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Part |: What is a correlation function?

e Correlation functions as covariance.

Part Il: Correlation Function Formal Definition
 Integral and Differential Correlation Functions
e The Multiple facets of Correlation Functions

e Moments, Cumulants, Factorial Moments, Factorial Cumulants

Part Ill: Why Measure Differential Correlation Functions?

 Emphasis on Cumulants

Part IV: Multi-Facets of Correlation Functions

Part V: Experimental Considerations
* Acceptance
e Efficiency

e Other instrumental effects
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Part 1: What’s a correlation function?

e Definition of Correlation Functions as an extension of
the notion of covariance.

e |[ntroduction based of two-particle cross-sections.

e Could be formulated in more general terms as generic
functions describing fields, yields, intensity, in multi-
dimensional spaces.

e \We will formally introduce correlation functions based on
cumulants of cross-sections during the next segment.




* Consider a measurement of the number of particles
oroduced at two distinct momenta p, and p,

* Let Nirepresent the number of particles produced
in volumes €2, i=1, 2, in ranges “centered” on p,
and p,

min max

Pt < Pt < Pt
min max
n. <n.sn.

o <9, <™
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Average Yields

* (Given the stochastic nature of particle production,
the yields N, are expected to fluctuate event-by-
event — even for identical collision parameters.

* For a given type of particle, collision, etc, one can
consider the averages (N,)

* These averages are determined by the particle
production cross-section of the specitic process
considereq:

d’N.
V= —dp.dod

e Bracket notation <O> used to denote ensemble/population average.
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RMS Yield and Covariance

* Fluctuations characterized by the Cov[x,y]=(xy)=(x)(¥)
variance of N;: S| P
-
* More informative to study the N T B S
covariance of these two yields Y S ¥

_ 1" "
oF 1 of

+ Cov[Ns,N2] depends on the size of B
the bins ()1 and ()2 used to measure > e 17 e
the yields N1 and Nz, respectively, \ /

* Also a function of the coordinates p1
and p2 at which the particle e T T e
emission Is considered.
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Pair Yield Covariance

Pseudorapidity
n = —In (tan( 6/2)) ‘eta”
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Correlation function

« Natural to introduce the notion of correlation function at p1
and p2 based on

e Defined in the Iimit in which the bin sizes Q1 and Q> vanish.

Correlation > Covariance

1002 BEL specific
values of
lletaﬂ

Pair Count

Function

=200

10 20 30 40
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Single Particle Density Estimator

* The average yield <N(pi)> normalized by the bin
size (); constitutes an estimator of the (single)
particle density at p:

(N(p,))
Q.

l

:61(]_51'):

* Inthelimit Qi—> 0 and infinite statistics, one
gets the single particle cross-section:
d’°N.

glig})pl(ﬁi): pl(ﬁi): ded¢ld77 (]_51)




Two-Particle Density

* The average yield <N(p1)N(p2)> normalized by the
oroduct of bin sizes, (1x(0)2, constitutes an
estimator of the joint- or two-particle density at p-

and po.

(N(PON(D,)) joint pair density
Q Q. (estimator)

0, (Py>P,) =

e Inthe limit Qj—> 0 and infinite statistics

d6Npairs
dp;,d¢dndp; ,do,dn,
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Correlation Function Definition

e |nthe limit Q1,02—> 0, one has a correlation function

C(Pl 91_52) =P, (131 91_52)_ pl(ﬁl ),01(]32)

* which is the “most general” form a two-particle
correlation function (i.e., 6 momentum components)

e choice of coordinate representation is somewhat arbitrary
e cartesians: pix, Py, P1z, P2x, P2y, P2z
* rapidity: y1, ¢1, P17, Y2, ®2, Po1

* pseudorapidity: N1, ®1, P11, N2, P2, P2t
e efc.




Parameter Marginalization

* A measurement of correlation function can be reduced to a smaller
number of coordinates of interest by integrating, or averaging,
called marginalization by statisticians, over variables that are not
of interest.

« Common to study correlation functions of produced particles as a
function of

e the relative angle A = d1 — @2, or
* the difference in pseudorapidity An =n1 — N2,
* Or both,

* for specific types of particles (e.g., all charge hadrons, positive
particles only, or only pions, etc.), and within a specific range of
transverse momentum, and for events (i.e., collisions) satistying
specific conditions.
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STAR, White Paper, Nuclear Physics A 757 (2005) 102-183

Jet Quenching Discovery
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Important Remarks

Particle yields are by definition non-negative (i.e., positive or null),
But the function C(p1,p2) may be positive, null, or even negative.

As for covariances, a positive value indicates that a rise of the particle
yield at p1 is, on average, accompanied by a rise of the yield at p.. The
yields are said to be correlated.

A negative value corresponds to an anti-correlation, so that the rise
of the yield at one momentum is accompanied by a decline at the
other momentum.

A null value, of course, implies that the two yields, at the given
momenta p1 and p2, are seemingly independent.

C(ﬁpl_ﬁz) =0 = pz(l_j1al_52) — pl(pl)pl(ﬁz)

Is this condition sufficient to conclude the production at the
two momenta is statistically independent?

