Towards precision phenomenology in non-leptonic and rare *B* decays

Tobias Huber Universität Siegen

DFG FOR 1873

Workshop "EW and Flavor Physics at CEPC", November 9-10th, 2017

Outline

• Exclusive nonleptonic B decays

- Charmless two-body decays
- Heavy-light final states
- Three-body decays
- Inclusive rare B decays
 - $\bar{B} \to X_s \ell^+ \ell^-$
 - $\bar{B} \to X_d \, \ell^+ \ell^-$

[Bell,Beneke,Li,TH'15]

[Kränkl,TH'15; Kränkl,Li,TH'16]

[Hurth,Lunghi,TH'15]

[Hurth,Lunghi,Jenkins,Vos,Qin,TH w.i.p.]

Introduction to non-leptonic *B* decays

- Non-leptonic B decays offer a rich and interesting phenomenology
 - Large data sets from *B*-factories, Tevatron, LHCb, in future Belle II
 - $\mathcal{O}(100)$ final states
 - Numerous observables:
 - branching ratios
 - CP asymmetries
 - polarisations
 - Dalitz plot analyses
 - Combinations thereof
- Test of CKM mechanism (CP violation)
- Indirect search for New Physics
 - Not as sensitive as rare or radiative B decays, but large data sets

Introduction to non-leptonic B decays

- Theoretical description complicated by purely hadronic initial and final state
 - QCD effects from many different scales

Theory approaches based on factorisation

- Disentangle long and short distances
- QCD Factorisation

[Beneke,Buchalla,Neubert,Sachrajda'99-'01]

- Systematic framework to all orders in α_s and leading power in Λ/m_b
- Problems with factorisation of power suppressed and annihilation contributions. Endpoint divergences.

Countless pheno applications

[Beneke,Neubert'03; Cheng,Yang'08; Cheng,Chua'09; Bell,Pilipp'09; Beneke,Li,TH'09; Bobeth,Gorbahn,Vickers'14; Bell,Beneke,Li,TH'15; ...]

- Soft-collinear effective theory (SCET)[Bauer,Fleming,Pirjol,Stewart'01; Beneke,Chapovsky,Diehl,Feldmann'02]
 - Similar to QCDF, factorises spectator part further

[Wang,Wang,Yang,Lü'08; Wang,Zhou,Li,Lü'17]

Introduction to non-leptonic B decays

PQCD

[Keum,Li,Sanda'00; Lü,Ukai,Yang'00]

- Based on k_T -factorisation. Organises amplitude differently
- Generates larger strong phases. Avoids endpoint divergences.
- Discussion of theoretical uncertainties difficult since no complete NLO (O(α²_s)) analysis available
- Also countless pheno applications

More theory approaches

Flavour symmetries:

Isospin, U-Spin ($d \leftrightarrow s$), V-Spin ($u \leftrightarrow s$), Flavour SU(3)

[see e.g. Chiang,Gronau,Rosner'08; Chiang,Zhou'06'08; Cheng,Chiang,Kuo'14'16]

- Only few a priori assumptions about scales needed
- Implementation of symmetry breaking difficult
- Combination: Factorization-assisted topological-amplitude approach (FAT)

[Li,Lü,Yu'12; Li,Lü,Qin,Yu'13; Wang,Zhang,Li,Lü'17]

[Jung,Mannel'09; Cheng,Chiang'12]

- Dalitz plot analysis. Applied to 3-body decays
 - Mostly a fit to data, but also QCD-based predictions possible

[Kränkl,Mannel,Virto'15; Klein,Mannel,Virto,Vos'17]

[e.g. Ali,Kramer,Li, Lü,Shen,Wang,Wang'07]

[Zeppenfeld'81]

Effective theory for *B* decays

• M_W , M_Z , $m_t \gg m_b$: integrate out heavy gauge bosons and *t*-quark

• Effective Hamiltonian:

[Buras,Buchalla,Lautenbacher'96; Chetyrkin,Misiak,Münz'98]

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left[C_1 Q_1^p + C_2 Q_2^p + \sum_{k=3}^6 C_k Q_k + C_8 Q_8 \right] + \text{h.c.}$$

$$\begin{aligned} Q_1^{\rho} &= (\bar{d}_L \gamma^{\mu} T^a p_L) (\bar{p}_L \gamma_{\mu} T^a b_L) & Q_4 &= (\bar{d}_L \gamma^{\mu} T^a b_L) \sum_q (\bar{q} \gamma_{\mu} T^a q) & Q_8 &= -\frac{g_s}{16\pi^2} m_b \, \bar{d}_L \, \sigma_{\mu\nu} G^{\mu\nu} b_R \\ Q_2^{\rho} &= (\bar{d}_L \gamma^{\mu} p_L) (\bar{p}_L \gamma_{\mu} b_L) & Q_5 &= (\bar{d}_L \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} b_L) \sum_q (\bar{q} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} q) \\ Q_3 &= (\bar{d}_L \gamma^{\mu} b_L) \sum_q (\bar{q} \gamma_{\mu} q) & Q_6 &= (\bar{d}_L \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^a b_L) \sum_q (\bar{q} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^a q) & \lambda_{\rho} = V_{\rho b} V_{\rho d}^* \end{aligned}$$

QCD factorisation

• Amplitude in the limit $m_b \gg \Lambda_{\rm QCD}$

[Beneke,Buchalla,Neubert,Sachrajda'99-'04]

$$\begin{split} \langle M_1 M_2 | Q_i | \bar{B} \rangle &\simeq m_B^2 \; F_+^{B \to M_1}(0) \; f_{M_2} \int_0^1 du \; T_i^{I}(u) \; \phi_{M_2}(u) \\ &+ f_B \; f_{M_1} \; f_{M_2} \int_0^1 d\omega dv du \; \; T_i^{II}(\omega, v, u) \; \phi_B(\omega) \; \phi_{M_1}(v) \; \phi_{M_2}(u) \end{split}$$

- T^{1, II}: Hard scattering kernels, perturbatively calculable
- $F_+: B \to M$ form factor $f_i:$ decay constants $\phi_i:$ light-cone distribution amplitudes \int Universal. From Sum Rules, Lattice
- Strong phases are $\mathcal{O}(\alpha_s)$ and/or $\mathcal{O}(\Lambda_{QCD}/m_b)$

Anatomy of QCD factorisation

Classification of amplitudes

$$\begin{split} \langle \pi^{-} \bar{K}^{0} | \mathcal{H}_{\textit{eff}} | B^{-} \rangle &= A_{\pi \bar{K}} \left[\lambda_{u}^{(s)} \alpha_{u}^{u} + \lambda_{c}^{(s)} \alpha_{4}^{c} \right] \\ \langle \pi^{+} K^{-} | \mathcal{H}_{\textit{eff}} | \bar{B}^{0} \rangle &= A_{\pi \bar{K}} \left[\lambda_{u}^{(s)} \left(\alpha_{1} + \alpha_{4}^{u} \right) + \lambda_{c}^{(s)} \alpha_{4}^{c} \right] \end{split}$$

