# Phase diagram, fluctuations, thermodynamics and hadron chemistry

Claudia Ratti University of Houston (USA)

School for RHIC Beam Energy Scan and the QCD critical point - October 7th 2017

#### **Quantum Chromodynamics**

QCD describes interactions among quarks q and gluons gQuarks are described in terms of Dirac fields  $\psi_{\alpha}^{ir}(x)$ , where:

- $\alpha$ : Dirac spinor index
- $i: SU(3) \operatorname{color index} (1, 2, 3)$
- r: flavor index (u, d, s, c, b, t)

Gluons are described in terms of vector fields  $A^a_{\mu}(x)$ , where:

- $\mu$ : Lorentz vector index
- a: color index (1, 2, ...8)

Gell-Mann matrices  $\lambda^a$ : 3 × 3 matrices in color space:  $(\lambda^a)_{ij}$ , i, j = 1, 2, 3

$$\left[\frac{\lambda_a}{2}, \frac{\lambda_b}{2}\right] = i f_{abc} \frac{\lambda_c}{2}$$

# The QCD Lagrangian

Local SU(3) color transformation:  $U(x) = \exp\left[i\frac{\lambda^a}{2}\theta^a(x)\right] = \exp\left[\frac{i}{2}\vec{\lambda}\cdot\vec{\theta}(x)\right]$  $U(x) = 3 \times 3$  matrix in the color space

$$\psi(x) \to U(x)\psi(x) \qquad \qquad \psi^{\dagger}(x) \to \psi^{\dagger}(x)U^{\dagger}(x)$$
  
$$\psi_{i}(x) = U_{ij}(x)\psi_{j}(x) \qquad \qquad \psi_{i}^{*}(x) = \psi_{j}^{*}(x)U_{ji}^{*}(x)$$

QCD Lagrangian:  $\mathcal{L}_{QCD} = -\frac{1}{4}F^a_{\mu\nu}F^{\mu\nu}_a + \bar{\psi}^r \left(iD \!\!\!/ - m_r\right)\psi^r$ , where:

$$\begin{split} F^{a}_{\mu\nu} &\equiv \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu} \\ F_{\mu\nu} &\to UF_{\mu\nu}U^{\dagger} \qquad \left(F_{\mu\nu} \equiv F^{a}_{\mu\nu}\frac{\lambda^{a}}{2}\right) \\ D_{\mu} &= \partial_{\mu} - igA_{\mu} = \partial_{\mu} - ig\frac{\lambda^{a}}{2}A^{a}_{\mu} \\ D^{ab}_{\mu} &= \delta_{ab}\partial_{\mu} - ig\left(\frac{\lambda^{c}}{2}\right)_{ab}A^{c}_{\mu} \end{split}$$

-  $m_r$ : quark mass for flavor r;  $m = diag(m_u, m_d, m_s, m_c, m_b, m_t)$ 

- g: coupling constant, with  $g^2/(4\pi) = \alpha_s$ 

 $\mathcal{L}_{QCD}$  invariant for local SU(3) color transformations

# **QCD** Thermodynamics



- Confinement
  - \* At large distances the effective coupling is large
  - Free quarks are not observed in nature
- Asymptotic freedom
  - \* At short distances the effective coupling decreases
  - \* Quarks and gluons appear to be quasi-free



**Chiral Symmetry: broken** 

#### Chiral Symmetry: restored









#### **Motivation**



**\*** The universe was in a QGP phase at the beginning of its evolution

\* We can re-create this phase in the laboratory!

#### **Statistical Mechanics reminder**

In equilibrium statistical mechanics one normally encounters three types of ensemble

- $\rightarrow$  microcanonical ensemble: used to describe an isolated system with fixed E, N, V
- → canonical ensemble: used to describe a system in contact with a heat bath with fixed T, N, V
- → grand canonical ensemble: used to describe a system in contact with a heat bath, with which it can exchange particles: fixed T, V,  $\mu$

In a relativistic quantum system, where particles can be created and destroyed, one computes observables in the grand canonical ensemble

