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History

Cagniard de la Tour (1822): discovered continuos transition from liquid
to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.
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Name

Faraday (1844) – liquefying gases:

“Cagniard de la Tour made an experiment some years ago which gave me
occasion to want a new word.”

Mendeleev (1860) – measured vanishing of liquid-vapour surface
tension: “Absolute boiling temperature”.

Andrews (1869) – systematic studies of many substances established
continuity of vapour-liquid phases. Coined the name “critical point”.
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Theory

van der Waals (1879) –
in “On the continuity of the gas and liquid state”
(PhD thesis) wrote e.o.s. with a critical point.

Smoluchowski, Einstein (1908,1910) – explained critical opalescence.

Landau – classical theory of critical phenomena

Fisher, Kadanoff, Wilson – scaling, full fluctuation theory based on RG.
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Critical opalescence

M. Stephanov QCD critical point and fluctuations PKU 2017 5 / 58



Critical point is a ubiquitous
phenomenon
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Critical point between the QGP and hadron gas phases?
QCD is a relativistic theory of a fundamental force.
CP is a singularity of EOS, anchors the 1st order transition.

Quarkyonic
   regime

QGP
(liquid)

critical point

nuclear
matter

hadron gas

? CFL+

?

Lattice QCD at µB . 2T – a crossover.

C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, . . . )
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Essentially two approaches to discovering the QCD critical point.
Each with its own challenges.

Lattice simulations.

The sign problem restricts reliable lat-
tice calculations to µB = 0.

Under different assumptions one can
estimate the position of the critical
point, assuming it exists, by extrapo-
lation from µ = 0.
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Lattice Monte Carlo

Thermodynamics is encoded in the partition function

Z =
∑

quantum states

exp{−β(E − µN)} =

∫
D(paths) exp{−SE}

SE - action on a path in imaginary time τ from 0 to β.

Usually, SE - real. So
∫
D(paths) e−SE - itself is a partition function

for classical statistical system in 3 + 1 dimensions. Monte Carlo
methods work.

Not so for µ 6= 0.
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Sign problem

e−SE = e−Sgluons detDquarks.

and detDquarks - complex for µ 6= 0.

Monte Carlo translates weight e−SE into probability and fails if SE is not
real.

Recent progress based on various techniques of circumventing the
problem:

Reweighting (use weight at µ = 0);
Taylor expansion;
Imaginary µ;
“Thimbles”, complex Langevin
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Heavy-Ion Collisions. Thermalization.

“Little Bang”

The final state looks thermal.

Similar to CMB.
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(Becattini et al)

Flow – looks hydrodynamic. Initial anisotropy fluctuations are
propagated to final state hydrodynamically.

Why and when this thermalization occurs – an open question.
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Outline

Equilibrium

Non-equilibrium
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Why fluctuations are large at a critical point?

The key equation:

P (X) ∼ eS(X) (Einstein 1910)

For an extensive quantity 〈X〉 ∼ V :

〈(δX)2〉c = −
(
S′′
)−1

= V Tχ

Susceptibility χ is finite in thermodynamic limit V →∞— CLT.

At the critical point S(X) “flattens”. And χ→∞ as V →∞.

CLT? X is not a sum of∞ many uncorrelated contributions: ξ →∞
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Fluctuations of order parameter and ξ

Fluctuations at CP – conformal field theory.

Parameter-free→ universality. Only one scale ξ = m−1σ <∞,

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω =

∫
d3x

[
1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + . . .

]
.

Width/shape of P (σ0 ≡
∫
xσ) best expressed via cumulants:

Higher cumulants (shape of P (σ0)) depend stronger on ξ.
Universal: 〈σk0 〉c ∼ V ξp , p = k(3− [σ])− 3, [σ] = β/ν ≈ 1/2.

E.g., p ≈ 2 for k = 2, but p ≈ 7 for k = 4.

M. Stephanov QCD critical point and fluctuations PKU 2017 14 / 58



Sign

Higher moments also depend on which side of the CP we are

κ3[σ] = 2V T 3/2 λ̃3 ξ
4.5 ; κ4[σ] = 6V T 2 [ 2(λ̃3)

2 − λ̃4 ] ξ7 .

This dependence is also universal.