[Beneke,Neubert'03]

• Tree amplitudes α_1 and α_2 known analytically to NNLO

[Bell'07'09; Beneke,Li,TH'09]

Penguin amplitudes a_4^u and a_4^c to NLO

NLO:

 $\begin{aligned} \alpha_4^u(\pi\pi) &= -0.029 - [0.002 + 0.001i]_V + [0.003 - 0.013i]_P + [?? + ?? i]_{\mathcal{O}(\alpha_s^2)} \\ &+ \left[\frac{r_{\rm sp}}{0.485}\right] \left\{ [0.001]_{\rm LO} + [0.001 + 0.000i]_{HV+HP} + [0.001]_{\rm tw3} \right\} \\ &= (-0.024^{+0.004}_{-0.002}) + (-0.012^{+0.003}_{-0.002})i \end{aligned}$

$$\begin{aligned} \alpha_4^c(\pi\pi) &= -0.029 - [0.002 + 0.001i]_V - [0.001 + 0.007i]_P + [?? + ??i]_{\mathcal{O}(\alpha_g^2)} \\ &+ \left[\frac{\epsilon_{\rm sp}}{0.485}\right] \left\{ [0.001]_{\rm LO} + [0.001 + 0.001i]_{HV+HP} + [0.001]_{\rm tw3} \right\} \\ &= (-0.028^{+0.005}_{-0.003}) + (-0.006^{+0.003}_{-0.002})i \end{aligned}$$

Penguin amplitudes at two loops

O(70) diagrams at NNLO.

Quite some book-keeping due to various insertions

- Focus on $Q_1^{u,c}$ and $Q_2^{u,c}$ insertions first
 - Only \sim 25 diagrams contribute
 - However: Genuine two-loop two-scale problem with threshold
 - Apply state-of-the-art multi-loop techniques
 - Perform matching from QCD onto SCET

Results: Penguin Amplitudes

Only Q_{1,2} contribution. Inputs from [Beneke,Li,TH'09]

$$\begin{aligned} a_4^{\nu}(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.49 - 1.32i]_{P_1} - [0.32 + 0.71i]_{P_2} \\ &+ \left[\frac{r_{sp}}{0.434}\right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} - [0.01 - 0.05i]_{HP} + [0.07]_{tw3} \right\} \\ &= (-2.46^{+0.49}_{-0.24}) + (-1.94^{+0.32}_{-0.20})i, \end{aligned}$$

$$\begin{aligned} a_4^c(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.05 - 0.62i]_{P_1} - [0.77 + 0.50i]_{P_2} \\ &+ \left[\frac{r_{sp}}{0.434}\right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} + [0.01 + 0.03i]_{HP} + [0.07]_{tw3} \right\} \\ &= (-3.34^{+0.43}_{-0.27}) + (-1.05^{+0.45}_{-0.36})i. \end{aligned}$$

NNLO correction sizable, but no breakdown of perturbative expansion

Results: Penguin Amplitudes

Results: Scale dependence

Only form factor term, no spectator scattering

Results: Amplitude ratios

Ratio	NLO	NNLO
$\frac{P_{\pi\pi}}{T_{\pi\pi}}$	-0.121 - 0.021 <i>i</i>	$-0.124^{+0.031}_{-0.060} + (-0.026^{+0.045}_{-0.046})i$
$rac{P_{ ho ho}}{T_{ ho ho}}$	-0.035 - 0.009 <i>i</i>	$-0.041^{+0.020}_{-0.016} + (-0.014^{+0.019}_{-0.018})i$
$\frac{P_{\pi\rho}}{T_{\pi\rho}}$	-0.038 - 0.005 <i>i</i>	$-0.040^{+0.016}_{-0.030} + (-0.009^{+0.026}_{-0.026})i$
$rac{P_{ ho\pi}}{T_{ ho\pi}}$	0.040 + 0.002 <i>i</i>	$0.036^{+0.042}_{-0.023} + (-0.001^{+0.033}_{-0.033})i$
$rac{C_{\pi\pi}}{T_{\pi\pi}}$	0.317 – 0.040 <i>i</i>	$0.320^{+0.255}_{-0.142} + (-0.030^{+0.150}_{-0.091})i$
$rac{C_{ ho ho}}{T_{ ho ho}}$	0.165 - 0.064 <i>i</i>	$0.176^{+0.187}_{-0.133} + (-0.054^{+0.142}_{-0.104})i$
$rac{C_{\pi ho}}{T_{\pi ho}}$	0.219 – 0.064 <i>i</i>	$0.212^{+0.197}_{-0.112} + (-0.062^{+0.114}_{-0.079})i$
$rac{C_{ ho\pi}}{T_{ ho\pi}}$	0.092 - 0.080 <i>i</i>	$0.112^{+0.189}_{-0.144} + (-0.065^{+0.152}_{-0.115})i$
$rac{T_{ ho\pi}}{T_{\pi ho}}$	0.821 + 0.016 <i>i</i>	$0.810^{+0.262}_{-0.200} + (\ 0.010^{+0.062}_{-0.062})i$
$\frac{\alpha_4^c(\pi K)}{\alpha_1(\pi \pi) + \alpha_2(\pi \pi)}$	-0.085 - 0.019 <i>i</i>	$-0.087^{+0.022}_{-0.036} + (-0.021^{+0.029}_{-0.029})i$
$\frac{\alpha_4^{c}(\pi K^*)}{\alpha_1(\pi \pi) + \alpha_2(\pi \pi)}$	-0.029 - 0.005 <i>i</i>	$-0.030^{+0.015}_{-0.026} + (-0.007^{+0.023}_{-0.023})i$
$\frac{\alpha_4^{c}(\rho K)}{\alpha_1(\rho \rho) + \alpha_2(\rho \rho)}$	0.037 + 0.004 <i>i</i>	$0.034^{+0.039}_{-0.021} + (\ 0.001^{+0.030}_{-0.030})i$
$\frac{\alpha_4^{c}(\rho K^*)}{\alpha_1(\rho \rho) + \alpha_2(\rho \rho)}$	-0.023 - 0.010 <i>i</i>	$-0.027^{+0.027}_{-0.016} + (-0.012^{+0.024}_{-0.023})i$

• Unpublished numbers. Only *Q*_{1,2} contribution. Inputs from [Beneke,Li,TH'09].

Results: Amplitude ratios

Results: Direct CP asymmetries I

• Direct CP asymmetries in percent.