Wayne State University
College of Liberal Arts & Sciences
Department of Physics and Astronomy




Part 1: Summary

 Used the yields N1 and N2 of particle production at
two momenta p, and p, in solid angles Q1 and Qo.

 Considered the covariance of N1 and No.

» Showed that in the limit Q1+ —> O, the covariance
defines a function of p, and p, which expresses the
covariance of the pair density at these momenta.

* This function is called correlation function of the pair
vield vs. p, and p,

* The correlation function can be marginalized against
several of its variables.




Part ll: Formal Definition of Corr Fct

e (oal:

e Obtain tools to determine whether detected particles
are correlated.

* Define
e probability density of particle emission.
e number densities.
e factorial moments.
e cumulants.

e Derive formula usable towards the extraction of
cumulants from measured densities.




Where are correlations from?

* Conservation Laws
 Energy, Momentum
* Quantum Numbers
 Charge, Strangeness, Baryon Number
o (Geometry (System Shape)
* Opacity
 Thermal Motion (Decays)

* Pressure Gradients (e.g. radial flow, anisotropic flow)
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What’s the cause of correlations?

Energy Momentum Conservation g

Decay at
e.g., Resonance Decays, Jets  [ssd
velocity 2-body
(b) Decay at
- high
2-body v,>0 velocity

Decay at
rest in
the lab!

Decay at

rest

"
-
'O
-

pl p parton
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Resonance Decay: An Example
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Introducing number densities

* Inclusive number densities pn are proportional to
the n-probabilities (probability to find particle at
some momentum coordinates).

* They yield a sequence of inclusive differential

functions:

1
—do = pl(y)dy9

el

1
—dZG — pz(ylayz)dyldyZ’

el

1
—d’o = p,(y,,y,,y,)dy,dy,dy.,

el

e o o
Wayne State University
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Factorial Moments

* Integration over the momentum volume O
yields

d°N.,
prdp;dodn
J.sz()ﬁayz)dyl dyz — <N(N_ 1)>

| PsGryssy)dy dyy dy, = (N(N = 1)(N -2)

prdp;dodn= <N>

jQp1(Y)dy = JQ

Note:

Factorial Moments
j---ipn<y1,...,yn>dyl---dyn =(NN=D--(N-n+D)  [REEEEERIE

. differential
guantities.

¢ where (N(N-1)---(N-n+1))coefficients are
called factorial moments of order n.
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Number vs. Probability Densities

* Normalization of probability densities:

JP(yl,yz,...,yn)dyl dy,...dy =1

* But: J...Jpn(yl,,,,,yn)dyl---dyn:<N(N—1)°--(N—n+1)>

_ Factorial Moments
* One can then write:

Differential Density Probability Density




Independent Particle Emission

 [wo variables are said to be statistically independent
Iff their joint-probability density tactorizes.

 |mplies: Two particles are said to be statistically
independent iff their joint-number density (which is
proportional to a probability density) also tfactorizes.

 Example: For two particles, Statistical Independence
s verified ONLY iff:

pz(ylayz) pl(yl)pl(yz)
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Independent Particle Emission (2)

* With more than two particles: Statistical
Independence is similarly verified ONLY iff:

Pu(Visesy) =P () (y,)

* But the emission of n particles may involve a
superposition (sum) of processes leading to some
correlated and uncorrelated particles.

* How do we extract the components corresponding
to correlated particles”??




Correlated and Uncorrelated Particle Production

* In general, inclusive n-particle densities pm(y1, Y2, ..., Ym) are the result
of a superposition of several subprocesses.

« Although the n particles might be produced by a single and specific
subprocess, it is also quite possible that they originate from two or more
distinct subprocesses.

e The n particles might in fact originate from n distinct and uncorrelated
subprocesses.

 An n-tuplets of particles may then feature a broad variety of correlation
sources associated with a plurality of dynamic processes.

* |t is a common goal of multi-particle production measurements to
identity and study these correlated emission as distinct (sub)processes.

« Accomplished by invoking correlation functions known as (factorial)
cumulant functions, expressed either in terms of integral correlators or
as differential functions of one or more particle coordinates.
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Introducing cumulants, Cn,

 Cumulants of order m, noted Cn, are defined as
m-particle densities representing the emission
(production) of m correlated particles originating
from a common production process.

e \Various notations used in the literature. We will use:
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Multi-particle Densities

 Emission of n particles with n > m can be regarded as a
superposition (sum) of several processes that together
concur to produce a total of n particles.

e |etthe term m-cluster refer to a group of m correlated
particles produced a single process.

 There are, In principle, several ways to cluster n
particles.

* An n-particle density can then be expressed as a sum of
several terms yielding n particles, but each with its own
‘cluster” decomposition into products of cumulants.