2 relevant directions/parameters. Using Ising model variables:
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Experiments do not measure σ.
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Mapping to QCD and experimental observables

Observed fluctuations are not the same as σ, but related:

Think of a collective mode described by field σ such that m = m(σ):

δnp = δnfree
p +

∂〈np〉
∂σ

× δσ

The cumulants of multiplicity M ≡
∫
p np:

κ4[M ] = 〈M〉︸︷︷︸
baseline

+ κ4[σ]× g4
( )4
︸ ︷︷ ︸
∼M4

+ . . . ,

g – coupling of the critical mode (g = dm/dσ).

κ4[σ] < 0 means κ4[M ] < baseline

NB: Sensitivity to Maccepted: (κ4)σ ∼M4 (number of 4-tets).
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Mapping Ising to QCD phase diagram

T vs µB:

In QCD (t,H)→ (µ− µCP, T − TCP)

κn(N) = N +O(κn(σ))
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Beam Energy Scan

“intriguing hint” (2015 LRPNS)
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Back to the two-point correlations

Preliminary, but very interesting:

Rapidity Correlations 

Click to edit Master subtitle style 

W.J. Llope for STAR, CPOD2017, Aug. 8-11, 2017, Stony Brook, NY  21 

R2(Δy,Δφ) for LS pions vs. √sNN, 0-5% central, convolution 

✩Preliminary 

7.7 GeV                                        11.5 GeV                                        14.5 GeV                                        19.6 GeV 

27 GeV                                           39 GeV                                        62.4 GeV                                         200 GeV 

Non-monotonous
√
s

dependence with max
near 19 GeV.

Charge/isospin blind.

∆φ (in)dependence is
as expected from
critical correlations.
C2 ∼ f(φ1)f(φ2).

Width ∆η suggests
soft pions – but pT
dependence need to
be checked.

But: no signal in R2

for K or p.
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Correlations – spatial vs kinematic

ξ ∼ 1− 3 fm

∆ηcorr =
ξ

τf
∼ 0.1− 0.3

Particles within ∆ηcorr
have thermal rapidity
spread. Thus

∆ycorr ∼ 1� ∆ηcorr
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Acceptance dependence – two regimes

How do cumulants depend on acceptance?

Let κn(M) be a cumulant of M – multiplicity of accepted, say, protons.

∆y � ∆ycorr – CLT applies.

κn ∼M

or ωn ≡
κn
M
→ const – an “intensive”, or volume indep. measure

∆y � ∆ycorr – more typical in experiment.

Subtracting trivial (uncorrelated, Poisson) contribution:

κn −M ∼Mn – proportional to number of correlated n-plets;

or ωn − 1 ∼Mn−1.
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Critical point fluctuations vs acceptance

Proton multiplicity cumulants ratio at 19.6 GeV: ωn,σ ≡ ωn − 1

grows as (∆y)n−1 and saturates at ∆y ∼ 1− 2.
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pT and rapidity cuts have qualitatively similar effects.

Wider acceptance improves signal/error:

errors grow slower than Mn.
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M. Stephanov. J. Physics G.: Nucl. Part. Phys.  38 (2011) 124147

Control Measurements for CEP Signatures

Need 
data
here!

STAR PRELIMINARY

FXT

κσ2

Preliminary HADES result, Quark Matter 2017
0-10%
(QM 2017)

Systematic uncertainties 
included

 FXT measurements needed to determine shape of kσ2 observable 
at lower energies

8/11/2017 Kathryn Meehan -- UC Davis/LBNL -- CPOD 2017 6

Peak behavior predicted in 
critical region:

To draw physics conclusions from this comparison, one needs to take
into account rapidity acceptance ∆y, different in the experiments.
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Acceptance dependence

The acceptance dependence consistent with ∆yn−1

(Ling-MS 1512.09125; Bzdak-Koch 1607.07375)

As long as ∆y � ∆ycorr the correlators κ̂n count the number of n-plets
in acceptance.
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Factorial cumulants

More precisely, the scaling with ∆y is for factorial cumulants (κ̂n or Cn).

Because they isolate irreducible n-point correlations.

Normal cumulants (n > 2) are deviations from normal distribution.

Factorial cumulants – from Poisson distribution.
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Physics of correlations

One can describe the correlations in the language of “clusters” Or,
more physically, mean-field.

The correlations induced by critical mode have similar effect.

Isospin blind n-particle correlations.
Characteristic non-monotonous

√
s dependence.