Errors are CKM and hadronic, respectively.

f	NLO	NNLO	NNLO + LD	Exp
$\pi^-ar{K}^0$	$0.71^{+0.13+0.21}_{-0.14-0.19}$	$0.77^{+0.14}_{-0.15}{}^{+0.23}_{-0.22}$	$0.10^{+0.02+1.24}_{-0.02-0.27}$	-1.7 ± 1.6
$\pi^0 K^-$	$9.42^{+1.77}_{-1.76}{}^{+1.87}_{-1.88}$	$10.18^{+1.91}_{-1.90}{}^{+2.03}_{-2.62}$	$-1.17^{+0.22}_{-0.22}{}^{+20.00}_{-6.62}$	4.0 ± 2.1
$\pi^+ K^-$	$7.25^{+1.36}_{-1.36}{}^{+2.13}_{-2.58}$	$8.08^{+1.52}_{-1.51}{}^{+2.52}_{-2.65}$	$-3.23^{+0.61+19.17}_{-0.61-\ 3.36}$	-8.2 ± 0.6
$\pi^0 \bar{K}^0$	$-4.27^{+0.83+1.48}_{-0.77-2.23}$	$-4.33^{+0.84}_{-0.78}{}^{+3.29}_{-2.32}$	$-1.41^{+0.27}_{-0.25}{}^{+5.54}_{-6.10}$	1 ± 10
$\delta(\pi \bar{K})$	$2.17^{+0.40+1.39}_{-0.40-0.74}$	$2.10^{+0.39}_{-0.39}{}^{+1.40}_{-2.86}$	$2.07^{+0.39}_{-0.39}{}^{+2.76}_{-4.55}$	12.2 ± 2.2
$\Delta(\pi \bar{K})$	$-1.15^{+0.21}_{-0.22}{}^{+0.55}_{-0.84}$	$-0.88^{+0.16+1.31}_{-0.17-0.91}$	$-0.48^{+0.09+1.09}_{-0.09-1.15}$	-14 ± 11

$$\delta(\pi\bar{K}) = A_{\rm CP}(\pi^0K^-) - A_{\rm CP}(\pi^+K^-)$$

$$\Delta(\pi\bar{K}) = \mathsf{A}_{\rm CP}(\pi^+K^-) + \frac{\Gamma_{\pi^-\bar{K}^0}}{\Gamma_{\pi^+K^-}} \mathsf{A}_{\rm CP}(\pi^-\bar{K}^0) - \frac{2\Gamma_{\pi^0K^-}}{\Gamma_{\pi^+K^-}} \mathsf{A}_{\rm CP}(\pi^0K^-) - \frac{2\Gamma_{\pi^0\bar{K}^0}}{\Gamma_{\pi^+K^-}} \mathsf{A}_{\rm CP}(\pi^0\bar{K}^0)$$

Direct CP asymmetries in percent

f	NLO	NNLO	NNLO + LD	Exp
$\pi^-ar{K}^{*0}$	$1.36^{+0.25+0.60}_{-0.26-0.47}$	$1.49^{+0.27}_{-0.29}{}^{+0.69}_{-0.56}$	$0.27^{+0.05+3.18}_{-0.05-0.67}$	-3.8 ± 4.2
$\pi^0 K^{*-}$	$13.85^{+2.40}_{-2.70}{}^{+5.84}_{-5.86}$	$18.16^{+3.11+7.79}_{-3.52-10.57}$	$-15.81^{+3.01+69.35}_{-2.83-15.39}$	-6 ± 24
$\pi^+ K^{*-}$	$11.18^{+2.00}_{-2.15}{}^{+9.75}_{-10.62}$	$19.70_{-3.80-11.42}^{+3.37+10.54}$	$-23.07^{+4.35}_{-4.05}{}^{+86.20}_{-20.64}$	-23 ± 6
$\pi^{0}ar{K}^{*0}$	$-17.23^{+3.33}_{-3.00}{}^{+7.59}_{-12.57}$	$-15.11^{+2.93+12.34}_{-2.65-10.64}$	$2.16^{+0.39+17.53}_{-0.42-36.80}$	-15 ± 13
$\delta(\pi ar{K}^*)$	$2.68^{+0.72+5.44}_{-0.67-4.30}$	$-1.54^{+0.45+4.60}_{-0.58-9.19}$	$7.26^{+1.21+12.78}_{-1.34-20.65}$	17 ± 25
$\Delta(\pi \bar{K}^*)$	$-7.18^{+1.38}_{-1.28}{}^{+3.38}_{-5.35}$	$-3.45^{+0.67+9.48}_{-0.59-4.95}$	$-1.02^{+0.19}_{-0.18}{}^{+4.32}_{-7.86}$	-5 ± 45

 $\hat{\alpha}_{4}^{p}(M_{1}M_{2}) = a_{4}^{p}(M_{1}M_{2}) \pm r_{\chi}^{M_{2}}a_{6}^{p}(M_{1}M_{2}) + \beta_{3}^{p}(M_{1}M_{2})$

Results: Branching ratios

- Unpublished numbers. Only Q_{1,2} contribution. Inputs from [Beneke,Li,TH'09].
- Branching ratios in 10⁻⁶.

	NNLO	NLO	Experiment
$B^- o \pi^- \pi^0$	$5.43^{+2.66}_{-2.14}{}^{+2.05}_{-1.73}{}^{+0.52}_{-0.57}{}^{+0.52}_{-0.50}$	5.33	$5.48^{+0.35}_{-0.34}$
$ar{B}^0_d ightarrow \pi^+\pi^-$	$7.47^{+3.15}_{-2.61}{}^{+3.36}_{-2.76}{}^{+0.30}_{-0.60}{}^{+1.18}_{-0.60}$	7.30	$5.10^{+0.19}_{-0.19}$
$ar{B}^0_d ightarrow \pi^0 \pi^0$	$0.35^{+0.14}_{-0.11}{}^{+0.33}_{-0.11}{}^{+0.33}_{-0.10}{}^{+0.20}_{-0.10}$	0.33	$1.33^{+0.46}_{-0.46}$
$B^- o \pi^- ar{K}^0$	$16.03^{+0.79}_{-0.77}{}^{+9.66}_{-6.68}{}^{+0.87}_{-1.28}{}^{+13.51}_{-5.61}$	14.94	$23.79^{+0.75}_{-0.75}$
$B^- o \pi^0 K^-$	$9.57^{+0.79}_{-0.74}{}^{+5.00}_{-3.50}{}^{+0.18}_{-0.39}{}^{+7.15}_{-3.01}$	8.97	$12.94^{+0.52}_{-0.51}$
$ar{B}^0_d o \pi^+ K^-$	$14.01^{+1.09}_{-1.03}{}^{+8.43}_{-5.76}{}^{+0.12}_{-0.26}{}^{+11.92}_{-4.92}$	12.88	$19.57^{+0.53}_{-0.52}$
$ar{B}^0_d o \pi^0 ar{K}^0$	$5.82^{+0.31}_{-0.31}{}^{+4.05}_{-2.72}{}^{+0.07}_{-0.16}{}^{+5.58}_{-2.26}$	5.31	$9.93^{+0.49}_{-0.49}$

 Errors are CKM, scale and inputs (masses, decay constants, FFs), Gegenbauer moments, power corrections

