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Goal of this (technical) talk: 
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And much more …

Provide you with a basis 
to understand … 
• the notion of 

correlation function 
• the link between 

integral and 
differential correlation 
functions. 

• how to measure them 
i.e., how to correct for 
instrumental effects.
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Outline
• Part I: What is a correlation function? 

• Correlation functions as covariance. 
• Part II: Correlation Function Formal Definition 

• Integral and Differential Correlation Functions 
• The Multiple facets of Correlation Functions 
• Moments, Cumulants, Factorial Moments, Factorial Cumulants 

• Part III: Why Measure Differential Correlation Functions? 
• Emphasis on Cumulants 

• Part IV: Multi-Facets of Correlation Functions 
• Part V: Experimental Considerations 

• Acceptance 
• Efficiency 
• Other instrumental effects
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Part 1: What’s a correlation function?

• Definition of Correlation Functions as an extension of 
the notion of covariance. 
• Introduction based of two-particle cross-sections. 
• Could be formulated in more general terms as generic 

functions describing fields, yields, intensity, in multi-
dimensional spaces. 

• We will formally introduce correlation functions based on 
cumulants of cross-sections during the next segment.
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Setup

• Consider a measurement of the number of particles 
produced at two distinct momenta      and  

• Let Ni represent the number of particles produced 
in volumes     ,  i=1, 2, in ranges “centered” on       
and 
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Average Yields

• Given the stochastic nature of particle production, 
the yields Ni are expected to fluctuate event-by-
event — even for identical collision parameters.  

• For a given type of particle, collision, etc, one can 
consider the averages 

• These averages are determined by the particle 
production cross-section of the specific process 
considered:
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Ni

• Bracket notation <O> used to denote ensemble/population average.

Ni = d 3Ni

dpTdφdη
dpT dφ dηΩi

∫



Wayne State University 
College of Liberal Arts & Sciences 
Department of Physics and Astronomy

• Fluctuations characterized by the 
variance of Ni: 

• More informative to study the 
covariance of these two yields  

• Cov[N1,N2] depends on the size of 
the bins Ω1 and Ω2 used to measure 
the yields N1 and N2, respectively,  

• Also a function of the coordinates p⃗1 
and p⃗2 at which the particle 
emission is considered.

RMS Yield and Covariance
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Var Ni[ ]= Ni
2 − Ni

2

Cov N1,N2[ ]= N1N2 − N1 N2

65 Moments of Multivariate PDFs
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tFig. 2.11 Illustration of the notion of covariance of two random continuous variables: panels (a),
(b), and (c) present examples of uncorrelated variables whereas panels (d) and (e)
show examples of fluctuations with positive and negative covariance, respectively.
Panel (f) presents a special case where the covariance is maximal (Pearson
coefficient is unity). See text for details.

Cov x, y[ ] = xy − x y
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Pair Yield Covariance

8

1
η

-2 0 2

2
η

-2

0

2

2
ηd 1

η
N

/d
2 d

0

20

40

)
1

ηN(
0 10 20 30 40

)
2

η
N

(

0

10

20

30

40

P
a

ir
 C

o
u

n
t

0

200

400

!p1

!p2

Ω1

Ω2

 η = −ln (tan( θ/2))
Pseudorapidity

pz

p⊥
θ

Correlation 
Function

Covariance 
at specific 
values of 

“eta”

“eta”



Wayne State University 
College of Liberal Arts & Sciences 
Department of Physics and Astronomy

• Natural to introduce the notion of correlation function at p⃗1 
and p⃗2 based on  

• Defined in the limit in which the bin sizes Ω1 and Ω2 vanish.

Correlation function
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C( !p1,
!p2 ) =

1
Ω1Ω2

N( !p1)N(
!p2 ) − N( !p1) N( !p2 )⎡⎣ ⎤⎦

• Note the sight change in notation.
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Single Particle Density Estimator

• The average yield <N(p⃗i)> normalized by the bin 
size Ωi constitutes an estimator of the (single) 
particle density at p⃗i. 

• In the limit Ωi —> 0    and infinite statistics, one 
gets the single particle cross-section:

10

ρ̂1(
!pi ) =

N( !pi )
Ωi

lim
Ωi→0

ρ̂1(
!pi ) = ρ1(

!pi ) =
d 3Ni

dpTdφdη
( !pi )
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Two-Particle Density

• The average yield <N(p⃗1)N(p⃗2)> normalized by the 
product of bin sizes, Ω1xΩ2, constitutes an 
estimator of the joint- or two-particle density at p⃗1 
and p⃗2. 

• In the limit Ωi —> 0    and infinite statistics
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ρ̂2 (
!p1,
!p2 ) ≡

N( !p1)N(
!p2 )

Ω1Ω2

lim
Ωi→0

ρ̂2 (
!p1,
!p2 ) = ρ2 (

!p1,
!p2 ) =

d 6Npairs

dpT ,1dφ1dη1dpT ,2dφ2dη2
( !p1,
!p2 )

joint pair density 
(estimator)



Wayne State University 
College of Liberal Arts & Sciences 
Department of Physics and Astronomy

Correlation Function Definition

• In the limit Ω1,Ω2 —> 0, one has a correlation function 

• which is the “most general” form a two-particle 
correlation function (i.e., 6 momentum components) 

• choice of coordinate representation is somewhat arbitrary 
• cartesians: p1x, p1y, p1z, p2x, p2y, p2z  

• rapidity: y1, φ1, p1T, y2, φ2, p2T  
• pseudorapidity: η1, φ1, p1T, η2, φ2, p2T  

• etc.
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C( !p1,
!p2 ) = ρ2 (

!p1,
!p2 )− ρ1(

!p1)ρ1(
!p2 )
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Parameter Marginalization

• A measurement of correlation function can be reduced to a smaller 
number of coordinates of interest by integrating, or averaging,   
called marginalization by statisticians, over variables that are not 
of interest.  

• Common to study correlation functions of produced particles as a 
function of  
• the relative angle ∆φ = φ1 − φ2, or  
• the difference in pseudorapidity ∆η = η1 − η2,  
• or both,  
• for specific types of particles (e.g., all charge hadrons, positive 

particles only, or only pions, etc.), and within a specific range of 
transverse momentum, and for events (i.e., collisions) satisfying 
specific conditions. 

13
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Example:

14

STAR Collaboration / Nuclear Physics A 757 (2005) 102–183 147

Fig. 28. Binary-scaled ratio RAB(pT ) (Eq. (5)) of charged hadron and π0 inclusive yields from 200 GeV
Au+Au and d + Au relative to that from p + p collisions, from BRAHMS [137] (upper left), PHENIX [138]
(upper right), PHOBOS [139] (lower left) and STAR [140] (lower right). The PHOBOS data points in the lower
left frame are for d +Au, while the solid curve represents PHOBOS central (0–6%) Au +Au data. The shaded
horizontal bands around unity represent the systematic uncertainties in the binary scaling corrections.

Fig. 29. Dihadron azimuthal correlations at high pT . Left panel shows correlations for p + p, central d + Au
and central Au+Au collisions (background subtracted) from STAR [71,140]. Right panel shows the back-
ground-subtracted high pT dihadron correlation for different orientations of the trigger hadron relative to the
Au+Au reaction plane [143].

STAR, White Paper, Nuclear Physics A 757 (2005) 102–183 
Jet Quenching Discovery

“background” 
subtracted (AuAu)
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Important Remarks

• Particle yields are by definition non-negative (i.e., positive or null),  
• But the function C(p⃗1,p⃗2) may be positive, null, or even negative.  
• As for covariances, a positive value indicates that a rise of the particle 

yield at p⃗1 is, on average, accompanied by a rise of the yield at p⃗2. The 
yields are said to be correlated. 

• A negative value corresponds to an anti-correlation, so that the rise 
of the yield at one momentum is accompanied by a decline at the 
other momentum.  

• A null value, of course, implies that the two yields, at the given 
momenta p⃗1 and p⃗2, are seemingly independent. 
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C( !p1,
!p2 ) = 0  ⇒   ρ2 ( !p1,

!p2 ) = ρ1(
!p1)ρ1(

!p2 )
Is this condition sufficient to conclude the production at the 
two momenta is statistically independent?
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Part 1: Summary

• Used the yields N1 and N2 of particle production at 
two momenta      and      in solid angles Ω1 and Ω2. 