Decomposition of Multi-particle Densities

Graphical lllustration

n-densities

N

1 -cumulants
2-cumulants

@@ -‘7/ 3-cumulants

©©®©® +©00)©+(00)© + (000

+089® +©89)® +©09)® +@59®

4-cumulants




Decomposition of Multi-particle Densities

 Mathematically...
e Using shorthand notation y;—> | Single correlated

 1-Density: p,(1)=C,(1) 4/// Processes

» 2-Density: p,(1,2)=C,(1)C,(2)+C,(1,2)
- Combinatorial

——

A// Drocesses

« 3-Density: p,(1,2,3)= C(l)Cl( )C,(3)

( 2)C,(3)+C,(1.3)C,(2)+C,(2,3)C, (1)
.(1,2,3)
\ Single process
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Decomposition of Multi-particle Densities

* 4-Density:




Decomposition of Multi-particle Densities

* Higher-densities
pm (1, ..om) = Cpy (1,.;m) + Y C1(1)Crpzi1(2, ..., m)

perm
-+ Z 01(1)01(2)Cm—2(37 vm)
perm
-+ Z 02(1, Q)Cm—2(37 . 7m)
perm
-+ H Cl (Z)
1=1

“perm” indicates permutations of all particle indexes yielding distinct terms.

Formula such as this one can be obtained from cumulant
generating functions...
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Cumulants: Theory vs. Experiments

* m-cumulants represent fractions of the particle
production cross-section associated with processes
vielding m (correlated) particles.

* Theoretically: Calculated “directly” based on specitic
production models.

* Experimentally: Measured quantities are densities,
not cumulants.
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Measurements of Cumulants

 Cumulants are not measured directly.

* Densities are first obtained from measured
particles.

e Cumulants must be “extracted” from measured
densities.

* For instance:
* T-cumulant:  p,(1)=C,(1) (Trivial)
¢ 2-cumulant:  p,(1,2)=C,(1)C,(2)+C,(1,2)

C,(12)=p,(1.2)p, (15, (2)
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Measurements of Cumulants (2)

* Higher cumulants obtained recursively.

* For instance: p,(1,2,3)=c,(1)c,(2)C,(3)
)C1(3)+C,(1,3)C,(2)+C,(2.3)C, (1)

€,(1,2.3)= p,(1.2.,3)
—p,(12),(3)- P, (13)p,(2) - p.(2.3)p, (1)
(1)

Wayne State University
W College of Liberal Arts & Sciences
Department of Physics and Astronomy



Measurements of Cumulants (3)

* And for 4-cumulants, one gets

C,(1,2,3,4)=p,(1,2,3,4)- > p,(1)p,(2.,3,4)
(4)

_zpz 12 pz 3 4 +22,01 ),02(3 4)

(3) (6)

-6p,(1)p,(2)p.(3)p,(4)

(n) indicates permutations of all particle indexes yielding distinct terms.




Measurements of Cumulants (4)

e Schematically...

N-densities
f///
- [UHE

O,
|

]
;=2w
;: = Biza | = |20 | 13| = [21a] | 12| = |22 || 11| 4 2 |1:] [12] |15

(0000)

Ta| = [312a | | 13| = [3132| | 12| = | 3234 | | 14

N
-t
o
w
S

|

w
—
no
o

Mm-cumulants

- 212 234 - 213 221. - 214 223

+ 2 (2|11 + 2 [25][12] 1] + 2 [2::1[12][12

+2 223 11| 14 -|-2 224 | | 11| 13 +2 234 | | 11]] 12

=0 [1:][12]]13]] 1
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Important Remarks (1)

* Densities ...
e are non-negative quantities.

e vary in amplitude according to the number of
particles produced (n), the number of processes
that yield particles, and the relative probability of
these processes.

« Cumulants ...
» are extracted by adding/subtracting densities.
« are NOT positive definite.

* can be arbitrarily small compared to densities.




Important Remarks (2)

e Measurements of Cumulants ...

* required (much) more statistics than densities of
same order.

 statistical errors of cumulant may be challenging
to extract.

* systematic errors can be a nightmare...
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Part lll: Cumulant Scaling Properties

participants

before collision after collision

Cumulants Cn(y1,..., Yn) feature a simple scaling property for
collision systems consisting of a superposition of ms
independent (but otherwise identical) subsystems.
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e To first approximation, heavy ion collisions (HIC) can be
regarded as a superposition of

* independent nucleon-nucleon (n-n) collisions, or

* Independent constituent quark-quark (g-q) collisions,
or

* identical subsystems (whatever they might be)
e with no re-scattering of produced particles.

e This approximation provides a baseline for the study of
HIC: how do actual HIC differ from a simple
superposition of independent n-n scatterings?




Independent Collision Approximation in HIC

 Observed cross-sections (densities) and cumulants
are determined by the number of “binary collisions”’,
which are considered, on average, to all be identical.

Impact parameter: b

«—>

@® participants

y ~100 at RHIC @® spectators

y ~1000 at LHC
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Setup & Reasoning

e Consider a collision of two large nuclei (A - A collisions)
at a specific energy.

 Assume that it can be reduced, to first-order
approximation, to a superposition of ms proton-proton (p
- p) interactions, which each produce clusters consisting
of n correlated particles.

* Assume the production of such clustersin p - p may be
described by cumulants C’”.

e At given impact parameter b, collisions should involve
an average of {ms) N - N interactions.

» Let us calculate the cumulants C*in A - A collisions.