#### **Partition function**

The grand canonical PARTITION FUNCTION reads:

$$Z = Tr\left[e^{-\beta(\hat{H} - \mu_i \hat{N}_i)}\right]$$

with  $\hat{H}$  Hamiltonian of the system,  $\hat{N}_i$  set of conserved number operators and  $~eta=1/k_BT$ 

 $Z = Z(V, T, \mu_1, \mu_2, ...)$  is the most important function in thermodynamics

All other standard thermodynamic properties may be determined from it:

$$P = T \frac{\partial \log Z}{\partial V}; \qquad N_i = T \frac{\partial \log Z}{\partial \mu_i};$$
$$S = \frac{\partial T \log Z}{\partial T} \qquad E = -PV + TS + \mu_i N_i$$

#### Phase transitions and order parameters

\* We want to study the transition from hadrons to the QGP: deconfinement and chiral symmetry restoration

\* A phase transition is the transformation of a thermodynamic system from one phase or state of matter to another

\* During a phase transition of a given medium certain properties of the medium change, often discontinuously, as a result of some external conditions

The measurement of the external conditions at which the transformation occurs is called the phase transition point

\* Order parameter: some observable physical quantity that is able to distinguish between two distinct phases

\* We need to find observables which allow us to distinguish between confined/deconfined system and between chirally broken/restored phase

### Phase transition classification (I)

Paul Ehrenfest classified phase transitions based on the behavior of the thermodynamic free energy as a function of other thermodynamic variables

First-order phase transitions exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable

- involve a latent heat
- the system is in a "mixed-phase regime" in which some parts of the system have completed the transition and others have not



#### Phase transition classification (II)

Second-order phase transitions: free energy and its first derivative continuous at  $T_c$ 

- A new state grows continuously out of the previous one
- ightarrow for  $T
  ightarrow T_c$  the two states become quantitatively the same
- $\rightarrow$  second derivative can be discontinuous or diverge at  $T_c$
- $\rightarrow$  power law behavior in  $|1 T/T_c|$  at  $T_c$

Analytic crossover: free energy and all its derivative continuous at  $T_c$ 

- System changes smoothly from one phase to the other
- Phase transition point identified by peak of susceptibility



#### **Different limits**

- $m_q 
  ightarrow \infty$ : pure gauge QCD
- only gluons are relevant degrees of freedom
- $ightarrow Z_3$  symmetry of QCD: confinement/deconfinement phase transition: first order
- Polyakov loop: order parameter
- $m_q \rightarrow 0$ : chiral limit of QCD
- chiral symmetry spontaneously broken
- chiral condensate: order parameter; second order

real world:  $m_q \neq 0$ : but small for u, d, s quarks

- chiral symmetry explicitly broken by the finite quark mass
- $\rightarrow Z_3$  symmetry: explicitly broken by the presence of quarks
- QCD transition is analytic crossover

\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?

\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



Confined system Infinite energy is needed  $<\Phi > = 0$ 

\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



Confined system Infinite energy is needed  $<\Phi > = 0$ 



Deconfined system Finite energy is needed

\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



Confined system Infinite energy is needed  $<\Phi > = 0$ 





\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



For QCD with physical quark masses the transition is a smooth crossover

\* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe  $<\Phi>\sim e^{-F/T}$ 

How much energy F is needed to extract the heavy quark from the system?



For QCD with physical quark masses the transition is a smooth crossover

 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate



Chirally broken system Large effective quark mass  $\langle \bar{\psi}\psi \rangle \neq 0$ 

 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate



 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate



Chiral condensate: order parameter for chiral phase transition

 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate



For QCD with physical quark masses the transition is a smooth crossover

# Chiral condensate: order parameter for chiral phase transition

 $\Rightarrow$  The chiral condensate  $\langle ar{\psi} \psi 
angle$  is the vacuum expectation value of the operator  $\psi \psi$ 