• Considered the covariance of N1 and N2. 
• Showed that in the limit Ω1 —> 0, the covariance 

defines a function of       and      which expresses the 
covariance of the pair density at these momenta. 

• This function is called correlation function of the pair 
yield vs.       and      

• The correlation function can be marginalized against 
several of its variables. 

16
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Part II: Formal Definition of Corr Fct

• Goal:  
• Obtain tools to determine whether detected particles 

are correlated. 
• Define  

• probability density of particle emission. 
• number densities. 
• factorial moments. 
• cumulants. 

• Derive formula usable towards the extraction of 
cumulants from measured densities. 

17
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Where are correlations from?

• Conservation Laws 
• Energy, Momentum 
• Quantum Numbers 

• Charge, Strangeness, Baryon Number 
• Geometry (System Shape) 

• Opacity 
• Thermal Motion (Decays) 
• Pressure Gradients (e.g. radial flow, anisotropic flow)

18
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What’s the cause of correlations?
Energy Momentum Conservation  
e.g., Resonance Decays, Jets 

19

2-body 
Decay at 
rest in 

the lab!

2-body 
Decay at 

small 
velocity 2-body 

Decay at 
high 

velocity

3-body 
Decay at 

rest
Jet
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Resonance Decay: An Example
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Flow

21

406 Basic Measurements

tFig. 8.9 Longitudinal (left) and transverse (right) profiles of two heavy-ion nuclei shortly before
a collision at relativistic (� ⇠ c) energy. The diameter d of the nuclei is Lorentz
contracted by a factor � in the beam direction. The light gray area between the nuclei
(longitudinal profile) is where most of the particle production takes place after the
nuclei have passed through each other.

tFig. 8.10 Exclusive measurements involve all particles produced whereas semi-exclusive and
inclusive measurements specify only a small fraction of the final state of collisions (or
decays).

8.2 Particle Decays and Cross-Sections

8.2.1 Particle Decays

The decay of an elementary particle of mass M and four-momentum p = (E, ~p) is a stochas-
tic phenomena determined by an exponential distribution (§ 3.5)

P(t) =
1
�⌧

exp
 

�

t
�⌧

!

, (8.54)

538 The Multiple Facets of Correlation Functions

tFig. 11.4 Schematic illustration of the transverse profile of the participant matter produced in
high-energy heavy-ion collisions. The participant region features pressure gradients
which propel particle outward anisotropically in the transverse plane.

patterns. Both e↵ects are commonly known as anisotropic flow. While general techniques
to measure flow are discussed in § 11.4, we demonstrate, in the remainder of this section,
that collective particle motion may readily be identified with simple two-particle cumulants
C2(��) and/or normalized cumulants R2(��).

On general grounds, let us assume that nucleus-nucleus collisions produce, on an event-
by-event basis, systems that are inhomogeneous and anisotropic, as illustrated in Figure
11.4 (a). One can model the system (energy density) spatial anisotropy in terms of a simple
Fourier decomposition relative to the origin O:

⇢(�, r) = f (r)
0

B

B

B

B

B

@

1 +
1

X

n=1

✏n cos(n�)
1

C

C

C

C

C

A

. (11.13)

The dynamics of the collisions leads to system expansion and particle emission that reflect
the magnitude of the spatial anisotropy coe�cients ✏n. One can then model the collective
motion of particles produced by the system as a Fourier expansion in momentum space,
relative to the collision impact parameter vector, ~b:

⇢(�i| ) = ⇢̄

8

>

>

<

>

>

:

1 + 2
1

X

n=1

vn cos(n(�i �  ))

9

>

>

=

>

>

;

, (11.14)

where ⇢̄ is the average particle density, � is the angle of emission of the particles, and  is
the orientation angle of the reaction plane in the laboratory frame of reference. Since the
impact parameter is not readily observed, one must average over all possible orientations
of the reaction plane to get the observed single particle density:

⇢1(�i) =
Z 2⇡

0
d ⇢1(�i| )P( ) = ⇢̄ (11.15)

The orientation of the reaction plane,  , is assumed to vary collision by collision uniformly
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Introducing number densities

• Inclusive number densities ρn are proportional to 
the n-probabilities (probability to find particle at 
some momentum coordinates).  

• They yield a sequence of inclusive differential 
functions:

22

1
σ inel

dσ = ρ1(y)dy,

1
σ inel

d 2σ = ρ2 (y1, y2 )dy1dy2,

1
σ inel

d 3σ = ρ3(y1, y2, y3)dy1dy2dy3,

!

n-particle densities or 
inclusive cross-sections.
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Factorial Moments

• Integration over the momentum volume Ω 
yields  

• where                              coefficients are 
called factorial moments of order n.

23

ρ1(y)dyΩ∫ = d 3Ni

pTdpTdφdη
pT dpT dφ dηΩ∫ = N

ρ2 (y1, y2 )dy1 dy2Ω∫ = N(N −1)

ρ3(y1, y2, y3)dy1 dy2 dy3Ω∫ = N(N −1)(N − 2)

!

! ρn (y1,…, yn )dy1!dyn
Ω
∫

Ω
∫ = N(N −1)!(N − n +1)

N(N −1)!(N − n +1)

Note: 
Factorial Moments 
are integral of 
differential 
quantities.
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• Normalization of probability densities: 

• But:  

• One can then write: 

Number vs. Probability Densities

24

P(y1, y2,…, yn )dy1 dy2…dyn∫ = 1

! ρn (y1,…, yn )dy1!dyn
Ω
∫

Ω
∫ = N(N −1)!(N − n +1)

ρn (y1,…, yn ) = N(N −1)!(N − n +1) Pn (y1,…, yn )

Factorial Moments

Differential Density Probability Density
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Independent Particle Emission

• Two variables are said to be statistically independent 
iff their joint-probability density factorizes.  

• Implies: Two particles are said to be statistically 
independent iff their joint-number density (which is 
proportional to a probability density) also factorizes. 

• Example: For two particles, Statistical Independence 
is verified ONLY iff:

25

ρ2 (y1, y2 ) = ρ1(y1)ρ1(y2 )

Absence of Correlations
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Independent Particle Emission (2)

• With more than two particles: Statistical 
Independence is similarly verified ONLY iff: 

• But the emission of n particles may involve a 
superposition (sum) of processes leading to some 
correlated and uncorrelated particles. 

• How do we extract the components corresponding 
to correlated particles??

26

ρn (y1,…, y2 ) = ρ1(y1)!ρ1(yn )
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Correlated and Uncorrelated Particle Production

• In general, inclusive n-particle densities ρm(y1, y2, ..., ym) are the result 
of a superposition of several subprocesses.  

• Although the n particles might be produced by a single and specific 
subprocess, it is also quite possible that they originate from two or more 
distinct subprocesses.  

• The n particles might in fact originate from n distinct and uncorrelated 
subprocesses.  

• An n-tuplets of particles may then feature a broad variety of correlation 
sources associated with a plurality of dynamic processes.  

• It is a common goal of multi-particle production measurements to 
identify and study these correlated emission as distinct (sub)processes.  

• Accomplished by invoking correlation functions known as (factorial) 
cumulant functions, expressed either in terms of integral correlators or 
as differential functions of one or more particle coordinates.

27
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Introducing cumulants, Cm

• Cumulants of order m, noted Cm, are defined as 
m-particle densities representing the emission 
(production) of m correlated particles originating 
from a common production process.  

• Various notations used in the literature. We will use: 

28

Cm ≡ ρ̂m
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Multi-particle Densities

• Emission of n particles with n > m can be regarded as a 
superposition (sum) of several processes that together 
concur to produce a total of n particles.  

• Let the term m-cluster refer to a group of m correlated 
particles produced a single process. 

• There are, in principle, several ways to cluster n 
particles. 

• An n-particle density can then be expressed as a sum of 
several terms yielding n particles, but each with its own 
“cluster” decomposition into products of cumulants. 