The size of the “cluster” of order number of particles within ξ3

(qualitatively).
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Large µB: n4
B vs ξ7

The cumulants of multiplicity M ≡
∫
p np: (MP ∼ nB ×∆y)

κ4[M ] = 〈M〉︸︷︷︸
baseline

+ κ4[σ]× g4
( )4
︸ ︷︷ ︸
∼M4

+ . . . ,

κ̂4[M ] ≈ g4κ4[σ]M4 ∼ ξ7 × n4B︸ ︷︷ ︸
compete at large µB

× (∆y)4. [Athanasiou-Rajagopal-
MS]

The ratio
κ̂4[M ]

n4B
or
κ̂4[M ]

M4
∼ κ4[σ] ∼ ξ7.
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Non-equilibrium physics is essential near the critical point.

The goal for
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Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means τrelax ∼ ξz.
Given τrelax . τ (expansion time scale):

ξ . τ1/z,

z ≈ 3 (universal).

Estimates: ξ ∼ 2− 3 fm
(Berdnikov-Rajagopal)

KZ scaling for ξ(t)
and cumulants
(Mukherjee-Venugopalan-Yin)
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Lessons

κn ∼ ξp and ξmax ∼ τ1/z

Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.

Higher moments are more sensitive to ξ – good for detecting
critical point. But harder to predict for the same reason.
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin

Relaxation to equilibrium

dP (σ0)

dτ
= F [P (σ0)]

⇓
dκn
dτ

= L[κn, κn−1, . . .]

κ3 κ4

Signs of cumulants also depend on off-equilibrium dynamics.
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Experiments do not measure σ.
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Kinetics near critical point

Soft mode couples to hadrons

Dynamical description
Couple hadrons to soft mode

S =

∫
x

1

2

(
∂µσ∂

µσ − U(σ)
)
−
∫
ds M(σ),

Kinetic equation
pµ

M

∂f

∂xµ
+ ∂µM(σ)︸ ︷︷ ︸

"force" due

to field grad.

∂f

∂pµ
= 0 ,

+ field equation:

∂2σ + dU/dσ + (dM/dσ)

∫
p
f/γ = 0.

(M.S., PRD81:054012,2010)
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Collisions, dissipation and noise

Fluctuation-dissipation requires noise: (Fox,Uhlenbeck)

pµ

M

∂f

∂xµ
+ ∂µM(σ)︸ ︷︷ ︸

"force" due
to field grad.

∂f

∂pµ
= C[f ] + noise (ξ) ,

∂2σ + dU/dσ + (dM/dσ)

∫
p
f/γ = −Γ0∂0σ + noise (η).

〈ξ(x1, p1)ξ(x2, p2)〉 = (K +K†)︸ ︷︷ ︸
linearized C

δ3p1,p2
δ4(x1 − x2);

〈η(x1)η(x2)〉 = 2Γ0Tδ
4(x1 − x2);

〈ξ(x1, p1)η(x2)〉 = 0.
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Kinetic theory with critical mode

Boltzmann equation, with collisions and noise:

pµ

M

∂f

∂xµ
+ ∂µM

∂f

∂pµ
+ C[f ] = ξ ,

(Fox-Uhlenbeck) + field equation:

∂2σ + dU/dσ + (dM/dσ)

∫
p
f/γ + Γ0σ̇ = η.

Noise is fixed by fluctuation-dissipation relations.

Fluctuations in equilibrium are reproduced correctly.

We can now study non-equilibrium evolution of fluctuations.

E.g., memory effects can be described (PRD81:054012,2010)
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Applied to realistic freezeout conditions

 Freeze-out Scheme near the Critical Points 

Hydro freeze-out surface 




 ),(
2
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    Jiang, Li & Song, PRC 2016  
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What is Hydrodynamics?

Fluid left alone tends to equilibrium.

There are two time scales:

1) local thermodynamic equilibration – fast;

2) achieving same conditions throughout – slow.

Hydrodynamics describes that slower process.

It is an effective theory – only operates with degrees of freedom that
matter – densities of energy, momentum, charge. They are slow to
change on large scales because they carry conserved quantities.

The remaining, faster degrees of freedom are the “noise”.

Equations for stochastic hydrodynamics proposed by Landau-Lifshits
in 1957. We want to study correlations in a relativistically expanding
fireball.
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Relativistic Hydrodynamics

Equations: conservation (continuity) ∇µTµν = 0.

Variables: ε, uµ, defined by Tµνuν = εuµ – fixes 4 components
of Tµν .