The magnitude of the constituent quark mass is proportional to it

Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate



For QCD with physical quark masses the transition is a smooth crossover

# Chiral condensate: order parameter for chiral phase transition

#### Stefan-Boltzmann limit

Simplest possible system: non-interacting gas of massless quarks and gluons

igoplus we expect QCD thermodynamics to reach this limit at  $T
ightarrow\infty$ 

$$n = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\mathrm{e}^{p/T} \pm 1} = \nu \frac{\zeta(3)}{\pi^2} T^3 \qquad \nu = \begin{cases} 1 & bosons \\ \frac{3}{4} & fermions \end{cases}$$

where  $\zeta(3)=1.202$  (Riemann  $\zeta$  function)

$$\epsilon = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{p}{\mathrm{e}^{p/T} \pm 1} = \nu' \frac{\pi^2}{30} T^4 \qquad \nu' = \begin{cases} 1 & bosons \\ \frac{7}{8} & fermions \end{cases}$$

pressure:  $p = \frac{\epsilon}{3}$  entropy density:  $Ts = \epsilon + P = \frac{4}{3}\epsilon \implies s = \frac{4}{3}\frac{\epsilon}{T} = 2\nu'\frac{\pi^2}{45}T^3$  $\frac{n}{T^3}, \frac{p}{T^4}, \frac{s}{T^3}, \frac{\epsilon}{T^4}$  constant in SB limit!

#### Switch on interaction: perturbative QCD



- Much effort put into calculating the successive orders of the perturbative expansion for the pressure
- the series is known now up to order  $g^6 \log g$
- perturbation theory makes sense only for very small values of the coupling constant
- For not too small values of the coupling, the successive terms in the expansion oscillate

#### Improve series convergence



J.P. Blaizot, E. Iancu, A. Rebhan, PLB470

- One can improve the convergence of the series by some clever resummation
- Hard Thermal Loop: Quark and Gluon propagators are dressed by some effective mass
- igstarrow this improves the series convergence and the agreement to lattice data down to  $T\sim 3T_c$

#### Lattice QCD

Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force

**\*** Lattice QCD: well-established **non-perturbative approach** to solving QCD

Solving QCD on a grid of points in space and time

The lattice action is the parameterization used to discretize the Lagrangian of QCD on a spacetime grid



**\*** From the partition function Z, knowledge of all the thermodynamics

$$\begin{aligned} Z_W &= \operatorname{Tr} \exp(-H/T) = \int [dU] [d\psi d\psi] \exp(-S) \qquad S = S_G + S_F \\ S_G &= \frac{6}{g^2} \sum_{x,\mu < \nu} [1 - \operatorname{Re} \operatorname{Tr} U_P(x;\mu,\nu)/3] \\ S_F &= \sum_x \bar{\psi}(x)\psi(x) - \kappa \sum_{x,\mu} [\bar{\psi}(x)(1+\gamma_\mu)U_\mu(x)\psi(x+\hat{\mu}) + \bar{\psi}(x+\hat{\mu})(1-\gamma_\mu)U_\mu^{\dagger}(x)\psi(x)] \end{aligned}$$

#### **Transition from QCD Thermodynamics**



**\***s/T<sup>3</sup> indicates the number of particle species

Rapid rise = liberation of degrees of freedom

Compare to an ideal gas of quarks and gluons

$$s = \frac{4g}{\pi^2}T^3$$

\*This gives us an idea of how strong the interaction is

#### Equation of state for Nf=2+1

Two independent and compatible results for the  $\mu=0$  and  $N_f=2+1$ 



WB: S. Borsanyi et al., 1309.5258, PLB (2014) HotQCD: A. Bazavov et al., 1407.6387, PRD (2014)

This is nice, but...

- (1) Heavy ion physics: needs  $\mu > 0$
- (2) Cosmology: needs higher temperature, therefore more quark flavours

#### Equation of state with dynamical charm



WB (S. Borsanyi et al.), Nature 2016

#### QCD in the grand canonical ensemble

Grand canonical partition function:

$$e^{-F/T} = \mathcal{Z}(T; \mu_u, \mu_d, \mu_s) = \operatorname{Tr}\left(e^{-\beta(H-\mu_u N_u - \mu_d N_d - \mu_s N_s)}\right)$$

 $\implies$  4D phase diagram.