29
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Decomposition of Multi-particle Densities

30

n-
de

ns
iti

es

1-cumulants
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3-cumulants

4-cumulants

Graphical Illustration
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Decomposition of Multi-particle Densities

• Mathematically… 
• Using shorthand notation yi —> i 
• 1-Density: 

• 2-Density: 

• 3-Density:

31

ρ1 1( ) = C1 1( )

ρ2 1,2( ) = C1 1( )C1 2( )+C2 1,2( )

ρ3 1,2,3( ) = C1 1( )C1 2( )C1 3( )
+C2 1,2( )C1 3( )+C2 1,3( )C1 2( )+C2 2,3( )C1 1( )
+C3 1,2,3( )

Single correlated 
processes

Single process

Combinatorial 
processes
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Decomposition of Multi-particle Densities

• 4-Density:

32

ρ4 1,2,3,4( ) = C1 1( )C1 2( )C1 3( )C1 4( )
+C2 1,2( )C1 3( )C1 4( )+C2 1,3( )C1 2( )C1 4( )+C2 1,4( )C1 2( )C1 3( )
+C2 2,3( )C1 1( )C1 4( )+C2 2,4( )C1 1( )C1 3( )+C2 3,4( )C1 2( )C1 3( )
+C2 1,2( )C2 3,4( )+C2 1,3( )C2 2,4( )+C2 1,4( )C2 2,3( )
+C3 1,2,3( )C1 4( )+C3 1,2,4( )C1 3( )+C3 1,3,4( )C1 2( )+C3 2,3,4( )C1 1( )
+C4 1,2,3,4( )
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Decomposition of Multi-particle Densities

• Higher-densities

33

570 ⌅ Data Analysis Techniques for Physical Scientists

n > m, can thus be regarded as a superposition (sum) of several processes that
together concur to produce a total of n particles. There are obviously several
ways to cluster n particles. An n-particle density can then be expressed as
a sum of several terms yielding n particles, but each with its own “cluster”
decomposition into products of m-cumulants, as illustrated in Figure 10.2.

Particle densities of the four lowest orders can be expressed in terms of
correlation functions cumulants as follows:

⇢1(1) = C1(1) (10.14)

⇢2(1, 2) = C1(1)C1(2) + C2(1, 2) (10.15)

⇢3(1, 2, 3) = C1(1)C1(2)C1(3) + C1(1)C2(2, 3) (10.16)

+C1(2)C2(1, 3) + C1(3)C2(1, 2)

+C3(1, 2, 3)

⇢4(1, 2, 3, 4) = C1(1)C1(2)C1(3)C1(4) (10.17)

+C2(1, 2)C1(3)C1(4) + C2(1, 3)C1(2)C1(4)

+C2(1, 4)C1(2)C1(3) + C2(2, 3)C1(1)C1(4)

+C2(2, 4)C1(1)C1(3) + C2(3, 4)C1(1)C1(2)

+C2(1, 2)C2(3, 4) + C2(1, 3)C2(2, 4)

+C2(1, 4)C2(2, 3) + C3(1, 2, 3)C1(4)

+C3(1, 2, 4)C1(3) + C3(1, 3, 4)C1(2)

+C3(2, 3, 4)C1(1) + C4(1, 2, 3, 4)

where we used a shorthand notation indicating the index of the particles rather
than kinematical variables yi. Higher-order densities may be obtained based
on the following expression:

⇢m (1, ...,m) = Cm (1, ...,m) +
X

perm.

C1(1)Cm�1(2, ...,m) (10.18)

+
X

perm

C1(1)C1(2)Cm�2(3, ...,m)

+
X

perm

C2(1, 2)Cm�2(3, ...,m)

+ · · ·

+
m
Y

i=1

C1(i)

where “perm” indicates permutations of all particle indexes yielding distinct
terms.

Theoretically, cumulants naturally arise as a byproduct of calculations of
the cross-section of specific processes yielding specific particle multiplicities.
They are, however, not readily available experimentally as primary measure-
ments but must be derived from measurements of n-particle densities. Indeed,

“perm” indicates permutations of all particle indexes yielding distinct terms. 

Formula such as this one can be obtained from cumulant 
generating functions…
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Cumulants: Theory vs. Experiments

• m-cumulants represent fractions of the particle 
production cross-section associated with processes 
yielding m (correlated) particles.  

• Theoretically: Calculated “directly” based on specific 
production models. 

• Experimentally: Measured quantities are densities, 
not cumulants.

34

…
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Measurements of Cumulants

• Cumulants are not measured directly. 
• Densities are first obtained from measured 

particles. 
• Cumulants must be “extracted” from measured 

densities.  
• For instance:   

• 1-cumulant:  
• 2-cumulant:

35

ρ2 1,2( ) = C1 1( )C1 2( )+C2 1,2( )
ρ1 1( ) = C1 1( )

by inversion: C2 1,2( ) = ρ2 1,2( )− ρ1 1( )ρ1 2( )

(Trivial)
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Measurements of Cumulants (2)

• Higher cumulants obtained recursively.  
• For instance:

36

ρ3 1,2,3( ) = C1 1( )C1 2( )C1 3( )
+C2 1,2( )C1 3( )+C2 1,3( )C1 2( )+C2 2,3( )C1 1( )
+C3 1,2,3( )

ρ3 1,2,3( ) = ρ1 1( )ρ1 2( )ρ1 3( )
+ ρ2 1,2( )− ρ1 1( )ρ1 2( )⎡⎣ ⎤⎦ρ1 3( )
+ ρ2 1,3( )− ρ1 1( )ρ1 3( )⎡⎣ ⎤⎦ρ1 2( )
+ ρ2 2,3( )− ρ1 2( )ρ1 3( )⎡⎣ ⎤⎦ρ1 1( )
+C3 1,2,3( )

C3 1,2,3( ) = ρ3 1,2,3( )
−ρ2 1,2( )ρ1 3( )− ρ2 1,3( )ρ1 2( )− ρ2 2,3( )ρ1 1( )
+2ρ1 1( )ρ1 2( )ρ1 3( )

by inversion:
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Measurements of Cumulants (3)

• And for 4-cumulants, one gets

37

C4 1,2,3,4( ) = ρ4 1,2,3,4( )− ρ1 1( )ρ3 2,3,4( )
(4 )
∑

− ρ2 1,2( )ρ2 3,4( )
(3)
∑ + 2 ρ1 1( )ρ1 2( )ρ2 3,4( )

(6)
∑

−6ρ1 1( )ρ1 2( )ρ1 3( )ρ1 4( )

(n) indicates permutations of all particle indexes yielding distinct terms. 
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Measurements of Cumulants (4)
• Schematically…

38
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Important Remarks (1)

• Densities … 
• are non-negative quantities. 
• vary in amplitude according to the number of 

particles produced (n), the number of processes 
that yield particles, and the relative probability of 
these processes. 

• Cumulants … 
• are extracted by adding/subtracting densities. 
• are NOT positive definite. 
• can be arbitrarily small compared to densities.

39
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Important Remarks (2)

• Measurements of Cumulants … 
• required (much) more statistics than densities of 

same order.  
• statistical errors of cumulant may be challenging 

to extract.  
• systematic errors can be a nightmare…

40
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Part III: Cumulant Scaling Properties

41

Cumulants Cn(y1,…, yn) feature a simple scaling property for 
collision systems consisting of a superposition of ms 
independent (but otherwise identical) subsystems.
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Context

• To first approximation, heavy ion collisions (HIC) can be 
regarded as a superposition of  
• independent nucleon-nucleon (n-n) collisions, or 
• independent constituent quark-quark (q-q) collisions, 

or 
• identical subsystems (whatever they might be) 
• with no re-scattering of produced particles.  

• This approximation provides a baseline for the study of 
HIC: how do actual HIC differ from a simple 
superposition of independent n-n scatterings?

42
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Independent Collision Approximation in HIC

• Observed cross-sections (densities) and cumulants 
are determined by the number of “binary collisions”, 
which are considered, on average, to all be identical. 

43

γ ∼100   at RHIC
γ ∼1000   at LHC

participants

spectators

Impact parameter: b

A
A
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Setup & Reasoning

• Consider a collision of two large nuclei (A - A collisions) 
at a specific energy. 

• Assume that it can be reduced, to first-order 
approximation, to a superposition of ms proton-proton (p 
- p) interactions, which each produce clusters consisting 
of n correlated particles.  

• Assume the production of such clusters in p - p may be 
described by cumulants       .  

• At given impact parameter b, collisions should involve 
an average of ⟨ms⟩ n - n interactions.  

• Let us calculate the cumulants         in A - A collisions.