Wayne State University
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Source Multiplicity Scaling - Cumulants

* ms fluctuates collision-by-collision, but for a given value
of ms, one expects that the number of clusters of
correlated particles of size n should be, on average, ms
times larger than in n - n collisions.

 The n-cumulant for A - A collisions, at fixed ms, may thus
be written

C(Y, Y55 Y0000 ,) = M.CP (3,7, , V50005 ),)

e (Given that ms fluctuates event-by-event, averaging over
all A - A collisions consequently yields

C:A(ypyyyza“'ayn) — <mS>C,fp(yl,y2,y3,...,yn)

e for A - A collisions consisting of a superposition of
independent and unmodified p - p collisions.




Scaling of total multiplicity

e Jotal multiplicity of particles produced in A - A collisions
consisting of ms independent and unmodified n - n
collisions features the same scaling with ms.

* Average multiplicity obtained in A - A for a given (fixed)
value of ms should simply be the product of ms by the
average particle multiplicity produced in n — n:

P (y)=mpP (y)
(n)=mn)
* since p,(y)=C(y)

*and  CcM(y)=m,C”(y)




Scaling of n>1 densities

e First consider pairs of particles.

* [nan A - A collision consisting of ms independent n - n interactions,
one can form ms times the pairs from individual n-n collisions.

« But one can also mix particles from different n-n interactions. Since
there are ms(ms—1) ways of doing that, one can write

05" (V,,y,)=m.pl (y,,y,)+m (m —Dp” (y)p” (y,)

* One obtains the same result using a cumulant
decomposition:
p5" (3>3,) = C ()CH () +C (3, y,)
= m;C!" (y)C/" (y,)+m,CL (y,,,)
=m.pl” )P () +m| Py (3.3) = P )P () ]

=m (m, = Dp" (y)pi" () +mp;" (3,,,)
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Scaling of n>1 densities (2)

o At fixed value of ms, integration over y1 and y2 yields:
(n(n— 1)>AA =m, (n(n- 1)>pp +m (m, — 1)<n>ip

e For large ms, the scaling of the number of pairs
produced in A - A is dominated by the term in ms(ms
—1), which involves uncorrelated, combinatorial pairs
from particle produced by different n-n collisions.

Py (3>3,)=C )CH (3,) +C (3,y,)
=m>C(y)CP(y,)+m.C¥”(y,,y,)
=m.p )Pl ) +m | pr )= P GDPT () ]
=|m, (m, —Dp” (y)p (y, )|+ m P3" (¥>,)

Combinatorial Term True Correlation Term

)
[hat's why one needs cumulants
W College of Liberal Arts & Sciences
Department of Physics and Astronomy




Scaling of n>1 densities (3)

* Previous reasoning easily extended to n-densities
with n > 2.

* Higher-order density measured in A - A amount to a
combination of several n-n terms.

e The dominant terms is also “the most combinatoric’

P30 sy) = My (1, = 1) (my =+ 1) (3, pIP (3,) + -+

e and n-cumulants would be the weakest term.
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3-Densities

p54(1,2,3) = miCTP(1)CTP(2)CT(3)
+m2 Y CP(1)C57(2,3)
perms.
+mSC§p(17 27 3)
= (m2—m2+2ms) pP(1)p5F (2) 17 (3) Combinatorial Terms
+(m2—ms) > pAP(1)p5P(2,3)
perms.
+mspy’, True Correlation Term
3 2 3
(n(n—=1)(n—2))aa = (M —mg+2m,) ()

+3 (mi — ms) (n(n —1))pp(n)pp
+mg(n(n —1)(n —2))p,

Again, we see that the combinatorial terms dominate
over the most correlated terms for large values of ms.
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Normalized Densities & Cumulants

» Convenient to divide densities and cumulants by
products of one-particle densities.

e | eads to the definition of normalized inclusive
densities and normalized cumulants:

* Normalized Densities: )= PuO1o o3

O P )

 Normalized Cumulants: R oy )= C (y,....7,)
(Pyeesy, ) =

PP ()

* Ro(y1,y2) correlation functions are quite commonly
studied in HIC at RHIC and LHC.

- Sorry: No standard/universal notations for these quantities.
Wayne State University
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Normalized Factorial Moments

* Also gquite convenient/common to consider
normalized factorial moments.

N(N=1--(N—-n+1 Often also called
Jn = < ( S )> reduced factorial

<N>n moments.

Sorry: No standard/universal notations for these quantities.
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Scaling Behavior of Normalized Cumulants

* [nteresting/convenient to consider the scaling behavior
of normalized cumulants for systems consisting of a
superposition of ms identical sub-processes or sources.

e Based on the scaling of cumulants, one gets

Normalized cumulant RO™( )= C" (Vs sV, Cumulant for m sources
for m sources n Ve dy P ()" ()
mC(l)(yl,...,y ) Cumulant for 1 source

m"p"(y) P (,)
1 C,il)(yl,...,yn)
m"™ p Y (y)p ()

1 Normalized cumulant
=—R" (..,
or Dilution Factor

Wayne State University
w College of Liberal Arts & Sciences
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1

Rr(lm)(yl"°"yn): n—1 ”yn)
m

* The inverse (n-1)th power of m implies the strength of m-cumulants shall (in general)
monotonically decrease with the system size i.e., for systems consisting of “sum” of m
identical subsystems.

e The normalized cumulants are said to be diluted by a power mn-1 relative to the
elementary systems composing the large system.