Quark number density $\langle n_q \rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_q}$ Baryon number density $\langle n_B \rangle = \frac{1}{3} \left( \langle n_u \rangle + \langle n_d \rangle + \langle n_s \rangle \right)$ Isospin density $\langle n_I \rangle = \frac{1}{2} \left( \langle n_u \rangle - \langle n_d \rangle \right)$ Electric charge $\langle n_Q \rangle = \frac{2}{3} \langle n_u \rangle - \frac{1}{3} \langle n_d \rangle - \frac{1}{3} \langle n_s \rangle$ Both for heavy ion physics and neutron star physics, we need:

• 
$$\langle n_I \rangle < 0$$
 not a problem   
•  $\langle n_I \rangle > 0$  complex action problem   
} I will shortly review why

•  $\langle n_B \rangle > 0$  complex action problem J
## Euclidean path integral

Start with a grand canonical partition function:  $Z = \text{Tr}\left(e^{-(H-\mu N)/T}\right)$ Notation:  $H - \mu N \rightarrow H$  for simplicity

The partition function  $Z = \text{Tr}\left(e^{-H/T}\right)$  written as a path integral:

$$Z = \sum_{c_1, c_2, \dots} \left\langle c_1 | e^{-aH} | c_2 \right\rangle \left\langle c_2 | e^{-aH} | c_3 \right\rangle \dots \left\langle c_{n-1} | e^{-aH} | c_1 \right\rangle =: \sum_{[c]} w[c]$$

- $\bullet\,$  Maps the quantum system to a classical system, with configurations c
- w(c) = weight of a configuration c
- $w(c) \ge 0 \implies$  can use Monte Carlo
- w(c) can be negative or complex  $\implies$  sign or complex action problem
- Sign problem property of the system AND the basis we used

#### Euclidean path integral for QCD

$$\mathcal{Z} = \operatorname{Tr} \left( e^{-\beta(\hat{H} - \mu_u \hat{N}_u - \mu_d \hat{N}_d - \mu_s \hat{N}_s)} \right)$$
$$= \int \mathcal{D}U \mathcal{D}\bar{\Psi} \mathcal{D}\Psi e^{-S_{YM} - (\bar{\Psi}M\Psi)}$$
$$= \int \mathcal{D}U e^{-S_{YM}[U]} \det M[U; m_u, \mu_u) \det M[U; m_d, \mu_d)$$
Fermion determinant

If positive, we can treat  $w := e^{-S_{YM}} \det M \det M$  to be a probability distribution, we can generate configurations of the gauge field with these probabilities and calculate observable on these configurations

## The complex action problem at finite µ

$$\left(\det M\left(\mu\right)\right]^* = \det M\left(-\mu^*\right) \in \mathbb{C}$$

 $w := e^{-S_{YM}} \det M \det M$  complex  $\implies$  cannot use importance sampling

Cases without a complex action/sign problem:

- $\mu = 0$  Calculate derivatives of  $\log \mathcal{Z}$  at  $\mu = 0$   $\Longrightarrow$  small  $\mu_B > 0$
- Purely imaginary  $\mu$
- Isospin chemical potential  $\mu_u = -\mu_d \implies$  Study pion condensation.
- The Dirac operator can have an additional symmetry, e.g. SU(2) gauge theory with  $N_f$  =even

#### Taylor expansion of the pressure

Suppose we either:

- fix  $\mu_S = 0 = \mu_Q$  for simplicity
- fix  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.4 \, \langle B \rangle$  for HIC

The pressure is now:

$$\frac{P}{T^4} = P(T, \mu = 0) + \sum_{k=1}^{\infty} c_{2k} \left(\frac{\mu_B}{T}\right)^{2k}$$

Alternatively, I can fix nothing and calculate the 3 variable Taylor expansion. The coefficients contain lots of info:

- $T_c(\mu)$
- EoS
- Lower limit on location of critical point
- . . .

#### Taylor expansion of the pressure



A. Bazavov et al., PRD (2017)

#### **Analytical continuation**



#### **Simulation landscape**

- \*\*



The BNL-Bielefeld-CCNU effort focuses to this point

#### The crossover line from analytical continuation

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\mu_B / T_c(\mu_B)\right)^2 \qquad \kappa = 0.0149(21)$$

WB: hep-lat/1507.07510  $\mu_S$  and  $\mu_Q$  from  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.5 \langle B \rangle$ 



#### Equation of state from analytical continuation



It appears Taylor expansion is under control for  $\mu_B/T \le 2$ . This is not so bad. It means it can be used for RHIC energies:

 $\sqrt{s} = 200, \ 62.4, \ 39, \ 27, \ 19.6, \ 14.5 \text{GeV}$ 

#### Equation of state from analytical continuation



#### What happens below T<sub>c</sub>?

\* At low T and  $\mu_B=0$ , QCD thermodynamics is dominated by pions

\* as T increases, heavier hadrons start to contribute

**\*** Their mutual interaction is suppressed:

 $n_i n_k \sim \exp[-(M_i + M_k)/T]$ 

**\*** Interacting hadronic matter in the ground state can be well approximated by a non-interacting gas of hadronic resonances

$$p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}^M_{\boldsymbol{m_i}}(T, V, \mu_{X^a}) + \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}^B_{\boldsymbol{m_i}}(T, V, \mu_{X^a}),$$

with  $\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\epsilon_i/T}) \quad \epsilon_i = \sqrt{k^2 + m_i^2}$  $z_i = \exp\left((\sum_a X_i^a \mu_{X^a})/T\right)$  and X<sup>a</sup> are all conserved charges.

3. Hagedorn, N. Cabibbo and G. Parisi

### How many resonances do we include?



\*With different mass cut-offs we can separate the contribution of different particles

★Known resonances up to M=2.5 GeV

## Evolution of a heavy-ion collision



**Chemical freeze-out**: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)

**\*** Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)

Hadrons reach the detector

## Hadron yields



**\***HRG model: test hypothesis of hadron abundancies in equilibrium

$$N_i = -T \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i V}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

## Hadron yields



**\***HRG model: test hypothesis of hadron abundancies in equilibrium

\*We need:

\* a complete hadron spectrum

control the hadron fraction from decays

#### Decays



Most hadrons are subject to strong and electromagnetic decays

 $\Delta \rightarrow p(n) + \pi \text{, } \rho \rightarrow \pi + \pi$ 

\* e.g. pions: 1/4 primordial, 3/4 from
strong decays

**\***Weak decays can be treated too:

 $\Sigma \to \Lambda + \gamma$ 

**\*** after chemical freeze-out: only elastic and quasi-elastic scatterings take place:

$$\pi\pi \to \rho \to \pi\pi$$
  $p\pi \to \Delta \to p\pi$   $K\pi \to K^* \to K\pi$ 

$$\bar{N}_i = N_i + \sum_r d_{r \to i} N_r$$

## The thermal fits

38



Changing the collision energy, it is possible to draw the freeze-out line in the T, μ<sub>B</sub> plane

Cleymans et al, Becattini et al, Andronic et al.

**\*** Fit is performed minimizing the X<sup>2</sup>

**\*** Fit to yields: parameters T, μ<sub>B</sub>, V

Fit to ratios: the volume V cancels out



#### Caveats

These results are model-dependent

- \* they depend on the particle spectrum which is included in the model
- possibility of having heavier states with exponential mass spectrum
- not known experimentally but can be postulated
- their decay modes are not known

#### Caveats

These results are model-dependent

- \* they depend on the particle spectrum which is included in the model
- possibility of having heavier states with exponential mass spectrum
- not known experimentally but can be postulated
- their decay modes are not known

\* Purpose: extract freeze-out parameters from first principles

# direct comparison between experimental measurement and lattice QCD results

\* observable: fluctuations of conserved charges (electric charge, baryon number and strangeness)

\* directly related to moments of multiplicity distribution (measured)

\* lattice QCD looks at conserved charges rather than identified particles

### Fluctuations of conserved charges

\* Consider the number of electrically charged particles N<sub>Q</sub>

\*Its average value over the whole ensemble of events is  $<N_Q>$ 

\*In experiments it is possible to measure its event-by-event distribution



STAR Collab.: 1402.1558

## Fluctuations of conserved charges???

If we look at the entire system, none of the conserved charges will fluctuate

\*By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful



- ΔY<sub>total</sub>: range for total charge multiplicity distribution
- ΔY<sub>accept</sub>: interval for the accepted charged particles
- ΔY<sub>corr</sub>: charge correlation length characteristic to the physics of interest
- ΔY<sub>kick</sub>: rapidity shift that charges receive during and after hadronization