44

Cm
pp

Cm
AA
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Source Multiplicity Scaling - Cumulants

• ms fluctuates collision-by-collision, but for a given value 
of ms, one expects that the number of clusters of 
correlated particles of size n should be, on average, ms 
times larger than in n - n collisions.  

• The n-cumulant for A - A collisions, at fixed ms, may thus 
be written  

• Given that ms fluctuates event-by-event, averaging over 
all A - A collisions consequently yields  

• for A - A collisions consisting of a superposition of 
independent and unmodified p - p collisions. 

45

Cn
AA(y1, y3, y2,…, yn ) = msCn

pp (y1, y2, y3,…, yn )

Cn
AA(y1, y3, y2,…, yn ) = ms Cn

pp (y1, y2, y3,…, yn )
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Scaling of total multiplicity

• Total multiplicity of particles produced in A - A collisions 
consisting of ms independent and unmodified n - n 
collisions features the same scaling with ms.  

• Average multiplicity obtained in A - A for a given (fixed) 
value of ms should simply be the product of ms by the 
average particle multiplicity produced in n − n: 

• since  
• and

46

ρ1
AA(y) = msρ1

pp (y)

n AA = ms n pp

ρ1(y) = C1(y)

C1
AA(y) = msC1

pp (y)
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Scaling of n>1 densities

• First consider pairs of particles.  
• In an A - A collision consisting of ms independent n - n interactions, 

one can form ms times the pairs from individual n-n collisions.  
• But one can also mix particles from different n-n interactions. Since 

there are ms(ms−1) ways of doing that, one can write  

• One obtains the same result using a cumulant 
decomposition:

47

ρ2
AA(y1, y2 ) = msρ2

pp (y1, y2 )+ms (ms −1)ρ1
pp (y1)ρ1

pp (y2 )

ρ2
AA(y1, y2 ) = C1

AA(y1)C1
AA(y2 )+C2

AA(y1, y2 )
= ms

2C1
pp (y1)C1

pp (y2 )+msC2
pp (y1, y2 )

= ms
2ρ1

pp (y1)ρ1
pp (y2 )+ms ρ2

pp (y1, y2 )− ρ1
pp (y1)ρ1

pp (y2 )⎡⎣ ⎤⎦
= ms (ms −1)ρ1

pp (y1)ρ1
pp (y2 )+msρ2

pp (y1, y2 )
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Scaling of n>1 densities (2)

• At fixed value of ms, integration over y1 and y2 yields: 

• For large ms, the scaling of the number of pairs 
produced in A - A is dominated by the term in ms(ms 
−1), which involves uncorrelated, combinatorial pairs 
from particle produced by different n-n collisions. 

48

n(n −1) AA = ms n(n −1) pp +ms (ms −1) n pp
2

ρ2
AA(y1, y2 ) = C1

AA(y1)C1
AA(y2 )+C2

AA(y1, y2 )
= ms

2C1
pp (y1)C1

pp (y2 )+msC2
pp (y1, y2 )

= ms
2ρ1

pp (y1)ρ1
pp (y2 )+ms ρ2

pp (y1, y2 )− ρ1
pp (y1)ρ1

pp (y2 )⎡⎣ ⎤⎦
= ms (ms −1)ρ1

pp (y1)ρ1
pp (y2 )+msρ2

pp (y1, y2 )

Combinatorial Term True Correlation Term

That’s why one needs cumulants
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Scaling of n>1 densities (3)

• Previous reasoning easily extended to n-densities 
with n > 2. 

• Higher-order density measured in A - A amount to a 
combination of several n-n terms.  

• The dominant terms is also “the most combinatoric” 

• and n-cumulants would be the weakest term.

49

ρn
AA(y1, y2,…, yn ) = ms (ms −1)!(ms − n +1)ρ1

pp (y1)!ρ1
pp (yn )+!
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3-Densities

50

574 ⌅ Data Analysis Techniques for Physical Scientists

At fixed value of ms, integration over y1 and y2 yields

hn(n� 1)iAA = mshn(n� 1)ipp +ms(ms � 1)hni2pp. (10.28)

For large ms, the scaling of the number of pairs produced in A - A is thus dom-
inated by the term in ms(ms� 1), which involves uncorrelated, combinatorial
pairs from particle produced by di↵erent p - p collisions.

Based on the assumption that A - A collisions consist of ms independent p
- p interaction, it might be tempting to seek a measure of particle correlation
in A - A by writing

ZAA
2 (y1, y2) = ⇢AA

2 (y1, y2)� k⇢pp1 (y1)⇢
pp
1 (y2) (10.29)

where the constant k is adjusted so the maximum of the product
⇢pp1 (y1)⇢

pp
1 (y2) matches the minimum of ⇢AA

2 (y1, y2). A particular application
of this approach is known in the recent literature as Zero Yield At Mimi-
mum (ZYAM) approximation [17]. However, it should be clear from the above
discussion that although Z2(y1, y2), and in particular the ZYAM approxima-
tion, do provide a technique to assess whether ⇢AA

2 (y1, y2) di↵ers from what
is expected from a trivial scaling, it does NOT constitute a logically consis-
tent measure of two particle correlations in A - A collisions. Only CAA

2 (y1, y2)
defined by Eq. (10.19) does, although there are several di↵erent ways of ex-
pressing and measuring C2, which we discuss in the next section.

Let us next consider the scaling of triplets. We use the decomposition
(10.16) and our previous shorthand notation to write

⇢AA
3 (1, 2, 3) = CAA

1 (1)CAA
1 (2)CAA

1 (3) (10.30)

+CAA
1 (1)CAA

2 (1, 2) + CAA
1 (2)CAA

2 (1, 3)

+CAA
1 (3)CAA

2 (2, 3) + CAA
3 (1, 2, 3).

We next apply the scaling property (10.22) and the expressions (10.19) and
(10.20) to get

⇢AA
3 (1, 2, 3) = m3

sC
pp
1 (1)Cpp

1 (2)Cpp
1 (3) (10.31)

+m2
s

X

perms.

Cpp
1 (1)Cpp

2 (2, 3)

+msC
pp
3 (1, 2, 3)

=
�

m3
s �m2

s + 2ms

�

⇢pp1 (1)⇢pp1 (2)⇢pp1 (3)

+
�

m2
s �ms

�

X

perms.

⇢pp1 (1)⇢pp2 (2, 3)

+ms⇢
pp
3 ,

where the sums are carried over distinct permutations of the three particle
coordinates. Integration over the coordinates y1, y2, and y3 yields

hn(n� 1)(n� 2)iAA =
�

m3
s �m2

s + 2ms

�

hnipp (10.32)

+3
�

m2
s �ms

�

hn(n� 1)ipphnipp

+mshn(n� 1)(n� 2)ipp
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s �ms

�

X

perms.
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where the sums are carried over distinct permutations of the three particle
coordinates. Integration over the coordinates y1, y2, and y3 yields

hn(n� 1)(n� 2)iAA =
�

m3
s �m2

s + 2ms

�

hnipp (10.32)

+3
�

m2
s �ms

�

hn(n� 1)ipphnipp

+mshn(n� 1)(n� 2)ipp

3

Again, we see that the combinatorial terms dominate 
over the most correlated terms for large values of ms.

Combinatorial Terms

True Correlation Term
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Normalized Densities & Cumulants

• Convenient to divide densities and cumulants by 
products of one-particle densities.  

• Leads to the definition of normalized inclusive 
densities and normalized cumulants:  

• Normalized Densities: 

• Normalized Cumulants: 

• R2(y1,y2) correlation functions are quite commonly 
studied in HIC at RHIC and LHC.

51

rn (y1,…, yn ) =
ρn (y1,…, yn )
ρ1(y1)!ρ1(yn )

Rn (y1,…, yn ) =
Cn (y1,…, yn )
ρ1(y1)!ρ1(yn )

Sorry: No standard/universal notations for these quantities.

Often also called reduced densities.

Often also called reduced cumulants.
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Normalized Factorial Moments

• Also quite convenient/common to consider 
normalized factorial moments.

52

fn =
N(N −1)!(N − n +1)

N n

Sorry: No standard/universal notations for these quantities.

Often also called 
reduced factorial 
moments.
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Scaling Behavior of Normalized Cumulants

• Interesting/convenient to consider the scaling behavior 
of normalized cumulants for systems consisting of a 
superposition of ms identical sub-processes or sources.  