 Dilution is due to combinatorial effects: with m sources, there are far many ways to
make uncorrelated pairs than correlated ones.

* An important effect (or consideration) in heavy ion collisions because spatial correlation
lengths are relatively small, and the collision systems very short lived.

o \
f ' ‘:: Correlated Pair

\!/’
O
e 7 e \ﬁ’ Uncorrelated Pair
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W College of Liberal Arts & Sciences k\./ S~—
Department of Physics and Astronomy




E I = N D Conservation laws and particle production
Xa m p e - u - y n processes underlie correlations.

Multiplicity fluctuations in Au+Au collisions at /syy = 130 GeV
STAR, Phys.Rev. C68 (2003) 044905
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Remark (3)

" 1
R (y,,,) = ;R?(yl,yz)

* Ro expected to scale approximately
as 1/m.

e Decrease of correlation actually
observed in RHIC and LHC

e Also observed a change in the
shape of the correlation function

- Indicative of a modification of
the correlation dynamics, i.e.,
the processes that produce the
particles.

 Measurements of higher order
cumulant require lots of statistics —
because the actual strength of the
cumulant is much weaker than that of
the density.

p;A(ylvyz) =m (m,—1)p” (y)p/” (y,)+mp;" (y,,y,)

Wayne State University
w College of Liberal Arts & Sciences
Department of Physics and Astronomy
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Cumulants are Statistics Hungry

* Measurements of R,(y.y,) = P = PP Y) _ P (DY)
cumulant I’equire lots of P, (y)p,(y,) P, (y)p,(y,)
statistics because the ,
actual strength of the Rém)(yl,yz):;RS)(yl,yz)

cumulant iIs much weaker
» pZ(yl?yZ) zl

than that of the density.
P, ()P (y,)

¢ 02 and p+1 P1 have approximate
same magnitude

e Their difference is nearly zero

e Their ratio is of order unity

e B> thus has larger relative statistical
errors than po.

Wayne State University
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Probability Densities & Statistical Independence

 |ntegration of particle densities pn(y1, ..., yn) over the momentum volume Q)
provides a natural and convenient normalization to define particle probability

densities:
P, (Yoo 5Y,)
N(N—l)---(N—n+1)>

Pn(yp---,yn)=<

o Expresses the probability of finding n particles jointly at y1, yo, ..., yn.

» Reduction of these probabilities by products of single particle probability
densities yields

P (y,....y,)
P(y)B(,)-P,(y,)

« which must equal unity if the particles are emitted/produced independently.

4, (Vysees¥,) =

Wayne State University
W College of Liberal Arts & Sciences
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Strength of Correlations

 Normalized densities written in terms of normalized
factorial moments and the function g.

(N(N —1)---(N —n+1))

(V)

rn(yl ..... yn): qn(yl ----- yn)

* which tells us that the strength of correlation
depends both on multiplicity fluctuations through
(N(N —1)--+(N —n+1))
(N)'
* and the shape and magnitude of gn(yi, ..., yn).

# 1




Correlation function Normalization

2-Cumulant: C2()’1a)’2): pz(yp}’z)_pl()ﬁ)pl(yl)
| >0 correlation
Normalized 2-Cumulant: R, (y,,y,) = ) =0 no correlation

P (y)P(y,) . .
<0 anti-correlation

C,(y,,y,) >1 correlation

0.(3)p,(v,) 1 no correlation
<1 anti-correlation

Normalized 2-Density:  r(y,,y,) =1+

i . P (V15Y,) Y
But not a per trigger ratio: K,(y,,y,)= >0 always
P J9 2 Oe22) 0,(y) No proper reference level!

Problematic!

Wayne State University
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Part IV: The Multiple Facets of Correlation Functions

Correlation
Functions

Differential
Two-Particle
Correlations
Cz Rz

Weighed
(8p,4p,) ) O

Fluctuation
Observables -

Integral
Correlators

Differential
Correlators

Yield

Balance
Ratios Functions
Forward Differential
Backward Three-Particle
F ial Correlations
actoria Cs, Rs
Flow Moments
Correlators
o i 241
R-P, S-P Correlations

Methods /

C_\ (A¢2 ’ A¢l 3)
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Part V Experimental Considerations

Detector Acceptance i
Detection Efficiency i

Momentum Smearing

Signal Contamination
* Physical Backgrounds

* |nstrumental Backgrounds




Efficiency Losses

* |Introduce the notion of efficiency in the context of
multiplicity measurements.

* Method for the correction of Mean Number of
Particles in a given acceptance (multiplicity).

e |ssues with the variance.




Mean Particle Production

* Theoretically: average integrated yield, (N), over a specific kinematic
domain, ), determined by the particle production cross-section

d°N | ;
N) = d

* Experimentally: number of particles fluctuates collision by collision
owing to the stochastic nature of the particle production process.