The decays $B ightarrow D^{(*)} L$

- *L* ∈ {*π*, *ρ*, *K*^(*), *a*₁(1260)}
- Only colour-allowed tree amplitude
 - No colour-suppressed tree amplitude, no penguins
 - Spectator scattering and weak annihilation power suppressed

$$BR(\bar{B}_{0} \to D^{+}\pi^{-}) = \frac{G_{F}^{2}(m_{B}^{2} - m_{D}^{2})^{2}|\vec{q}|}{16\pi m_{B}^{2}} \tau_{\vec{B}^{0}} |V_{ud}^{*}V_{cb}|^{2} |\mathbf{a}_{1}(D\pi)|^{2} f_{\pi}^{2} F_{0}^{2}(m_{\pi}^{2}) + O\left(\frac{\Lambda_{OCD}}{m_{b}}\right)$$

- Applications
 - Ratios of non-leptonic decay widths

$$\frac{\Gamma(\bar{B}_d \to D^+\pi^-)}{\Gamma(\bar{B}_d \to D^{*+}\pi^-)} = \frac{(m_B^2 - m_D^2)^2 |\vec{q}|_{D\pi}}{4m_B^2 |\vec{q}|_{3^*\pi}^3} \left(\frac{F_0(m_\pi^2)}{A_0(m_\pi^2)} \right)^2 \left| \frac{a_1(D\pi)}{a_1(D^*\pi)} \right|^2$$

Test of factorisation via ratios to semi-leptonic decay

$$\frac{\Gamma(\bar{B}_d \to D^{(*)+}\pi^-)}{d\Gamma(\bar{B}_d \to D^{(*)+}I^-\bar{\nu})/dq^2\big|_{q^2=m_\pi^2}} = 6\pi^2 |V_{ud}|^2 t_\pi^2 |a_1(D^{(*)}\pi)|^2$$

Estimate size of power corrections, test of QCD factorisation

NNLO calculation and result for $a_1(ar B^0 o D^+ K^-)$

- NLO correction small
 - Colour suppression
 - Small Wilson Coefficient
- At NNLO
 - Again around 70 diagrams

$$\begin{aligned} a_1(D^+K^-) &= 1.025 + [0.029 + 0.018i]_{\rm NLO} \\ &+ [0.016 + 0.028i]_{\rm NNLO} \\ &= (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i \end{aligned}$$

Scale dependence

Branching ratios in QCD factorisation I

$$\mathsf{BR}(\bar{B}^0 \to D^+\pi^-) = \frac{G_F^2 (m_B^2 - m_D^2)^2 |\vec{q}|_{D\pi}}{16\pi m_B} \tau_{\bar{B}^0} |V_{ud}^* V_{cb}|^2 |a_1(D\pi)|^2 f_\pi^2 F_0^2(m_\pi^2)$$

• Form factor parametrization from CLN

[Caprini,Lellouch,Neubert'97]

[For more recent $B \rightarrow D$ form factor analysis see Wang, Wei, Shen, Lü'17]

- Slope and normalization from fit to semileptonic data (HFAG)
- Calculation applies equally well to other $\bar{B}^0 \rightarrow D^{*+}L^-$ decays
- Branching ratios in 10⁻³

Decay	Theory (NNLO)	Experiment
$ar{B}^0 o D^+ \pi^-$	$3.93^{+0.43}_{-0.42}$	$\textbf{2.68} \pm \textbf{0.13}$
$ar{B}^0 ightarrow D^{*+} \pi^-$	$3.45^{+0.53}_{-0.50}$	$\textbf{2.76} \pm \textbf{0.13}$
$ar{B}^0 o D^+ ho^-$	$10.42^{+1.24}_{-1.20}$	$\textbf{7.5} \pm \textbf{1.2}$
$ar{B}^0 o D^{*+} ho^-$	$9.24^{+0.72}_{-0.71}$	$\textbf{6.0}\pm\textbf{0.8}$

NNLO central values about 20 – 30% larger than experimental ones

Branching ratios in QCD factorisation II

Decay mode	LO	NLO	NNLO	Exp.
$ar{B}_{d} ightarrow D^{+}\pi^{-}$	3.58	$3.79^{+0.44}_{-0.42}$	$3.93^{+0.43}_{-0.42}$	$\textbf{2.68} \pm \textbf{0.13}$
$ar{B}_{d} ightarrow D^{*+} \pi^{-}$	3.15	$3.32^{+0.52}_{-0.49}$	$3.45^{+0.53}_{-0.50}$	$\textbf{2.76} \pm \textbf{0.13}$
$ar{B}_d o D^+ ho^-$	9.51	$10.06^{+1.25}_{-1.19}$	$10.42^{+1.24}_{-1.20}$	$\textbf{7.5} \pm \textbf{1.2}$
$ar{B}_d o D^{*+} ho^-$	8.45	$8.91^{+0.74}_{-0.71}$	$9.24^{+0.72}_{-0.71}$	$\textbf{6.0}\pm\textbf{0.8}$
$\bar{B}_{d} ightarrow D^{+}K^{-}$	2.74	2.90 +0.33	3.01 +0.32	1.97 + 0.21
$ar{B}_d o D^{*+}K^-$	2.37	$2.50^{+0.39}_{-0.36}$	$2.59^{+0.39}_{-0.37}$	$\textbf{2.14} \pm \textbf{0.16}$
$ar{B}_d o D^+ K^{*-}$	4.79	$5.07^{+0.65}_{-0.62}$	$5.25^{+0.65}_{-0.63}$	4.5 ± 0.7
$ar{B}_d ightarrow D^{*+} K^{*-}$	4.30	$4.54_{-0.40}^{+0.41}$	$4.70^{+0.40}_{-0.39}$	-
$ar{B}_d ightarrow D^+ a_1^-$	10.82	11.44 ^{+1.55} -1.48	$11.84^{+1.55}_{-1.50}$	$\textbf{6.0}\pm\textbf{3.3}$
$ar{B}_d ightarrow D^{*+} a_1^-$	10.12	$10.66^{+1.11}_{-1.06}$	$11.06^{+1.10}_{-1.07}$	-

- Branching ratios in 10^{-3} for $b \rightarrow c\bar{u}d$ and 10^{-4} for $b \rightarrow c\bar{u}s$ transitions
- Have also B_s and Λ_b decays
- Non-negligible W-exchange contributions in B
 _d → D^{(*)+}π⁻ / ρ⁻ decays? (not present in B
 _d → D^{(*)+}κ^{(*)-})

Tests of QCD factorisation

- Ratios of non-leptonic decay widths
 - Within error bars, no significant tension

Decay	Theory (NNLO)	Experiment
$\Gamma(\bar{B}^0 ightarrow D^{*+}\pi^-)/\Gamma(\bar{B}^0 ightarrow D^+\pi^-)$	$0.878^{+0.162}_{-0.150}$	1.03 ± 0.07
$\Gamma(ar{B}^0 o D^+ ho^-) / \Gamma(ar{B}^0 o D^+ \pi^-)$	$2.653^{+0.163}_{-0.158}$	2.80 ± 0.47