• Based on the scaling of cumulants, one gets

53

Rn
(m )(y1,…, yn ) =

Cn
(m )(y1,…, yn )

ρ1
(m )(y1)!ρ1

(m )(yn )

= mCn
(1)(y1,…, yn )

mnρ1
(1)(y1)!ρ1

(1)(yn )

= 1
mn−1

Cn
(1)(y1,…, yn )

ρ1
(1)(y1)!ρ1

(1)(yn )

= 1
mn−1 Rn

(1)(y1,…, yn )

Cumulant for m sources

Cumulant for 1 source

Normalized cumulant 
 for m sources

Normalized cumulant 
 for 1 source

Scaling Factor 
or Dilution Factor
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Remark

• The inverse (n-1)th power of m implies the strength of m-cumulants shall (in general) 
monotonically decrease with the system size i.e., for systems consisting of “sum” of m 
identical subsystems. 

• The normalized cumulants   are said to be diluted by a power mn-1 relative to the 
elementary systems composing the large system.  

• Dilution is due to combinatorial effects: with m sources, there are far many ways to 
make uncorrelated pairs than correlated ones. 

• An important effect (or consideration) in heavy ion collisions because spatial correlation 
lengths are relatively small, and the collision systems very short lived.
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Rn
(m )(y1,…, yn ) =

1
mn−1 Rn

(1)(y1,…, yn )

Correlated Pair

Uncorrelated Pair
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Example: Nu-Dyn Conservation laws and particle production 
processes underlie correlations.

55

STAR, Phys.Rev. C68 (2003) 044905 6
|η| ≤ 0.5, as a function of the total multiplicity, M , mea-
sured in the pseudorapidity range |η| ≤ 0.75. The hor-
izontal bars on the data points reflect the width of the
multiplicity bins used in this analysis while the vertical
bars reflect statistical errors. We estimate the systematic
errors based on data taken and analyzed with different
trigger and analysis cuts, to be of the order of 2%. An
additional systematic uncertainty of the order of 3% is
derived by a separate analysis of different data subsets.
The dynamical fluctuations of the 5% most central colli-
sions then amount to ν+−,dyn = −0.00236±0.00006(stat)
±0.00012(syst). The dynamical fluctuations are finite
and negative: a clear indication that positive and nega-
tive particle production are correlated within the pseudo-
rapidity range considered (see Eq. 4). One observes the
strength of the dynamical fluctuations decreases mono-
tonically with increasing collision centrality. This can be
understood from the fact that more central Au+Au col-
lisions involve an increasing number of “sub-collisions”
(e.g. nucleon-nucleon collisions): the two-particle corre-
lations are thus increasingly diluted and the magnitude
of ν+−,dyn is effectively reduced.

We compare our results, for the most central colli-
sions, to those recently reported by the PHENIX col-
laboration [14] which measured net charge fluctuations
in terms of the relative variance ωQ = ⟨∆Q2⟩/Nch in
the rapidity range |η| < 0.35, and the angular range
∆Φ = π/2, for p⊥ > 200MeV/c. They reported a value
ωQ = 0.965± 0.007(stat) −0.019(syst) for the 10% most
central collisions. The large (unidirectional) systematic
error is reported to result from uncertainty in the correc-
tion applied for effects of finite detector efficiencies. In
order to compare the PHENIX result with the present
study, we use the expression in reference [7]

ν+−,dyn =
4

N+ + N−
(ωQ − 1) , (11)

The charged particle multiplicity in the PHENIX detec-
tor acceptance is 79 ± 5 for the 10% most central col-
lisions. This comparison gives ν+−,dyn = −0.0018 ±
0.0004 (stat) − 0.009 (syst) in agreement with the value
of ν+−,dyn = −0.00263 ± 0.00009(stat) ±0.00012(syst)
we measure for 11% central collisions. The agreement
is best if one considers the low bound of the PHENIX
measurement which is maximally corrected for finite ef-
ficiency (which is reflected in the systematic error). The
difference between the two results might be due, in part,
to dependence of the multiplicity fluctuations on rapidity
and azimuthal angle as well as acceptance effects.

It is important to consider the effects of charge con-
servation on the net charge fluctuations since they are
expected to be non-negligible even for small finite rapid-
ity coverage [7]. The contribution is estimated to be
−4/⟨N⟩4π where ⟨N⟩4π is the total number of charged
particles produced by the collisions. The PHOBOS col-
laboration has reported [15] that the total charged parti-
cle multiplicity amounts to 4200±470 in the 6% most cen-
tral Au+Au collisions at

√
sNN = 130 GeV. The charge
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FIG. 1: (a) Dynamical fluctuations, ν+−,dyn, measured in
|η| ≤ 0.5 as a function of the collision centrality estimated
with the total (uncorrected) multiplicity, M , in |η| < 0.75.
(b) ⟨N⟩ν+−,dyn measured in |η| ≤ 0.5 vs M (opened circles)
compared to the charge conservation limit (dotted line), res-
onance gas expectation based on ref. [5](solid line); and
HIJING calculation (solid squares)

conservation contribution to the measured dynamical
fluctuations is thus of the order of −0.00095 ± 0.0001,
i.e. 40% of the observed dynamical fluctuations.

We next discuss the centrality dependence of the fluc-
tuations. In central collisions, the measured dynamical
fluctuations, ν+−,dyn are expected to be reduced due to
dilution of the two-particle correlations. One expects
the magnitude of ν+−,dyn should scale inversely to the
number of sub-collisions producing particles. Assuming
the average number of particles produced by such sub-
collisions is independent of the collision centrality, one
then expects the fluctuations to scale inversely as the
charged particle multiplicity. The quantity ⟨N⟩ν+−,dyn

should therefore be independent of collision centrality if
no significant variation in the mechanism of the parti-
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FIG. 2: Fluctuations ν+−,dyn for the 6% most central colli-
sions as a function of the range of integrated pseudorapidities.
The expected limit due to charge conservation is shown as a
dotted line.

cle production arises with collision centrality. This no-
tion was suggested by Gazdzicki [12] and Mrowczyn-
ski [11] in terms of the fluctuation measure Φ which, as
shown in [7], is equal to ⟨N⟩ν+−,dyn/8 for ⟨N+⟩ ≈ ⟨N−⟩.
Fig. 1b shows the measured centrality dependence of
⟨N⟩ν+−,dyn, calculated with Eq. 10, for all charged par-
ticles produced in the pseudorapidity range |η| ≤ 0.5. In
this Figure, the charged particle multiplicity, N , is cor-
rected for finite detection efficiencies using correction fac-
tors which depend linearly on the charged particle mul-
tiplicity (TPC detector occupancy) with values ranging
from 85% to 70% for peripheral and central collisions re-
spectively [16]. The measured values range from −1 to
−1.4 and are approximately a factor of two larger than
the charge conservation limit, shown as a dotted line, in
Fig. 1b). This indicates dynamical fluctuations are not
only finite but in fact rather large. As discussed in de-
tail below, the values measured for ⟨N⟩ν+−,dyn however
fall short of predictions for a resonance gas in equilib-
rium (approximately −1.7; solid line) and for a scenario
involving a quark-gluon gas undergoing fast hadroniza-
tion (approximately -3.5; not shown in Fig. 1b) [5].
The measured values are in qualitative agreement with
a calculation based on HIJING (solid squares) [17]. In-
deed, the values predicted by HIJING are within 20%
of the measured values at all centralities. While the HI-
JING calculation is independent of collision centrality,
the experimental data exhibit a small but finite central-
ity dependence which is significant above the first bin
in Fig. 1b. The HIJING calculation does not feature
rescattering, and is therefore not expected to exhibit a
significant centrality dependence. The observed central-
ity dependence may then suggest there are rescattering
effects, or other dynamical effects with centrality, and its
interpretation requires further investigation.

