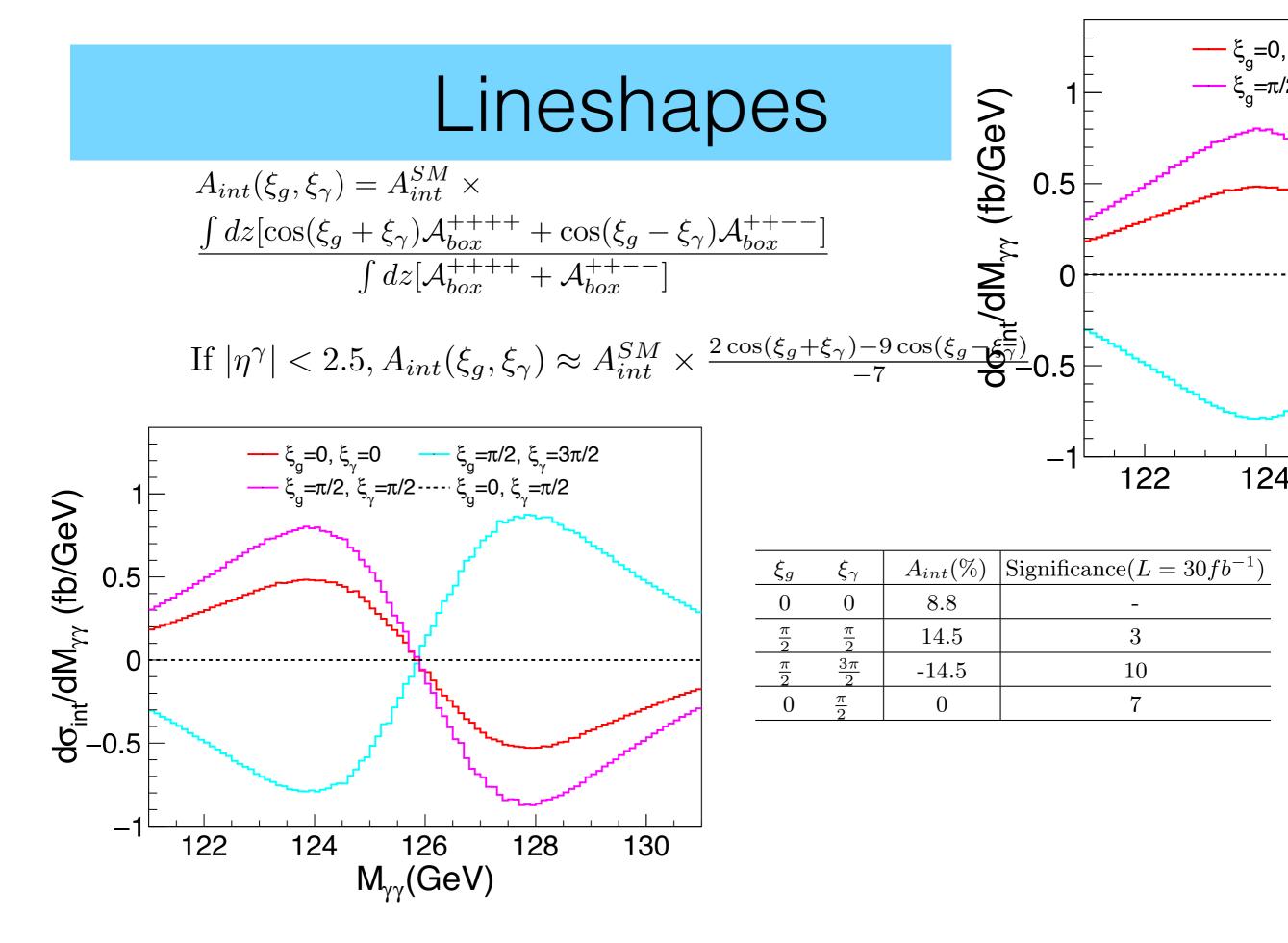
Mass uncertainty of ~0.4 GeV doesn't affect much

A general framework

$$\mathcal{L}_{h} = \frac{c_{\gamma} \cos \xi_{\gamma}}{v} h F_{\mu\nu} F^{\mu\nu} + \frac{c_{\gamma} \sin \xi_{\gamma}}{2v} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{c_{g} \cos \xi_{g}}{v} h G^{a}_{\mu\nu} G^{a\mu\nu} + \frac{c_{g} \sin \xi_{g}}{2v} h G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu}$$

$$\mathcal{M} = -e^{-ih_1\xi_g} e^{-ih_3\xi_\gamma} \delta_{h_1h_2} \delta_{h_3h_4} \frac{M_{\gamma\gamma}^4}{v^2} \frac{4c_g c_\gamma}{M_{\gamma\gamma}^2 - M_H^2 + iM_H \Gamma_H} + 4\alpha\alpha_s \delta^{ab} \sum_{f=u,d,c,s,b} Q_f^2 \mathcal{A}_{box}^{h_1h_2h_3h_4} , \qquad (17)$$