Extraction of |a₁| from ratios of non-leptonic and semi-leptonic BRs

$$\frac{\Gamma(\bar{B}_d \to D^{(*)+}\pi^-)}{d\Gamma(\bar{B}_d \to D^{(*)+}I^-\bar{\nu})/dq^2\big|_{q^2=m_\pi^2}} = 6\pi^2 |V_{ud}|^2 f_\pi^2 |a_1(D^{(*)}\pi)|^2$$

Decay	a ₁ Theory (NNLO)	a1 Experiment
$ar{B}^0 o D^+ \pi^-$	1.07 ± 0.01	$\textbf{0.89}\pm\textbf{0.05}$
$ar{B}^0 ightarrow D^{*+} \pi^-$	1.07 ± 0.01	$\textbf{0.96} \pm \textbf{0.03}$
$ar{B}^0 o D^+ ho^-$	1.07 ± 0.01	0.91 ± 0.08
$ar{B}^0 o D^{*+} ho^-$	1.07 ± 0.01	$\textbf{0.86} \pm \textbf{0.06}$

- Quasi-universal value $|a_1| \sim 1.07$ at NNLO. Experiment favors lower $|a_1|$.
- Leaves room for (negative) power corrections to the amplitude of $\sim 10 15\%$

Three-body nonleptonic B-decays

- Three-body nonleptonic B-decays provide another fertile testing-ground to study CP violation
- Events populate a Dalitz plot, wealth of data
- Focus on $B^+ \to \pi^+ \pi^- \pi^+$ in a factorisation approach
 - Identify different regions in Dalitz plot
 - Each region obeys its own factorisation formula

[Kränkl,Mannel,Virto'15]

[Plots courtesy by K. Vos]

[Kränkl,Mannel,Virto'15]

Factorisation formula

 $\langle \pi^{+}\pi^{+}\pi^{-}|\mathcal{Q}_{i}|B^{+}\rangle_{c} = T_{i}^{\prime}\otimes F^{B\to\pi}\otimes \Phi_{\pi}\otimes \Phi_{\pi} + T_{i}^{\prime\prime}\otimes \Phi_{B}\otimes \Phi_{\pi}\otimes \Phi_{\pi}\otimes \Phi_{\pi}$

At tree-level all convolutions are finite

• $1/m_b^2$ and α_s suppressed compared to two-body case

Edges of Dalitz plot

[Kränkl,Mannel,Virto'15]

Resonances close to the edges

Factorisation formula

$$\langle \pi^{+}\pi^{+}\pi^{-}|\mathcal{Q}_{i}|B\rangle_{e} = T_{i}^{\prime}\otimes \mathcal{F}^{B\to\pi^{+}}\otimes \Phi_{\pi^{+}\pi^{-}} + T_{i}^{\prime}\otimes \mathcal{F}^{B\to\pi^{+}\pi^{-}}\otimes \Phi_{\pi^{+}}$$

- Always an improvement over quasi-two-body decays, reduces to $B \rightarrow \rho \pi$ for ρ dominance and zero-width approximation
- New nonperturbative input (source of strong phases): 2π LCDA, $B \rightarrow \pi\pi$ form factor

New nonperturbative input

New nonperturbative input from data or model

[Klein,Mannel,Virto,Vos'17]

[Polvakov'99]

2πLCDA

$$\phi^{q}_{\pi\pi}(u,\zeta,s) = \int rac{dx^{-}}{2\pi} e^{iu(k_{12}^{+}x^{-})} \langle \pi^{+}(k_{1})\pi^{-}(k_{2})|ar{q}(x^{-}n_{-})p_{+}q(0)|0
angle \ s = (k_{1}+k_{2})^{2}, \ \zeta = k_{1}/s$$

Both isoscalar (I = 0) and isovector (I = 1) contribute

At leading order only normalization needed

$$\int du \ \phi_{\pi\pi}^{l=1}(u,\zeta,s) = (2\zeta-1)F_{\pi}(s) \qquad \int du \ \phi_{\pi\pi}^{l=0}(u,\zeta,s) = 0$$

• Time-like pion formfactor $F_{\pi}(s)$ from $e^+e^-
ightarrow \pi\pi(\gamma)$ data

- Magnitude well constrained, phase not
- Also isoscalar part F_{π}^{S} needed

[Shekhovtsova, Przedzinski, Roig, Was'12; Hanhart'12]

[Celis,Cirigliano,Passemar'13; Daub,Hanhart,Kubis'15]

New nonperturbative input

• $B \rightarrow \pi \pi$ form factor

[Klein,Mannel,Virto,Vos'17]

• Was studied in $B \rightarrow \pi \pi \, \ell \, \nu$ decays

[Faller,Feldmann,Khodjamirian,Mannel,van Dyk'13; Böer,Feldmann,van Dyk'16]

• For $B^+ \to \pi^+ \pi^- \pi^+$ only vector form factor relevant

$$k_{3\mu}\left\langle \pi^+(k_1)\pi^-(k_2)|\bar{b}\gamma^{\mu}\gamma^5 u|B^+(\rho)\right\rangle = i\,m_{\pi}\,F_t(s,\zeta)$$

• Both isoscalar (S-wave) and isovector (P-wave) contributions

$$F_t = F_t^{l=0} + F_t^{l=1}$$

• Isovector $F_t^{l=1}$ part studied with QCD Light-Cone Sum Rules

[Hambrock,Khodjamirian'15; Cheng,Khodjamirian,Virto'17]

• Assumption / model for $F_t^{l=1}$

[Klein,Mannel,Virto,Vos'17]

- Decay $B \to \pi\pi$ proceeds only resonantly through $B \to \rho \to \pi\pi$
- Model for $F_t^{I=0}$. Fit β and ϕ from data

[Klein,Mannel,Virto,Vos'17]

$$F_t^{I=0}(q^2) = rac{m_B^2}{m_\pi f_\pi} eta e^{i\phi} F_\pi^S(q^2)$$

[Celis, Cirigliano, Passemar'13; Daub, Hanhart, Kubis'15]

Introduction to inclusive $\bar{B} o X_s \, \ell^+ \ell^-$

- Inclusive $\bar{B} \to X_s \, \ell^+ \ell^-$
 - Rare decay, FCNC process
 - Probes SM directly at the loop level
 - Sensitivity to new physics
- Complementary to $\bar{B} \rightarrow X_s \gamma$
 - More observables
 - Box and penguin diagrams
 - Besides C₇, also sensitivity to C_{9,10}
- Complementary to $\bar{B}
 ightarrow {\cal K}^{(*)} \, \mu^+ \mu^-$
 - Complementarity in experimental analysis: LHCb vs. BaBar, Belle (II)
 - Handling of power corrections
 - Sensitivity to different (combinations of) operators
 - Probing different theoretical approaches when measuring e.g. C₉

Observables

• Double differential decay width ($z = \cos \theta_{\ell}$)

[Lee,Ligeti,Stewart,Tackmann'06]

$$\frac{d^2\Gamma}{dq^2\,dz} = \frac{3}{8}\left[(1+z^2)\,H_T(q^2) + 2\,z\,H_A(q^2) + 2\,(1-z^2)\,H_L(q^2) \right]$$