The magnitude of the net charge dynamical fluctua-
tions is determined by the strength of the two-particle
correlations in the integrated rapidity range. Measure-

ments from p+p collisions at the ISR and p+p collisions
at FNAL indicate that the relevant rapidity interval for
two-particle correlations is approximately one unit. One
thus expects the dynamical fluctuations to exhibit a mild
dependence on the rapidity range used for the measure-
ment [7]. Fig. 2 shows the measured dynamical fluctu-
ations (filled circles) as a function of the pseudorapidity
range. The pseudorapidity integration range is varied
from −0.1 < η < 0.1 to −1.0 < η < 1.0 in discrete steps
of 0.1 units of pseudorapidity. Error bars shown are sta-
tistical only. Focusing on the region in Fig. 2 where
systematic effects due to finite are expected to be small,
we examine the data for η > 0.4. One observes the abso-
lute value of the the dynamical fluctuations is largest in
this range for |η| ≈ 0.4, and that it decreases monoton-
ically for larger acceptance without, however, reaching
the charge conservation limit. One finds |νdyn| decreases
by 35-40% while the integrated pseudorapidity range is
increased by a factor of 5 from 0.4 to 2 pseudorapidity
units. The dependence of dynamical fluctuations on the
experimental acceptance is rather modest. In contrast,
the Φ measure increases approximately by a factor of 10
from −0.1 < η < 0.1 to −1.0 < η < 1.0 due to its explicit
dependence on the pseudorapidity bin size.

We next consider the above results in the light of cor-
relation functions measured in p+p and p+ p̄ collisions at
CERN and FNAL [8, 18, 19] with the use of Eq. 4. To
account for the unavailability of p+p comparison data at
the same energy as RHIC, an interpolation was made us-
ing results obtained at lower and higher collision energies
(parameterization from [20]). Based on results published
in Refs [8, 18, 19], we also note that the correlation func-
tion for oppositely charged particles, R+−(y+ ≈ y−), is
found to be approximately twice as strong as the same
sign particles correlations, R++ ≈ R−− [8, 9], and that
it is independent of the collision energy. The CERN and
FNAL measurements [8, 18, 19] find the single charged
particle and two-particle (charged-charged) pseudorapid-
ity densities to be respectively ρ1(η = 0) ≈ 2.06 and
C2(0, 0) = ρ2(η1 = 0, η2 = 0) − ρ1(η1 = 0)ρ1(η2 =
0) ≈ 2.8. The charged-charged correlation integral
Rcc = (R++ + R−− + 2R+−)/4 is thus Rcc ≈ 0.66 (see
ref. [7]). Furthermore, assuming equal multiplicities of
positively and negatively charged particles, one finds for
the charged-charged correlation Rcc ≈ 1.5R++, which we
use to estimate the correlation measured in this work as
R̄++ + R̄−− − 2R̄+− ≈ −2R̄++ ≈ 4R̄cc/3 ≈ 0.88. The
pseudorapidity densities are very different in p+p and
A+A collisions. Under assumption that the correlations
are due to production in a finite number of sources (clus-
ters), they should be inversely proportional to the parti-
cle density. In the 5% most central Au+Au collisions, the
pseudorapidity charged particle density (dN/dη) is about
526±2(stat)±36(syst) [16] compared to approximately
2.06 in pp̄ collisions. Such a dilution would give for the
correlation function a value of 0.88 · 2.06/526 ≈ 0.0034,
in qualitative agreement with the measured values for
Au+Au collisions presented in this paper. We stress that

6% Most Central

Charge Conservation Limit
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collision basis, i.e. event by event [1, 2, 3, 4]. Most often
discussed are mean transverse momentum fluctuations
(temperature fluctuations) and particle multiplicity fluc-
tuations. For the latter, predictions range from enhanced
multiplicity fluctuations connected to the production of
QGP droplets and nucleation processes in a first order
QGP – HG phase transition, to a strong suppression of
fluctuations as a consequence of rapid freeze-out just af-
ter the phase transition [4, 5]. In this case, final state
values of conserved quantities, such as net electric charge,
baryon number, and strangeness would not be strongly
modified from their values in the QGP stage. Due to
the large difference in the degrees of freedom in the QGP
and HG phases, measured fluctuations, of the net elec-
tric charge in particular, could be reduced by a factor
ranging from 2 to 4 if a QGP is produced [4, 5]. The
frequency of production and size of QGP droplets may
critically depend on the collision impact parameter. Cen-
tral collisions are generally expected to lead to larger and
more frequent QGP droplet production. An increase in
the size and production frequency of QGP droplets with
increasing collision centrality might then be signaled by
a sudden change in the fluctuations of produced particles
such as anti-protons and kaons [6], as well as pions.

In this paper, we report on a measurement of charged
particle multiplicity fluctuations as a function of colli-
sion centrality in Au + Au collisions at an energy of√

sNN = 130 GeV. We study event-by-event fluctua-
tions of conserved quantities at near-zero rapidity in the
center-of-mass rest frame (mid-rapidity). Specifically, we
discuss fluctuations in the difference of the number of pro-
duced positively and negatively charged particles (multi-
plicities) measured in a fixed rapidity range, defined as
[7]

ν+− = ⟨
(

N+

⟨N+⟩
−

N−

⟨N−⟩

)2

⟩, (1)

where N+ and N− are multiplicities of positive and nega-
tive particles calculated in a specific pseudorapidity, and
transverse momentum range. The notation “⟨O⟩” de-
notes an average of the quantity O over an ensemble
of events. The method used to calculate the averages
⟨N+⟩ and ⟨N−⟩, which vary with collision centrality, is
described in the following (see Eqs. 6-10 ). We consider
fluctuations in the production of all charged particles, N+

and N− (mostly pions) as well as specific cases of proton
and anti-proton, Np and Np, and positive and negative
kaon, NK+ and NK−, fluctuations. The former amounts
to a measurement of net electrical charge fluctuations,
whereas the latter corresponds to measurements of net
baryon number and net strangeness fluctuations. The
method used to calculate this and other observables used
in this work is described in the following.

A difficulty inherent in the interpretation of measure-
ments of multiplicity fluctuations is the elimination of
effects associated with uncertainties in the collision cen-
trality, often referred to as volume fluctuations. Event-
by-event impact parameter variations, in particular, in-

duce positive correlations in particle production which
do not depend on the intrinsic dynamical properties of
the colliding system, but rather simply reflect changes in
the number of collision participants. Fluctuations in the
difference of relative multiplicities, ν+−, defined in Eq. 1,
are however free from this problem. This analysis is thus
restricted to the study of such relative multiplicities. As
shown in [7], ν+− can be readily translated into observ-
ables D, and ωQ, discussed by other authors [4, 5, 6]. Its
relation to the two-particle density is discussed below.
We will additionally study the behavior of relative mul-
tiplicities, ν+−, and other quantities of interest defined
in this paper as a function of the collision centrality es-
timated on the basis of the total charged particle multi-
plicity measured in the pseudorapidity range |η| < 0.75
in order to identify possible changes in the fluctuations
with collision centrality.

The magnitude of the variance, ν+−, is determined by
both statistical and dynamical fluctuations. Statistical
fluctuations arise due to the finite number of particles
measured, and can be readily calculated based on expec-
tation values for Poisson distributions as follows:

ν+−,stat =
1

⟨N+⟩
+

1

⟨N−⟩
. (2)

The statistical fluctuations depend on the experimental
efficiency and analysis cuts used in the reconstruction
of charged particle trajectories (tracks). The intrinsic
or dynamical fluctuations are defined and evaluated as
the difference between the measured fluctuations and the
statistical limit

ν+−,dyn = ν+− − ν+−,stat. (3)

As shown in [7], the dynamical fluctuations, ν+−,dyn,
can be expressed as follows:

ν+−,dyn = R̄++ + R̄−− − 2R̄+−, (4)

where R̄ab with a, b = +,− are the averages of the corre-
lation functions often used in multi-particle production
analysis [8, 9, 10]:

R̄ab =

∫

∆η
R2,ab(ηa, ηb)ρ1,a(ηa)ρ1,b(ηb)dηadηb
∫

∆η
ρ1,a(ηa)dηa

∫

∆η
ρ1,b(ηb)dηb

, (5)

where R2,ab = ρ2(ηa, ηb)/(ρ1,a(ηa)ρ1,b(ηb)) − 1; ρ1(η) =
dn/dη, and ρ2(ηa, ηb) = d2n/dηadηb are single- and two-
particle pseudorapidity densities respectively. The inte-
grals could most generally be taken over the full particle
phase space (d3p) but are here restricted (without loss of
generality) to pseudorapidity integrals to simplify the no-
tation. In cases where the produced particles are totally
uncorrelated, two-particle densities can be factorized as
products of two single-particle densities. The correla-
tors R̄ab shall then vanish, and the measured dynami-
cal fluctuations, ν+−,dyn, should be identically zero. A
deviation from zero thus should indicate correlations in
particle production. If correlations are due to production
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dn/dη, and ρ2(ηa, ηb) = d2n/dηadηb are single- and two-
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grals could most generally be taken over the full particle
phase space (d3p) but are here restricted (without loss of
generality) to pseudorapidity integrals to simplify the no-
tation. In cases where the produced particles are totally
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products of two single-particle densities. The correla-
tors R̄ab shall then vanish, and the measured dynami-
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FIG. 3: (Color online) Dynamical net charge fluctuations,
ν+−,dyn, of particles produced with pseudorapidity |η| < 0.5
scaled by (a) the multiplicity, dNch/dη. The dashed line cor-
responds to charge conservation effect and the solid line to the
prediction for a resonance gas, (b) the number of participants,
and (c) the number of binary collisions.