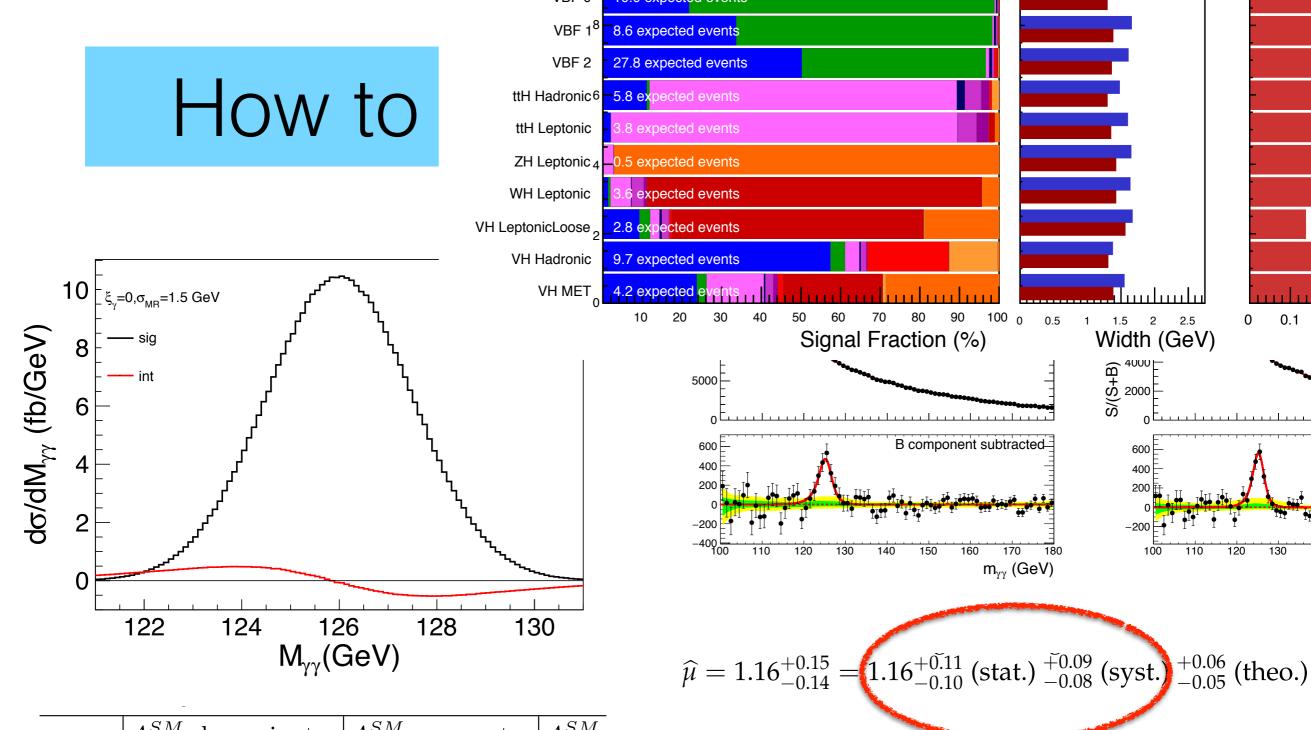
$$\frac{d\sigma_{int}}{dM_{\gamma\gamma}} \propto \frac{(M_{\gamma\gamma}^2 - M_H^2) \operatorname{Re} (c_g c_\gamma) + M_H \Gamma_H \operatorname{Im} (c_g c_\gamma)}{(M_{\gamma\gamma}^2 - M_H^2) + M_H^2 \Gamma_H^2} \times \int dz [\cos(\xi_g + \xi_\gamma) \mathcal{A}_{box}^{++++} + \cos(\xi_g - \xi_\gamma) \mathcal{A}_{box}^{++--}] (18)$$



Summary

- *CP* violation have been studied variously in Higgs decays. For single channels with multiple final states such as $HZZ \to 4l$, $H \to t\bar{t} \to 2\ell 2\nu 2jet$, $\Delta\phi(\Delta\phi_{\ell\ell})$ is a sensitive observable. But it is not suitable for $H \to \gamma\gamma$.
- Interference between $gg \to H \to \gamma\gamma$ and $gg \to \gamma\gamma$ is studied. Based on the antisymmetric line shape of interference at leading order, We propose an integral odd around $M_H (\int^{M_H} - \int_{M_H})$ to get the contribution of interference and divide it by the total cross section of Higgs signal, which makes a new observable A_{int} .
- A_{int} could reach about 10% in SM, and the significance of deviation caused by CP violation could be large as $5 \sim 10\sigma$, which could constrain the CPviolation phase $\xi_{\gamma} \notin [\pi/2, 3\pi/2]$ at 99.9% confidence level.
- The A_{int} with both CP-violating $H\gamma\gamma$ and Hgg couplings are also studied, which could have larger deviation and significance.

Thanks for your attention!



29

Separate lineshape of signal and interference is hopeful 0.2 S/(

Bc

140

σ_{MR}	A_{int}^{SM} denominator	A_{int}^{SM} numerator	A_{int}^{SM}
(GeV)	(fb)	(fb)	(%)
0	39.3	14.3	36.3
1.1	39.3	4.1	10.4
1.3	39.3	3.8	9.6
1.5	39.3	3.5	8.8
1.7	39.3	3.2	8.2
1.9	39.3	3.0	7.5