• High- q^2 region: $q^2 > 14.4 \, \text{GeV}^2$

Observables

Dependence of the H_i on WCs

$$\begin{split} H_{T}(q^{2}) &\propto 2s(1-s)^{2} \Big[\Big| C_{9} + \frac{2}{s} C_{7} \Big|^{2} + |C_{10}|^{2} \Big] \\ H_{A}(q^{2}) &\propto -4s(1-s)^{2} \operatorname{Re} \Big[C_{10} \Big(C_{9} + \frac{2}{s} C_{7} \Big) \Big] \\ H_{L}(q^{2}) &\propto (1-s)^{2} \Big[\Big| C_{9} + 2 C_{7} \Big|^{2} + |C_{10}|^{2} \Big] \end{split}$$

Consider integrals of H_i over two bins 1 – 3.5 GeV² and 3.5 – 6 GeV²

- H_T suppressed at low- q^2 : Factor "s" and small $|C_9 + \frac{2}{s}C_7|^2$
- Moreover: zero of H_A in low- q^2 region
- High-q² region:

Introduction of the ratio
$$\mathcal{R}(s_0) = \frac{\int_{\hat{s}_0}^1 d\hat{s} \ d\Gamma(\bar{B} \to X_s \ell^+ \ell^-)/d\hat{s}}{\int_{\hat{s}_0}^1 d\hat{s} \ d\Gamma(\bar{B}^0 \to X_u \ell \nu)/d\hat{s}}$$

[Ligeti,Tackmann'07]

 Normalize to semileptonic B
⁰ → X_uℓν rate with the same cut Need differential semi-leptonic b → u rate

Perturbative and non-perturbative corrections

 $\Gamma(\bar{B} \to X_s \,\ell\ell) = \Gamma(b \to X_s \,\ell\ell) + \text{ power corrections}$

Pert. corrections at quark level are known to NNLO QCD + NLO QED

[Misiak,Buras,Münz,Bobeth,Urban,Asatrian,Asatryan,Greub,Walker,Bobeth,Gambino,Gorbahn,Haisch,Blokland] [Czarnecki,Melnikov,Slusarczyk,Bieri,Ghinculov,Hurth,Isidori,Yao,Greub,Pilipp,Schüpbach,Lunghi,TH]

Involves diagrams up to three loops

• Fully differential QCD corrections at NNLO for P_{9,10} also known

[Brucherseifer, Caola, Melnikov'13]

• $1/m_b^2$, $1/m_b^3$ and $1/m_c^2$ non-pert. corrections

[Falk,Luke,Savage'93] [Ali,Hiller,Handoko,Morozumi'96] [Bauer,Burrell'99; Buchalla,Isidori,Rey'97]

Factorizable cc̄ contributions implemented via KS approach

[Krüger, Sehgal'96]

Collinear photons

- Rate differential in q² is not IR safe w.r.t. energetic, collinear photon radiation off leptons
- Gives rise to log-enhanced QED corrections $\propto \alpha_{\rm em} \log(m_b^2/m_\ell^2)$
- Size of logs depends on experimental setup

•
$$q^2 = (p_{\ell^+} + p_{\ell^-})^2$$
 vs. $q^2 = (p_{\ell^+} + p_{\ell^-} + p_{\gamma,\mathrm{coll}})^2$

To compare to BaBar electron channel our numbers need to be modified

Collinear photons

- Validation
 - Generate events (EVTGEN), hadronise (JETSET), add EM radiation (PHOTOS)

Towards precision phenomenology in non-leptonic and rare B decays

- Results for H_T , integrated over bins in low- q^2 region, in units of 10^{-6}
 - Electron channel

$$\begin{split} & H_T[1, 3.5]_{ee} = 0.29 \pm 0.02 \\ & H_T[3.5, 6]_{ee} = 0.24 \pm 0.02 \\ & H_T[1, 6]_{ee} = 0.53 \pm 0.04 \end{split}$$

Muon channel

$$\begin{split} &H_{T}[1,3.5]_{\mu\mu}=&0.21\pm0.01\\ &H_{T}[3.5,6]_{\mu\mu}=&0.19\pm0.02\\ &H_{T}[1,6]_{\mu\mu}=&0.40\pm0.03 \end{split}$$

• Total error $\mathcal{O}(5-8\%)$. Still dominated by scale uncertainty.

- Results for H_L , integrated over bins in low- q^2 region, in units of 10^{-6}
 - Electron channel

$$\begin{split} & H_L[1,3.5]_{ee} = 0.64 \pm 0.03 \\ & H_L[3.5,6]_{ee} = 0.50 \pm 0.03 \\ & H_L[1,6]_{ee} = 1.13 \pm 0.06 \end{split}$$

Muon channel

$$\begin{aligned} & H_L[1, 3.5]_{\mu\mu} = 0.68 \pm 0.04 \\ & H_L[3.5, 6]_{\mu\mu} = 0.53 \pm 0.03 \\ & H_L[1, 6]_{\mu\mu} = 1.21 \pm 0.07 \end{aligned}$$

• Again total error $\mathcal{O}(5-7\%)$.

Branching ratio, low- q^2 region

Branching ratio, integrated over bins in low-q² region, in units of 10⁻⁶

Electron channel

$$\begin{split} \mathcal{B}[1, 3.5]_{ee} = & 0.93 \pm 0.03_{\text{scale}} \pm 0.01_{m_l} \pm 0.03_{\mathcal{C},m_c} \pm 0.01_{m_b} \pm 0.002_{\alpha_s} \pm 0.003_{\text{CKM}} \pm 0.01_{\text{BR}_{sl}} \\ = & 0.93 \pm 0.05 \end{split}$$

$$\begin{split} \mathcal{B}[3.5,6]_{ee} = & 0.74 \pm 0.04_{\text{scale}} \pm 0.01_{m_l} \pm 0.03_{C,m_c} \pm 0.01_{m_b} \pm 0.003_{\alpha_s} \pm 0.002_{\text{CKM}} \pm 0.01_{\text{BR}_{\text{sl}}} \\ = & 0.74 \pm 0.05 \end{split}$$

$$\begin{split} \mathcal{B}[1,6]_{ee} = & 1.67 \pm 0.07_{\text{scale}} \pm 0.02_{\textit{m}_{l}} \pm 0.06_{\textit{C},\textit{m}_{c}} \pm 0.02_{\textit{m}_{b}} \pm 0.01_{\alpha_{s}} \pm 0.005_{\text{CKM}} \pm 0.02_{\text{BR}_{sl}} \\ = & 1.67 \pm 0.10 \end{split}$$