function does occur in central Au + Au collisions rel-
ative to peripheral collisions [51]. We note, however,
as already pointed out by Pratt et al. and more re-
cently by Voloshin [19], radial flow produced in heavy
ion collisions induces large position-momentum correla-
tions which manifest themselves in angular, transverse
momentum, and longitudinal two-particle correlations.
The observed narrowing of the longitudinal charge bal-
ance function therefore cannot be solely ascribed to de-
layed hadronization. It is thus important to gauge the
change in two-particle correlations imparted by radial
flow effects. As a first step towards this goal, we present
studies of the net charge fluctuation dependence on the
integrated pseudorapidity and azimuthal ranges.
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FIG. 4: (Color online) Dynamical fluctuations ν+−,dyn, nor-
malized to their value for |η| < 1, as function of the inte-
grated pseudorapidity range. (a) data for Au + Au collisions
at

√
sNN = 62.4, 200 GeV (0-5%) along with data for Cu+Cu

collisions at
√

sNN = 62.4, 200 GeV (0-10%), are compared
to inclusive p + p data at

√
s = 200 GeV, and (b) data for

Au+Au collisions at
√

sNN = 62.4, 200 GeV (30-40%) along
with data for Cu+Cu collisions at

√
sNN = 62.4, 200 GeV (0-

10%), are compared to inclusive p + p collision data at
√

s =
200 GeV.
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Remark (3)

• R2 expected to scale approximately 
as 1/m. 

• Decrease of correlation actually 
observed in RHIC and LHC 

• Also observed a change in the 
shape of the correlation function 

• Indicative of a modification of 
the correlation dynamics, i.e., 
the processes that produce the 
particles.

• Measurements of higher order 
cumulant require lots of statistics — 
because the actual strength of the 
cumulant is much weaker than that of 
the density.
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ρ2
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Pujahari et al., ALICE
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Cumulants are Statistics Hungry

• Measurements of 
cumulant require lots of 
statistics because the 
actual strength of the 
cumulant is much weaker 
than that of the density.
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R2
(m )(y1, y2 ) =

1
m
R2
(1)(y1, y2 )

R2 (y1, y2 ) =
ρ2 (y1, y2 )− ρ1(y1)ρ1(y2 )

ρ1(y1)ρ1(y2 )
= ρ2 (y1, y2 )
ρ1(y1)ρ1(y2 )

−1

ρ2 (y1, y2 )
ρ1(y1)ρ1(y2 )

≈1

• ρ2 and ρ1 ρ1 have approximate 
same magnitude 

• Their difference is nearly zero  
• Their ratio is of order unity 
• R2 thus has larger relative statistical 

errors than ρ2.  
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Probability Densities & Statistical Independence

• Integration of particle densities ρn(y1, ..., yn) over the momentum volume Ω 
provides a natural and convenient normalization to define particle probability 
densities: 

• Expresses the probability of finding n particles jointly at y1, y2, …, yn. 
• Reduction of these probabilities by products of single particle probability 

densities yields 

• which must equal unity if the particles are emitted/produced independently.
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Pn (y1,…, yn ) =
ρn (y1,…, yn )

N(N −1)!(N − n +1)

qn (y1,…, yn ) =
Pn (y1,…, yn )

P1(y1)P1(y2 )!Pn (yn )
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Strength of Correlations

• Normalized densities written in terms of normalized 
factorial moments and the function q. 

• which tells us that the strength of correlation 
depends both on multiplicity fluctuations through 

• and the shape and magnitude of qn(y1, ..., yn). 
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rn (y1,…, yn ) =
N(N −1)!(N − n +1)

N n qn (y1,…, yn )

N(N −1)!(N − n +1)
N n ≠ 1
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Correlation function Normalization

61

R2 (y1, y2 ) =
C2 (y1, y2 )

ρ1(y1)ρ1(y2 )

2-Cumulant: C2 (y1, y2 ) = ρ2 (y1, y2 )− ρ1(y1)ρ1(y1)

Normalized 2-Cumulant:

Normalized 2-Density: r2 (y1, y2 ) = 1+
C2 (y1, y2 )

ρ1(y1)ρ1(y2 )

But not a per trigger ratio: K2 (y1, y2 ) =
ρ2 (y1, y2 )
ρ1(y1)

>0 correlation 
=0 no correlation 
<0 anti-correlation
>1 correlation 
=1 no correlation 
<1 anti-correlation

>0 always
No proper reference level!
Problematic!
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Part IV: The Multiple Facets of Correlation Functions

62
And much more …
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Part V Experimental Considerations

• Detector Acceptance 
• Detection Efficiency 
• Momentum Smearing 
• Signal Contamination 

• Physical Backgrounds 
• Instrumental Backgrounds

64
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Efficiency Losses

• Introduce the notion of efficiency in the context of 
multiplicity measurements. 

• Method for the correction of Mean Number of 
Particles in a given acceptance (multiplicity). 

• Issues with the variance.

65
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• Theoretically: average integrated yield, ⟨N⟩, over a specific kinematic 
domain, Ω, determined by the particle production cross-section  

• Experimentally: number of particles fluctuates collision by collision 
owing to the stochastic nature of the particle production process.  

• Fluctuations described by a probability function, Pprod(N), 
determined by the dynamics and correlations involved in the particle 
production process 

Mean Particle Production

66

N =
d 3N
dp3

dp3
Ω

∫

N = Pprod (N )N dN
Ω

∫
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• Measurements of particle production are usually subject to losses. 
• For large detectors, one can usually assume that the probability of 

detecting one particle is independent of the probability of detecting 
others. One can then model the detection of a single-particle with a 
Bernoulli distribution 

• We can then express the probability of simultaneously detecting n 
particles in the domain Ω as a binomial distribution with success 
probability ε: 

Particle Losses

67

622 Data Correction Methods

instrumental e↵ects. For large detectors, one can usually assume that the probability of
detecting one particle is independent of the probability of detecting others. One can then
model the detection of a single-particle with a Bernoulli distribution (defined in § 3.1). Let
" represent the probability to measure any produced particle in the kinematic domain ⌦:

Psingle(n|") = 1 � " probability of not observing, n = 0
= " probability of observing, n = 1.

(12.124)

As we saw in § 3.1, the probability of obtaining n successes out of N trials determined
by the same Bernoulli distribution amounts to a binomial distribution. We can then ex-
press the probability of simultaneously detecting n particles in the domain ⌦ as a binomial
distribution with success probability ":

Pdet(n|N, ") =
N!

n!(N � n)!
"N(1 � ")N�n. (12.125)

For fixed N, the distribution has a mean (see Table 3.1)

hniN = E[n] =
Z

Pdet(n|N, ")ndn = "N, (12.126)

and a variance

h

(n � hni)2
iN =

Z

Pdet(n|N, ") (n � hni)2 dn (12.127)

= N"(1 � ").