The remaining 6 components (stress T ij in l.r.f.) must be also
expressed in terms of ε and uµ (grad. expansion):

Tµν = εuµuν + P (ε)∆µν + ∆Tµν︸ ︷︷ ︸
stress in l.r.f

where ∆µν = gµν + uµuν and

∆Tµν = −η∆µ
λ

[
∇λuν +∇νuλ − 2

3
gλν(∇ · u)

]
− ζ∆µν(∇ · u)

(velocity gradients cause stress)

M. Stephanov QCD critical point and fluctuations PKU 2017 39 / 58



Relativistic Hydrodynamics

Equations: conservation (continuity) ∇µTµν = 0.

Variables: ε, uµ, defined by Tµνuν = εuµ – fixes 4 components
of Tµν .

The remaining 6 components (stress T ij in l.r.f.) must be also
expressed in terms of ε and uµ (grad. expansion):

Tµν = εuµuν + P (ε)∆µν + ∆Tµν︸ ︷︷ ︸
stress in l.r.f

where ∆µν = gµν + uµuν and

∆Tµν = −η∆µ
λ

[
∇λuν +∇νuλ − 2

3
gλν(∇ · u)

]
− ζ∆µν(∇ · u)

(velocity gradients cause stress)

M. Stephanov QCD critical point and fluctuations PKU 2017 39 / 58



Fluctuations and Noise

The constitutive eq. is only true on average. Both sides fluctuate
and

Tµν = Tµνid + ∆Tµνvisc︸ ︷︷ ︸
function of ε, uµ

+Sµν .

The discrepancy comes from the “fast” modes. Thus the “noise”
is local:

〈Sµν(x)Sαβ(y)〉 ∼ δ4(x− y).

The magnitude is determined by the condition that the equilib-
rium distribution is eEntropy(ε) (Einstein 1910). Dissipation (propor-
tional to viscosity), which damps fluctuations, must be matched
by noise (Onsager):

〈Sµν
(x)S

αβ
(y)〉 = 2T

[
η
(
∆

µα
∆

νβ
+ ∆

µβ
∆

να
)

+

(
ζ −

2

3
η

)
∆

µν
∆

αβ
]
δ
4
(x− y)

Now ∇µTµν = 0 is a system of stochastic eqs. for ε, uµ.
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Hydrodynamics breaks down at CP

Tµν = εuµuν + p∆µν + T̃µνvisc

T̃µνvisc = −ζ∆µν(∇ · u) + . . .

Near CP gradient terms are dominated by ζ ∼ ξ3 →∞
(z − α/ν ≈ 3).

When k ∼ ξ−3 hydrodynamics breaks down, i.e., while k � ξ−1 still.

(For simplicity, measure dim-ful quantities in units of T , i.e., k ∼ T (Tξ)−3.)

Why does hydro break at so small k?
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Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local
equilibrium (Khalatnikov-Landau).

phydro = pequilibrium − ζ∇ · v

∇ · v – expansion rate

ζ ∼ τrelaxation ∼ ξ3

Hydrodynamics breaks down because of large relaxation time
(critical slowing down).

Similar to breakdown of an effective theory due to a low-energy mode
which should not have been integrated out.
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Critical slowing down and Hydro+

There is a critically slow mode φ with relaxation time τφ ∼ ξ3.

To extend the range of hydro – extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

“Hydro+” has two competing limits, k → 0 and ξ →∞;

or competing rates Γφ ∼ ξ−3 → 0 and Γhydro ∼ k → 0.

Regime I: Γφ � Γhydro – ordinary hydro (ζ ∼ ξ3 →∞ at CP).

Crossover occurs when Γhydro ∼ Γφ, or k ∼ ξ−3.

Regime II: k > ξ−3 – “Hydro+” regime.
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Advantages/motivation of Hydro+

Extends the range of validity of “vanilla” hydro near CP

to length/time scales shorter than O(ξ3).

No kinetic coefficients diverging as ξ3.

(Since noise ∼ ζ, also the noise is not large.)
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Ingredients of “Hydro+”

Nonequilibrium entropy, or quasistatic EOS:

s∗(ε, n, φ)

Equilibrium entropy is the maximum of s∗:

s(ε, n) = max
φ

s∗(ε, n, φ)

The 6th equation (constrained by 2nd law):

(u · ∂)φ = −γφπ −Aφ(∂ · u), where π =
∂s∗

∂φ

Another example: relaxation of axial charge.
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Linearized Hydro+

Linearized Hydro+ has 4 longitudinal modes (sound×2 + density + φ).