* Fluctuations described by a probability function, Pproa(N),
determined by the dynamics and correlations involved in the particle
production process

(N)= [ Bou(NIN N

Wayne State University
W College of Liberal Arts & Sciences
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Particle Losses

Measurements of particle production are usually subject to losses.

For large detectors, one can usually assume that the probability of
detecting one particle is independent of the probability of detecting
others. One can then model the detection of a single-particle with a
Bernoulli distribution

Pgngie(nle) = 1 —¢& probability of not observing, n =0
= ¢ probability of observing, n = 1.

We can then express the probability of simultaneously detecting n
particles in the domain Q) as a binomial distribution with success
probability €:

N N N—n
Pau(nlN, &) = (1 = &)

Wayne State University
College of Liberal Arts & Sciences
Department of Physics and Astronomy




Average & Variance at Fixed N

* For a fixed produced multiplicity N, the measured
average Is then

(m)x = Eln] = f Pau(nIN, £)ndn = &N,

e The measured variance at fixed N

(1 = ()N = f Paw(nlN, &) (n — (n))* dn
= Ne(l — g).

Wayne State University
W College of Liberal Arts & Sciences
Department of Physics and Astronomy



Average w/ varying N

* The probability of observing n particles when N are produced

r
Preas(nle) = y dNPdet(nlNa 8)Ppr0d(N)-

* The mean measured multiplicity <n> Is then

(n) = fdnnpmeas(nlg)a
= f dnn f AN Pgei(n|N, €)P proa(N).

* |Interchanging the order of integrations
<n> dePprod(N)fdnnpdet(nlNag)a

zsdePpmd(N)N,

= &(N). The observed mean is proportional to the
produced mean. The proportionality factor is

the efficiency.

Wayne State University
W College of Liberal Arts & Sciences
Department of Physics and Astronomy



Efficiency Correction

* |t smearing can be neglected, correction for
particle losses Iis simply accomplished according

to:
Ny =
E

Wayne State University
W College of Liberal Arts & Sciences
Department of Physics and Astronomy



Unfriendly Variance

* The second moment of the measured multiplicity Is

<I’l2> — dePProd(N)fdnnzpdet(nlNa 8)9

— dePPmd(N)Ns(l — &+ Ne),
= &(1 — e)(N) + e2(N?),

e The variance of the measured distribution is thus

Var[n] = &2 Var[N] + (1 — e){N).

* The variance CANNOT be corrected by a simple factor!

Wayne State University
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Friendly Factorial Moments

 Moments: <">=6<N>

e Factorial Moments: <n(n—1)>=<"2><

* Re o (nfn-1))_e(w

T

e Same properties for higher factorial moments
¢ Measurements of factorial moments ratios intrinsically more robust!!




What if the efficiency changes w/ time?

Assume that an experiment can be divided into two time
periods featuring particle detection efficiencies €1 and €.

Let us also assume that the probability of observing the
events during the two time periods is unmodified by this
change,

et us denote the number of events detected in the two
periods as Nqev and Noev,

The average efficiency is calculated as a weighted
average of the efficiencies of the two periods

vaé‘l + NSVSZ
gan — ey ey
N1 +N2




What if the efficiency changes? (ll)

* [The multiplicity measured across the two periods Is:
(n) = 8avg<N>-

* Extraction of the true mean multiplicity <N) can thus be
obtained for either time periods

Ny < 1 _ (b
E1 E

* or globally from the average of the two periods

(N = (n)

Cavg




What if the efficiency changes? (lil)

ev ev
Nl <n>1 + N2 <n>2 This conclusion can be generalized to

Nf" + NSV multiple time periods when the detection
o1 o efficiency might have taken different values.
N1 31<N> + N2 32<N> For measurements of <N>, it does not matter

<n>avg —

N¢ 1+ N¢ that the experimental response changes over
1 2 time as long as one can track these changes
vagl 4+ Nsvgz and estmjate. the detection efficiency during
— (N) each period independently or globally for the
N7 + NS’ entire data-taking run.
— 3avg<N>-

Wayne State University
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What if the efficiency changes within the acceptance?

e Split the measurement acceptance into two parts of size (01 and Q2 with
respective efficiencies €1 and e».

(n;) = &i(N;),
AN 2
(N;) = jg; d_p3dp3 Q= Q;.
=1

* The average number of produced particles can be properly determined by
summing corrected yields in part 1 and 2 individually

>y (n;)

Ej

2
(NYy =) (N;) =
i=1

=1

Wayne State University
W College of Liberal Arts & Sciences
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What if the efficiency changes within the acceptance?

 |f the fractions fi = <Nip/<N) of the total yield produced in the two parts of the
acceptance are known a priori, one can write an average efficiency (as in the
case of the time-varying efficiency discussed above):

_ her+ he

Cavg = i+ h = f1i&1 + & fl -|-f2 = 1

« Unfortunately, the fractions f; are in general not known a priori, and it is thus
not possible to formally define a model independent average efticiency

across the full acceptance Q).