## Cumulants of multiplicity distribution

\* Deviation of N<sub>Q</sub> from its mean in a single event:  $\delta N_Q = N_Q - \langle N_Q \rangle$ 

**\*** The cumulants of the event-by-event distribution of N<sub>Q</sub> are:

 $K_2 = \langle \delta N_Q \rangle^2 > K_3 = \langle \delta N_Q \rangle^3 > K_4 = \langle \delta N_Q \rangle^4 > -3 \langle \delta N_Q \rangle^2 > 2$ 

The cumulants are related to the central moments of the distribution by:

variance:  $\sigma^2 = K_2$  Skewness:  $S = K_3/(K_2)^{3/2}$  Kurtosis:  $\kappa = K_4/(K_2)^2$ 





#### **Experimental measurement**

**\*** Volume-independent ratios:

 $M/\sigma^2 = K_1/K_2$   $S\sigma = K_3/K_2$   $\kappa\sigma^2 = K_4/K_2$   $S\sigma^3/M = K_3/K_1$ 



STAR Collab.: 1402.1558

#### **Experimental measurement**

**\*** Volume-independent ratios:

 $M/\sigma^2 = K_1/K_2$   $S\sigma = K_3/K_2$   $\kappa\sigma^2 = K_4/K_2$   $S\sigma^3/M = K_3/K_1$ 



STAR Collab.: 1402.1558

## Susceptibilities of conserved charges

\* Susceptibilities of conserved charges  $\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}p/T^4}{\partial(\mu_B/T)^l\partial(\mu_S/T)^m\partial(\mu_O/T)^n}.$ 

Susceptibilities of conserved charges are the cumulants of their eventby event distribution

mean :  $M = \chi_1$  variance :  $\sigma^2 = \chi_2$ 

skewness :  $S = \chi_3/\chi_2^{3/2}$  kurtosis :  $\kappa = \chi_4/\chi_2^2$ 

 $S\sigma = \chi_3/\chi_2$   $\kappa\sigma^2 = \chi_4/\chi_2$ 

 $M/\sigma^2 = \chi_1/\chi_2$   $S\sigma^3/M = \chi_3/\chi_1$ 

Lattice QCD results are functions of temperature and chemical potential

By comparing lattice results and experimental measurement we can extract the freeze-out parameters from first principles

F. Karsch: Centr. Eur. J. Phys. (2012)

#### **Baryometer and thermometer**

\* Let us look at the Taylor expansion of  $R^{B}_{31}$ 

$$R_{31}^B(T,\mu_B) = \frac{\chi_3^B(T,\mu_B)}{\chi_1^B(T,\mu_B)} = \frac{\chi_4^B(T,0) + \chi_{31}^{BQ}(T,0)q_1(T) + \chi_{31}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)} + \mathcal{O}(\mu_B^2)$$

**\*** To order  $\mu^2_B$  it is independent of  $\mu_B$ : it can be used as a thermometer

Let us look at the Taylor expansion of  $\mathbb{R}^{B}_{12}$  $R^{B}_{12}(T,\mu_{B}) = \frac{\chi^{B}_{1}(T,\mu_{B})}{\chi^{B}_{2}(T,\mu_{B})} = \frac{\chi^{B}_{2}(T,0) + \chi^{BQ}_{11}(T,0)q_{1}(T) + \chi^{BS}_{11}(T,0)s_{1}(T)}{\chi^{B}_{2}(T,0)} \frac{\mu_{B}}{T} + \mathcal{O}(\mu^{3}_{B})$ 

\* Once we extract T from  $R^{B}_{31}$ , we can use  $R^{B}_{12}$  to extract  $\mu_{B}$ 

#### Caveats

\* Effects due to volume variation because of finite centrality bin width

Finite reconstruction efficiency

Spallation protons

Canonical vs Gran Canonical ensemble

Proton multiplicity distributions vs baryon number fluctuations

Final-state interactions in the hadronic phase

#### Caveats

\* Effects due to volume variation because of finite centrality bin width

- Experimentally corrected by centrality-bin-width correction method
- Finite reconstruction efficiency
  - Experimentally corrected based on binomial distribution

A.Bzdak, V.Koch, PRC (2012)

#### Spallation protons

Experimentally removed with proper cuts in pT

#### Canonical vs Gran Canonical ensemble

Experimental cuts in the kinematics and acceptance V. Koch, S. Jeon, PRL (2000)

# Proton multiplicity distributions vs baryon number fluctuations Numerically very similar once protons are properly treated

M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238

Final-state interactions in the hadronic phase J.Steinheimer et al., PRL (2013)

Consistency between different charges = fundamental test

#### **Results**



# Our world is not ideal:

neither chiral symmetry ( $m_q=0$ ) nor confinement ( $m_q=\infty$ ) is well defined.