Muon channel

$$\begin{split} \mathcal{B}[1,3.5]_{\mu\mu} = & 0.89 \pm 0.03_{\text{scale}} \pm 0.01_{m_l} \pm 0.03_{\mathcal{C},m_c} \pm 0.01_{m_b} \pm 0.002_{\alpha_s} \pm 0.002_{\text{CKM}} \pm 0.01_{\text{BR}_{\text{sl}}} \\ = & 0.89 \pm 0.05 \end{split}$$

$$\begin{split} \mathcal{B}[3.5,6]_{\mu\mu} = & 0.73 \pm 0.04_{\text{scale}} \pm 0.01_{m_l} \pm 0.03_{\mathcal{C},m_c} \pm 0.01_{m_b} \pm 0.003_{\alpha_s} \pm 0.002_{\text{CKM}} \pm 0.01_{\text{BR}_{\text{sl}}} \\ = & 0.73 \pm 0.05 \end{split}$$

$$\begin{split} \mathcal{B}[1,6]_{\mu\mu} = & 1.62 \pm 0.07_{\text{scale}} \pm 0.02_{m_l} \pm 0.05_{\mathcal{C},m_c} \pm 0.02_{m_b} \pm 0.01_{\alpha_s} \pm 0.005_{\text{CKM}} \pm 0.02_{\text{BR}_{\text{sl}}} \\ = & 1.62 \pm 0.09 \end{split}$$

• Again total error $\mathcal{O}(5-7\%)$, dominated by scale uncertainty.

- Results for H_A, integrated over bins in low-q² region, in units of 10⁻⁶
 - Electron channel

 $\textit{H}_{\textit{A}}[1, 3.5]_{\textit{ee}} = -0.103 \pm 0.005$

 $\textit{H}_{\textit{A}}[3.5,6]_{\textit{ee}} = + \ 0.073 \pm 0.012$

 $\textit{H}_{A}[1,6]_{ee} = - \ 0.029 \pm 0.016$

Muon channel

 $H_A[1, 3.5]_{\mu\mu} = -0.110 \pm 0.005$ $H_A[3.5, 6]_{\mu\mu} = +0.067 \pm 0.012$ $H_A[1, 6]_{\mu\mu} = -0.042 \pm 0.016$

 Single bins much better behaved than entire low-ŝ region, owing to cancellations due to zero crossing • Forward-backward asymmetry (or H_A) has a zero in low- q^2 region

Electron channel

$$\begin{aligned} (q_0^2)_{ee} = & (3.46 \pm 0.10_{\text{scale}} \pm 0.001_{m_l} \pm 0.02_{C,m_c} \pm 0.06_{m_b} \pm 0.02_{\alpha_s}) \text{ GeV}^2 \\ = & (3.46 \pm 0.11) \text{ GeV}^2 \end{aligned}$$

Muon channel

$$\begin{split} (q_0^2)_{\mu\mu} = & (3.58 \pm 0.10_{\text{scale}} \pm 0.001_{m_l} \pm 0.02_{\mathcal{C},m_c} \pm 0.06_{m_b} \pm 0.02_{\alpha_s}) \text{ GeV}^2 \\ = & (3.58 \pm 0.12) \text{ GeV}^2 \end{split}$$

High-q² region

- Branching ratio, integrated over high-q² region, in units of 10⁻⁷
 - Electron channel

$$\mathcal{B}[>14.4]_{\textit{ee}} = 2.20 \pm 0.30_{\textit{scale}} \pm 0.03_{\textit{m}_{l}} \pm 0.06_{\textit{C},\textit{m}_{c}} \pm 0.16_{\textit{m}_{b}} \pm 0.003_{\alpha_{s}} \pm 0.01_{\textit{CKM}} \pm 0.03_{\textit{BR}_{sl}}$$

$$\pm 0.12_{\lambda_2} \pm 0.48_{
ho_1} \pm 0.36_{f_s} \pm 0.05_{f_u}$$

 $=\!2.20\pm0.70$

Muon channel

$$\begin{split} \mathcal{B}[>14.4]_{\mu\mu} =& 2.53 \pm 0.29_{\text{scale}} \pm 0.03_{\textit{m}_{t}} \pm 0.07_{\textit{C},\textit{m}_{c}} \pm 0.18_{\textit{m}_{b}} \pm 0.003_{\alpha_{s}} \pm 0.01_{\text{CKM}} \pm 0.03_{\text{BR}_{\text{sl}}} \\ & \pm 0.12_{\lambda_{2}} \pm 0.48_{\textit{P1}} \pm 0.36_{\textit{f_{s}}} \pm 0.05_{\textit{f_{u}}} \\ =& 2.53 \pm 0.70 \end{split}$$

- Total error O(30%)
- Significantly lower values compared to earlier works

[Greub,Pilipp,Schüpbach'08]

- Main reaons: Power corrections, QED corrections, different q²_{min}
- To lesser extend: Input parameters, normalisation
- Perfect agreement if we switch to prescription by Greub et. al.

High-q² region

Ratio R(q²_{min}), integrated over high-q² region, in units of 10⁻³
 Electron channel

$$\begin{split} \mathcal{R}(14.4)_{ee} = & 2.25 \pm 0.12_{scale} \pm 0.03_{m_l} \pm 0.02_{\mathcal{C},m_c} \pm 0.01_{m_b} \pm 0.01_{\alpha_s} \pm 0.20_{\mathsf{CKM}} \\ & \pm 0.02_{\lambda_2} \pm 0.14_{\rho_1} \pm 0.08_{l_y^0 + f_s} \pm 0.12_{l_y^0 - f_s} \\ = & 2.25 \pm 0.31 \end{split}$$

Muon channel

$$\begin{split} \mathcal{R}(14.4)_{\mu\mu} = & 2.62 \pm 0.09_{\text{scale}} \pm 0.03_{m_l} \pm 0.01_{C,m_c} \pm 0.01_{m_b} \pm 0.01_{\alpha_s} \pm 0.23_{\text{CKM}} \\ & \pm 0.0002_{\lambda_2} \pm 0.09_{\rho_1} \pm 0.04_{f_u^0 + f_s} \pm 0.12_{f_u^0 - f_s} \\ = & 2.62 \pm 0.30 \end{split}$$

• Total error $\mathcal{O}(10 - 15\%)$.

- Uncertainties due to power corrections significantly reduced
- Largest source of error are CKM elements (V_{ub})

Inclusive $\bar{B} o X_{s} \ell^{+} \ell^{-}$

Model-independent constraints on high-scale WCs

T. Huber

Towards precision phenomenology in non-leptonic and rare B decays

- Model-independent constraints on high-scale WCs
- Extrapolation to the full Belle-II statistics (50 ab⁻¹)

Inclusive vs. exclusive $b \rightarrow s \ell^+ \ell^-$

- If the *true* values for the NP contributions are C₉^{NP} and C₁₀^{NP}, with which significance will the Belle II measurements exclude the SM (C₉^{NP} = C₁₀^{NP} = 0)?
- For each point $(C_9^{\text{NP}}, C_{10}^{\text{NP}})$, we consider hypothetical measurements of *BR* and A_{FB} , with central values given by the theory predictions at the corresponding NP point, and errors given by the experimental sensitivity study plus an extra 5% to account for non-perturbative effects[Hurth,Flckinger,Turczyk,Benzke'17].