 However, In cases where the production cross-section is nearly constant
within the experimental acceptance, one can write

Ji= = on ~ oY
&N g3 30
Jo G dp’ adr h+rh=1

Wayne State University
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Two-Particle Case

* Single and Pair Yields
1 (x) = [fie1(x) + fL&2(0)] p1(x),

o (x1,x2) = [ fie1(x)er(x2)
+frea(x1)e2(x2)] pa(x1, Xx2).
« Normalized Pair Yields

pa(x1, x2)
p1(x1)p1(x2)°

755 (X1, x2) = E(xy, x2)P2(x1, x2), Fa(x1, X2)

Robustness Function |
fier(xer(x) + fre2(x1)e2(x2) Integrating over Xy and X2

E(x1, x2) = [fie1(x1) + frax(eD][fiei(x) + frea(xp)] does not make this equal
to unity.

Wayne State University
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Relation Between Integral and Differential Correlations

Histogram — number of singles per

® Definition: Single & Pair Densities event normalized per bin width

. - Histogram — number of pairs
Slngle DenSIty: pl (¢l 7771‘) — <N(¢z ’T]i )> / A¢AT] \?Vie(;tﬁgent normalized pefbin

Pair Density: p,(®,.1,.0,.1,) = (N(¢,,1,)N(9,.n,))/ A¢*An’

° Factorize average yield and kinematic dependence

.
<N> — p.(9..1n,)do.dn,

p1(¢1977 ) <N P(¢lan ) ac;fpt
1= [ P@.n)dgdn,
\_ accept -

0> (8,.,1,,0,,1,) =(N(N = 1)) P,(¢,,17,,0,,1,)

Avg Number of Pairs

Pair Probability Distribution

(NIN=D)= [ p,(9,.1,.¢,.11,)d,dn,d,dn,

accept

1 - ] P2 (¢1 anl a¢1 anl )d¢1d771d¢2d772

accept

EMMI Workshop, Wuhan, China Oct 2017 79




. Differential Correlation Functions

® [wo-Particle Cumulant

C(9,,1,,0,,1,) = p,(®,,1,,0,,1M,)— p,(¢,,N) P, (},,1,)
® Normalized Cumulant

_,02(¢1,771,¢2,772)—P1(¢1,771),01(¢2,772): ,02(¢1,771,¢2,772) _

R2 1201 >¥2°027
(¢ ! ¢ r’) ,01(¢1,771),01(¢2,772) ,01(¢1,T]1),O1(¢2,T]2)
® Factorization of probability and integral
-1
R, (¢,.1,.0,,1,) = P@1s10,:02:11,) —1=<N(N2 )> b (@.1,.9,.1,) _
P (01101 (92.10,) <N> F(¢,,n)F(9,,1,)

® Readily extended to 3 or more particles

EMMI Workshop, Wuhan, China Oct 2017 80




. Acceptance Averaging

® Two-Particle Correlation Fcts

® Most general case: 6 coordinates

® Most common analyses: vs. A®@ or vs. An or vs. A, An or vs nl, n2

1 n,~An/2

aam -

C(An)= )C(An,ﬁ)dﬁ

An=mn,-n,

Note: This is an acceptance average NOT a
correction

EMMI Workshop, Wuhan, China Oct 2017



. Efficiency & Robustness (1)

® Model the Probability of observing n particles given N (in a
given “bin”’) were produced with binomial distribution.

N 1-— N-n
P(nINze)= S0
n!(N -n)!
® Model the Probability of observing particle fluctuations...
®Singles  p nivaye -3 vy oA

=1 n(M)UN(n,)—n(n,))!

Measured Probability distribution True Probability distribution

® Pairs

N(Th)(l € )N(m) n(m,;) e N(ﬂz)(l e )N(ﬂz)—n(nz)

P 1)s 2|N1,N 2;192:°°PTN1 2
W m)n)INMLNGLE &)= B, BINGNM) e N~

True Probability distribution

EMMI Workshop, Wuhan, China Oct 2017
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. Efficiency & Robustness (1)

®5Singles Average

*True (N)= | P,(N)NaN

® Measured

(n|N:&)dn=¢e| P,(N)N dN

et

®Pair Averages
e True (N\N,) = [P,(N,.N,)N\N,dN dN,

®Measured (nn,) = f P (n,,n,)nn,dndn,

— Correct for any Pt PDF
Only requires binomial sampling.

EMMI Workshop, Wuhan, China Oct 2017




. Efficiency & Robustness (lI)

® Correlation function measurement

® Goal:
G, (m.my) = py(0,.m,) — Py (M), (11,) Produced
® “Raw’ Measurement
1) = 5 (a0 1) = (o) 1) Measured
= o EmEm){(N@INL) - (N, ) (V)
® Ratio Fct Ry py= <i’gf7")>)zl;’(7n)i>_1

_ &@)em)(Nm)N®,))
&,(1)& (1M, (NM))(N(1,))

_ (N(m)N@®,))
(Nm))(Nm,))

— RéTrue) (nl ,772 )