In addition to the usual cs, D, etc. Hydro+ has two more parameters

∆c2 = c2∗ − c2s and Γ = Γφ.

The sound velocities are different in Regime I (csk � Γ) and II:

c2s =

(
∂p

∂ε

)
s/n,π=0

and c2∗ =

(
∂p∗

∂ε

)
s/n,φ

The bulk viscosity receives large contribution from the slow mode
given by Landau-Khalatnikov formula

∆ζ = w∆c2/Γ
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Modes
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Hydro+
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Microscopic origins of Hydro+

Understanding the microscopic origin of the slow mode:

The fluctuations around equilibrium are controlled by the entropy
functional P ∼ eS .

Near the critical point convenient to “rotate” the basis of variables to
“Ising”-like critical variables E andM. M∼ s/n− (s/n)CP.

δ2S[δE , δM] =
1

2
aM (δM)2 +

1

2
aE (δE)2 + b δE δM2 + . . .

Since aM � aE fluctuations ofM are large and are slow to equilibrate.

Their magnitude is related to the slow relaxation mode φ.
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19

• A general critical point: slow modes include order 
parameter (M), and <δMδM> (and potentially higher 
cumulants…). 

• QCD critical point: hydro + <δMδM>.

•  M is a linear combination of ϵ, n and chiral 
condensate σ.  σ  equilibrates at microscopic time 
scale and the evolution of σ  simply traces the 
evolution of ϵ, n ⇒ Eq. for M. 

Slow modes near a critical point

(Son-Stephanov, 04’) 
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Relation between <δMδM> and ϕ(t, x ; Q)   

• The Wigner transform of <δMδM> ⇒ ϕ(t, x ; Q)   

   ϕ(t, x ; Q) = ∫d3Δx <δM(t, x+Δx) δM(t, x-Δx)> e-i Q Δx

ϕ(t,x ;Q) may be viewed as many local slow modes with 
label Q at a fluid cell (t,x).

• In equilibrium: ϕeq(Q) = 1/[(𝝌M)-1+Q2] (ϕeq(Q=0)=𝝌M 

~ κ2).

(t,x) 

ϕ(Q1) 

ϕ(Q2) 
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• The generalized entropy s+(ϵ,n, ϕ(Q)) can be derived 
following the formalism of 2PI effective action in QFT. 

•  NB: 2PI effective action is a useful tool to study 
non-equilibrium effects. 

Generalized Entropy s+(ϵ,n,ϕ(Q))

• A simple form at the leading order in “loop 
expansion”:

(e.g. J. Berges et al, hep-ph/0409123) 

(J. M. Cornwall, R. Jackiw, E. Tomboulis, 1974’ ) 

(MS-Yin, in preparation)
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• A Q-dependent (phenomenological) relaxation equation 
for ϕ:

E.o.M for ϕ(Q) 

• s(+)(ϵ,n,ϕ(Q)) together with Γ(Q) successfully 
reproduces critical behavior of ρBulk(ω)~ Im <TiiTii> . 

 (uμ ∂μ)ɸ = - 𝛾ɸ	π	 

• Γ(Q)=γ(Q)/(ϕeq(Q))2 is known 
from model H.

(MS-Yin, in preparation)
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An example of hydro+ in an expanding  
QGP
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Solving equation for ɸ(Q) along a trajectory

M~T-Tc,  rIsing ~ μ-μc
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“Hydro+” describes the slow relaxation of 
critical fluctuations 

𝛕<𝛕peak , fall out of equilibrium. 𝛕>𝛕peak , memory.

ɸmax

• NB: ɸ(Q) can be related to the baryon number 
balance function (if supplemented with mapping 
and freeze-out prescription). 
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Relaxation of slow mode(s).
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Summary

A fundamental question for Heavy-Ion collision experiments:

Is there a critical point on the boundary between QGP and
hadron gas phases?

Theoretical framework is needed – the goal for .

Large (non-gaussian) fluctuations – universal signature of a crit-
ical point.

In H.I.C., the magnitude of the signatures is controlled by dy-
namical non-equilibrium effects. The physics of the interplay of
critical and dynamical phenomena can be captured by hydrody-
namics with a critically slow mode(s) – Hydro+.
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