• Complementarity study: We also consider the one-, two-, and three-sigma regions obtained from the current global fit, which is dominated by the *exclusive* $b \rightarrow s\mu\mu$ measurements at LHCb (red regions).

[See also Hurth, Mahmoudi'13; Hurth, Mahmoudi, Neshatpour'14]

- The suppression of background from $b \rightarrow c (\rightarrow s \ell \nu) \ell \nu$ requires a cut on M_{X_s} . Have $M_{X_s} < 1.8$ (2.0) GeV at BaBar (Belle).
- Usually taken into account on experimental side
- This puts kinematics at low-*q*² into the shape function region

 $\begin{array}{l} \Rightarrow \text{SCET applicable, define} \\ p_X^\pm = \mathcal{E}_X \mp |\vec{p}_X| \qquad \text{[Lee,Ligeti,Stewart,Tackmann'06]} \end{array}$

• High-*q*² region hardly affected by the cut

• Compute non-perturbative corrections of leading and subleading order in $\Lambda_{\rm QCD}/m_b$ [Lee,Tackmann'08]

 Add NNLO QCD-corrections to heavy-light currents in shape function region

[Bell,Beneke,Li,TH'10]

Zero of FBA

$$q_0^2 = [(3.34 \dots 3.40)^{+0.22}_{-0.25}] \text{ GeV}^2$$
 for $m_X^{\text{cut}} = (2.0 \dots 1.8) \text{ GeV}$

- In same region as inclusive result
- Significantly smaller than exclusive result

[Beneke,Feldmann,Seide'01]

Cuts on M_{X_s}

- Recent analysis of factorization to subleading power in $\bar{B} \to X_s \ell^+ \ell^-$ in presence of a cut on M_{X_s}
- Systematic analysis of resolved power corrections at O(1/m_b)
- Compute so-called resolved contributions, explore numerical impact

Numerical impact

 $\mathcal{F}_{17} \in [-0.5, +3.4] \,\%, \quad \mathcal{F}_{78} \in [-0.2, -0.1] \,\%, \quad \mathcal{F}_{88} \in [0, 0.5] \,\%$ (normalized to OPE result)

$$\mathcal{F}_{1/m_b} \in [-0.7, +3.8]$$

 \mathcal{F}_{19} : $O(1/m_b^2)$ but $|C_{9/10}| \sim 13|C_{7\gamma}|$

Resolved contributions stay nonlocal when the hadronic mass cut is released
 Represents irreducible uncertainty independent of the hadronic mass cut

Inclusive $\bar{B} o X_s \ell^+ \ell^-$ and $\bar{B} o X_d \ell^+ \ell^-$

[Qin,Vos,TH w.i.p. and Hurth,Jenkins,Lunghi,Qin,Vos,TH w.i.p.]

- Further improvements in $\bar{B} \to X_s \ell^+ \ell^-$
 - Update inclusion of charm resonances: Replace Krüger-Sehgal functions by fit to latest BES-III data
- In $\bar{B} \to X_d \ell^+ \ell^-$ transitions, sides of UT are democratic in size (all $\propto \lambda^3$)
 - Expect measurable CP asymmetries in this channel
 - Latest theory prediction from 2003
 - Update in progress
 - Inclusion of matrix elements of O^u_{1/2}
 - Inclusion of new perturbative corrections (especially log-enhanced QED)
 - Inclusion of all available power corrections
 - Inclusion of 5-body contribution of type $b
 ightarrow d \, q ar q \, \ell^+ \ell^-$
- [Qin,Vos,TH w.i.p.]

Inclusion of effects from uu resonances

T. Huber

[Asatrian,Bieri,Greub,Walker'03]

Conclusion

- Two-body nonleptonic *B* decays have entered era of precision physics
 - Many sophisticated approaches
 - BRs and direct CP asymmetries for charmless two-body decays at NNLO in QCDF almost complete
 - Perturbative series under control, but sizable uncertainties due to unknown power corrections
 - Heavy-light final states allow to test factorization approach
 - Also QCDF analysis of three-body decays under study
- Inclusive $ar{B}
 ightarrow X_{s} \, \ell^{+} \ell^{-}$ is an unsung hero
 - Complementarity to $\bar{B} \to X_s \gamma$ and $\bar{B} \to K^{(*)} \mu^+ \mu^-$ can help in the search for NP
 - Complete phenomenological analysis to NNLO QCD + NLO QED for all angular observables
 - Careful investigation of treatment of energetic collinear photons
 - Most observables have parametric + perturbative errors of $\mathcal{O}(5-10\%)$
 - Also $\bar{B} \to X_d \, \ell^+ \ell^-$ under study (\longrightarrow CP observables)

Backup slides

Some definitions

$$A_{\pi\pi} = i \frac{G_F}{\sqrt{2}} m_B^2 F_+^{B \to \pi}(0) f_{\pi}$$
$$r_{\rm sp} = \frac{9 f_{\pi} \hat{f}_B}{m_b \lambda_B F_+^{B \to \pi}(0)}$$
$$\lambda_B^{-1} = \int_0^\infty \frac{d\omega}{\omega} \phi_B(\omega, \mu)$$

Results: Direct CP asymmetries III

Direct CP asymmetries in percent

f	NLO	NNLO	NNLO + LD	Exp
$ ho^-ar{K}^0$	$0.38^{+0.07+0.16}_{-0.07-0.27}$	$0.22^{+0.04+0.19}_{-0.04-0.17}$	$0.30^{+0.06+2.28}_{-0.06-2.39}$	-12 ± 17
$ ho^0 K^-$	$-19.31_{-3.61}^{+3.42}_{-3.61}^{+13.95}_{-8.96}$	$-4.17^{+0.75+19.26}_{-0.80-19.52}$	$43.73^{+7.07}_{-7.62}{}^{+44.00}_{-137.77}$	37 ± 11
$ ho^+ K^-$	$-5.13^{+0.95+6.38}_{-0.97-4.02}$	$1.50^{+0.29+8.69}_{-0.27-10.36}$	$25.93^{+4.43+25.40}_{-4.90-75.63}$	20 ± 11
$ ho^0ar{K}^0$	$8.63^{+1.59}_{-1.65}{}^{+2.31}_{-1.69}$	$8.99^{+1.66}_{-1.71}{}^{+3.60}_{-7.44}$	$-0.42^{+0.08+19.49}_{-0.08-8.78}$	6 ± 20
$\delta(ho \bar{K})$	$-14.17^{+2.80}_{-2.96}{}^{+7.98}_{-5.39}$	$-5.67^{+0.96+10.86}_{-1.01-9.79}$	$17.80^{+3.15+19.51}_{-3.01-62.44}$	17 ± 16
$\Delta(\rho\bar{K})$	$-8.75^{+1.62+4.78}_{-1.66-6.48}$	$-10.84^{+1.98+11.67}_{-2.09-9.09}$	$-2.43^{+0.46+4.60}_{-0.42-19.43}$	-37 ± 37