Efficiencies cancel >>> Robust Observable




Efficiency vs. Momentum Coordinates

® Example for ALICE detector
® Determined from HIJING events propagated through
detector simulation with GEANT and detector response

simulator
&MsPL 1 MsPi o) €MyL,p EM,D, )

eff x acc

=
D AVAT GV =
N S

— %X‘}&,

Pair Efficiency

ALICE Meeting; C Pruneau

Single Particle Efficiency



. Folding of Singles vs Event Mixing

® Ratio R requires product of single yields

® Can be obtained from actual singles

R, (n,,n,)= <n1(771 n, (1, )> _1 NO .event
T () (m () mixing
required

® Can be obtained from mixed events

R,(m,,n,) = <n1n2(771,772)> _ <n1n2(n1’n2)>same -1 Greater
m 11272 <n1(n1)><n2(r]2)> <n1n2(7719772)>mixed ﬂeX|b|I|ty

w/ cuts

EMMI Workshop, Wuhan, China Oct 2017




. Two Methods

® Method |: Ratio of averages (Common Approach)

® Measure pair yields (same and mixed) directly vs An.

® Calculate R(An) by taking the ratio of same to mixed. ‘L
1 _ _ .” ". 1M,
p,(An,n)dn N A
Q(An) acz[pt ? 0"‘ ”’0 ﬁ=(771+772)/2
R, (An)= 1 -1 v"@ »’é&:) 2n, - An
® p,(An,m)dn . &
o Ammfeptpl p,(An,7)dN \n
® Method 2: Average of Ratio An=nl—1:

® Measure R(N1,N2) by taking the ratio of same to mixed.
® Average out 1] dependence, i.e. project onto An to get R(An)

p,(An. 1) 1) i

1 o 1
R, (AN)=—1—— | R,(AN.N)dN=—1 (p ® p(ANT)
accept 1 1 ’

Q(AN) - Q(An)

accept

EMMI Workshop, Wuhan, China Oct 2017



. Method | vs. Method 2: Correlation Model

® Correlation Model:
® | ongitudinal Model w/ Two-particle emission correlated vs.

5  Assumed factorization of the dependence
= ( A1 \ ( N \ on the relative and average pseudorapidity
C(Anﬁ’l) X CXP| - 2 CXP| — 2 . . . .
20 2(7,7 * Factorization may not be realized
in practice

PP,

An=mn-n,

EMMI Workshop, Wuhan, China Oct 2017



. Method | vs. Method 2: Efficiency Model

® Use a simple but non trivial correlation model
® Use a simple model of the detection efficiency and edge

effects.
b o 1.2
W
( n-n ) —
8(n)=8q(n)eXpL—( 5) ) for n<n. 1 £ =1
=&,(n) for n.<n<mn,
(=) "l
7] - 77> o' :-'-:
=sq(n)e><pk— ; ) for n>n, %
¢ 06 w
E
, 04— %
e,m=1+a(n-n,)+p(n-n,)
02—
0 "{é | 1 | L l
1.5 -1 0.5 0 0.5 1 5
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Efficiency, Pair Yield

® Efficiency

= 0.0054
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Perfect Reconstruction for any factorized
efficient model w/ sufficient statistics
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R2(An)  Method 2

0.15

0.05

R2(AN)

Method |

—~_ 03

0.15

0.1

0.05

0.98 —

Method 2 Perfect

Am

0.98 —

Method | rather robust in view
of large inefficiencies put in

Small deviations

92

-1

0

1




N D

| g(An,m)R5“(An,7)dn
| g(An,7)dn

R2(A77)Method1 _

g(Anv ﬁ) — 61><_€1 X pP1XP1 (AU; ﬁ)

o |[f efficiency, yield, or correlation varies with avg-rapidity,
then g or R2 cannot be factorized out of the integrals.

® The numerator and denominator are in general NOT equal.

® Method | is only approximately robust - for slow varying
functions

® Note: not a problem in azimuthal correlation because of
periodic boundary conditions.

EMMI Workshop, Wuhan, China Oct 2017




. Dependence on z-vertex

® ALICE, STAR Acceptances are functions of the vertex
position.
® Use a simple model as before...

0.8 |-
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. Method | and 2

Efficiency dependence on “z-vertex”, with gaussian edges, but quadratic dependence

on eta in the fiducial volume.

~ 104 ~ 1.04
I I
g, Method | g Method 2
o o
~1.02 102
3 o
S S
0 0
2 2
N
o Q'_'N
I | | | | l
0903 1 0 1 2 09, 1 0 1 2
AN A

Both methods fail if efficiency is dependent on “Z”.
Approximate recovery with fine z-bins using Method |

EMMI Workshop, Wuhan, China Oct 2017



. Part IV: Summary

® Method 2 Robust

® unless efficiency has dependence on z-vertex

® but recovery possible for analysis in narrow z-bins

® Method | Only Approximately Robust

® Robustness lost if singles, correlation, or efficiency are function of avg-eta
® Approximate Robustness lost if dependence on z-vertex
® “Partial” recovery possible for analysis in narrow z-bins

® Bigger Point:

® With differential correlations, it is possible to identify detector features
more readily than with integral correlations.

® Integral correlations average over detector issues, they DO NOT
eliminate them.
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