Existence of QCD critical point predicted by models



# Our world is not ideal:

neither chiral symmetry ( $m_q=0$ ) nor confinement ( $m_q=\infty$ ) is well defined.



Existence of QCD critical point predicted by models



## Fluctuations at the critical point



Consider the order parameter for the chiral phase transition  $\sigma \sim \sqrt{\psi}\psi >$ 

 $P[\sigma] \sim \exp\{-\Omega[\sigma]/T\},\$ 

It has a probability distribution of the form:

$$\frac{2}{\mu} = \mu_{\rm CP}$$

where:  $m_\sigma \equiv \xi^{-1}$ 

and, near the critical point,  $\xi \rightarrow \infty$ :

$$\lambda_3 = \widetilde{\lambda}_3 T (T \xi)^{-3/2}$$
, and  $\lambda_4 = \widetilde{\lambda}_4 (T \xi)^{-1}$ 

 $\Omega = \int d^3x \left[ \frac{1}{2} (\boldsymbol{\nabla} \sigma)^2 + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right] \,.$ 

$$\kappa_3 \equiv \langle \sigma_V^3 \rangle = 2VT^{3/2} \,\tilde{\lambda}_3 \,\boldsymbol{\xi}^{4.5}$$

3 $\mu > \mu_{\rm CP}$ 

$$\kappa_4 = \langle \sigma_V^{4} \rangle = 6VT^2 \left[ 2(\tilde{\lambda}_3)^2 - \tilde{\lambda}_4 \right] \frac{\xi^7}{M}.$$
 Stephanov (2009)

correlation length  $\xi$  is limited due to critical slowing down, together with the finite time the system has to develop the correlations:  $\xi$ <2-3 fm

49

#### Berdnikov-Rajagopal

### **Experimental fluctuations**

We consider the fluctuation of an observable (e.g. proton multiplicity)

$$\delta N = \sum_{p} \delta n_{p}$$

At the critical point, it receives both a regular and a singular contribution. The latter comes from the coupling to the  $\sigma$  field:



Higher order moments have stronger dependence on  $\xi$ : they are more sensitive signatures for the critical point

M. Stephanov

## Sign of kurtosis



M. Stephanov (2011)

The 4th order cumulant becomes negative when the critical point is approached from the crossover side: from Ising model:

M=R<sup>β</sup>θ, t=R(1- $\theta^2$ ), H=R<sup>βδ</sup>h( $\theta$ )

 $\kappa_4 = \langle M^4 \rangle$  (t,H)->(µ-µ<sub>CP</sub>, T-T<sub>CP</sub>)

Consequently, the experimental 4th order fluctuation will be smaller than its Poisson value (precise value depends on  $\xi$ , on how close the freeze-out occurs to the critical point...)

 $<(\delta N)^4>=<N>+<\sigma^4_V>...$ 

### Experimental results on kurtosis



STAR Collab.: 1309.5681

Kurtosis of Net-protons shows anomalous dip at  $\sqrt{s_{NN}} = 19$  GeV. Not confirmed by kurtosis of Net-charge.





## Conclusions

**\*** QCD transition: a smooth crossover at  $\mu_B=0$ ; expected to become first order at large  $\mu_B$  (critical point)

**\*** Lattice QCD simulations: equilibrium, thermodynamic quantities at small  $\mu_{B.}$ 

HRG model: good description below the transition. Fit of hadron yields and ratios -> freeze-out parameters

\* Alternative: fluctuations of conserved charges. Determination of freeze-out parameters from first principles

\* Fluctuations at the critical point: expected to scale with some power of correlation length

The kurtosis changes sign in the vicinity of the critical point