One must account, however, for fluctuations of N according to Pprod(N). The probability
of observing n particles may then be written

Pmeas(n|") =
Z

dNPdet(n|N, ")Pprod(N). (12.128)

The mean measured multiplicity hni can be calculated in terms of hNi even if Pprod(N) is
unknown:

hni =
Z

dnnPmeas(n|"), (12.129)

=

Z

dnn
Z

dNPdet(n|N, ")Pprod(N). (12.130)

Indeed, changing the order of integration, we get

hni =
Z

dNPprod(N)
Z

dnnPdet(n|N, "), (12.131)

= "

Z

dNPprod(N)N, (12.132)

= "hNi. (12.133)

We thus formally obtain the intuitively obvious result that one can correct the measured
average multiplicity by simply dividing by the e�ciency of the measurement:

hNi =
hni
"
. (12.134)
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• For a fixed produced multiplicity N, the measured 
average is then 

• The measured variance at fixed N

Average & Variance at Fixed N
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instrumental e↵ects. For large detectors, one can usually assume that the probability of
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• The probability of observing n particles when N are produced  

• The mean measured multiplicity <n> is then  

• Interchanging the order of integrations

Average w/ varying N
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instrumental e↵ects. For large detectors, one can usually assume that the probability of
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The observed mean is proportional to the 
produced mean. The proportionality factor is 
the efficiency.
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Efficiency Correction

• If smearing can be neglected, correction for 
particle losses is simply accomplished according 
to:

70
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instrumental e↵ects. For large detectors, one can usually assume that the probability of
detecting one particle is independent of the probability of detecting others. One can then
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The mean measured multiplicity hni can be calculated in terms of hNi even if Pprod(N) is
unknown:

hni =
Z

dnnPmeas(n|"), (12.129)

=

Z

dnn
Z

dNPdet(n|N, ")Pprod(N). (12.130)

Indeed, changing the order of integration, we get

hni =
Z

dNPprod(N)
Z

dnnPdet(n|N, "), (12.131)

= "

Z

dNPprod(N)N, (12.132)

= "hNi. (12.133)

We thus formally obtain the intuitively obvious result that one can correct the measured
average multiplicity by simply dividing by the e�ciency of the measurement:

hNi =
hni
"
. (12.134)
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• The second moment of the measured multiplicity is  

• The variance of the measured distribution is thus 

• The variance CANNOT be corrected by a simple factor!

Unfriendly Variance
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nuclei at relativistic energies. Unfortunately, while the variance of an observable is in prin-
ciple a good measure of its fluctuations, correcting a measurement of variance for instru-
mental e↵ects is anything but trivial. For illustrative purposes, let us continue the discus-
sion initiated in the previous section and examine how the detection e�ciency a↵ects the
variance of the measured integrated yield within a specific acceptance ⌦.

We use Eq. (12.128) to calculate the variance of the measured multiplicity:

Var[n] = h(n � hni)2
i = hn2

i � hni2. (12.150)

The mean hni is known from Eq. (12.131). The calculation of the second moment hn2
i

proceeds as in (12.131):

hn2
i =

Z

dNPProd(N)
Z

dnn2Pdet(n|N, "),

=

Z

dNPProd(N)N"(1 � " + N"), (12.151)

= "(1 � ")hNi + "2
hN2
i,

where in the second line we used the second moment of the binomial distribution (see
Table 3.1) and in the third line the definition of the average hNi and hN2

i. The variance of
the measured distribution is thus

Var[n] = "2Var[N] + "(1 � ")hNi. (12.152)

This expression contains terms linear and quadratic in ". Correcting the measured variance
of the multiplicity thus cannot be achieved by dividing the measured variance by the square
of the e�ciency as one might intuitively be inclined to do. Since one is usually interested in
detecting small deviations of the variance from values expected for a Poisson distribution, it
is thus imperative that the e�ciency " be known very accurately. Unfortunately, achieving
the required level of e�ciency is often rather challenging, and it may not be possible to
reliably correct the measured variance.

All is not lost, however, since two alternative approaches are possible. The first approach
involves a measurement of factorial moments while the second is based on a comparison
of the measured variance with that obtained with mixed events (defined in § 12.4.5). Both
approaches are commonly used in practical applications.

The variance of integrated particle yields is determined by the production dynamics of
the particle and the extent to which the produced particles are correlated. It can thus be
regarded as having a purely “statistical” or Poisson component, �2

stat, and a “dynamical”
component, ��2

dyn. Instrumental e↵ects may unfortunately modify the size of the variance
and introduce a “shift” ��2

inst. The measured variance may thus be written

�2
meas = �

2
stat + ��

2
dyn + ��

2
inst. (12.153)

The Poisson component is trivial and of little interest. Measurements thus typically aim
at the identification of the dynamical component. Unfortunately, this component is often
much smaller than the size of the correction implied by Eq. (12.152). A precise assessment
of the e�ciency correction is therefore essential to achieve a meaningful measurement.
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• Moments:
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n =ε N

n2 =ε 1−ε( ) N +ε2 N2

• Factorial Moments: n n−1( ) = n2 − n =ε 1−ε( ) N +ε2 N2 −ε N

=−ε2 N +ε2 N2

=ε2 N N −1( )
• R2:

R2
M =

n n−1( )
n

2 =
ε2 N N −1( )
ε2 N

2 =
N N −1( )
N

2 =R2
T

Measured R2

True R2

• Same properties for higher factorial moments 
• Measurements of factorial moments ratios intrinsically more robust!!
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What if the efficiency changes w/ time?
• Assume that an experiment can be divided into two time 

periods featuring particle detection efficiencies ε1 and ε2.  
• Let us also assume that the probability of observing the 

events during the two time periods is unmodified by this 
change,  

• Let us denote the number of events detected in the two 
periods as N1ev and N2ev. 

• The average efficiency is calculated as a weighted 
average of the efficiencies of the two periods 
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623 Correcting Measurements of Correlation Functions

This result is correct even in cases where the e�ciency varies over time. To demonstrate
this, let us assume, for simplicity’s sake, that an experiment can be divided into two time
periods featuring particle detection e�ciencies "1 and "2. Let us also assume that the prob-
ability of observing the events during the two time periods is unmodified by this change,
and let us denote the number of events detected in the two periods as Nev

1 and Nev
2 .

The average multiplicities measured during the two periods are noted hnii with i = 1, 2.
Given the definition of e�ciency and the above result, one can write

hnii = "ihNi. (12.135)

The average e�ciency is calculated as a weighted average of the e�ciencies of the two
periods

"avg =
Nev

1 "1 + Nev
2 "2

Nev
1 + Nev

2
. (12.136)

The multiplicity measured across the two periods is:

hni = "avghNi. (12.137)

Extraction of the true mean multiplicity hNi can thus be obtained for either time periods

hNi =
hni1
"1
=
hni2
"2
, (12.138)

or globally from the average of the two periods,

hNi =
hni
"avg
, (12.139)

since

hniavg =
Nev

1 hni1 + Nev
2 hni2

Nev
1 + Nev

2
(12.140)

=
Nev

1 "1hNi + Nev
2 "2hNi

Nev
1 + Nev

2
(12.141)

=
Nev

1 "1 + Nev
2 "2

Nev
1 + Nev

2
hNi (12.142)

= "avghNi. (12.143)

This conclusion can clearly be generalized to multiple time periods when the detection e�-
ciency might have taken di↵erent values. For measurements of average particle production
yields, it thus does not matter that the experimental response changes over time as long as
one can track these changes and estimate the detection e�ciency during each period inde-
pendently or globally for the entire data-taking run. This means that insofar as it possible
to obtain an average e�ciency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.139) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.

The detection e�ciency is rarely uniform across the acceptance of a measurement. One
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What if the efficiency changes? (II)
• The multiplicity measured across the two periods is:  

• Extraction of the true mean multiplicity ⟨N⟩ can thus be 
obtained for either time periods  

• or globally from the average of the two periods 
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This result is correct even in cases where the e�ciency varies over time. To demonstrate
this, let us assume, for simplicity’s sake, that an experiment can be divided into two time
periods featuring particle detection e�ciencies "1 and "2. Let us also assume that the prob-
ability of observing the events during the two time periods is unmodified by this change,
and let us denote the number of events detected in the two periods as Nev

1 and Nev
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This conclusion can clearly be generalized to multiple time periods when the detection e�-
ciency might have taken di↵erent values. For measurements of average particle production
yields, it thus does not matter that the experimental response changes over time as long as
one can track these changes and estimate the detection e�ciency during each period inde-
pendently or globally for the entire data-taking run. This means that insofar as it possible
to obtain an average e�ciency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.139) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.

The detection e�ciency is rarely uniform across the acceptance of a measurement. One
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to obtain an average e�ciency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.139) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.
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this, let us assume, for simplicity’s sake, that an experiment can be divided into two time
periods featuring particle detection e�ciencies "1 and "2. Let us also assume that the prob-
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This conclusion can clearly be generalized to multiple time periods when the detection e�-
ciency might have taken di↵erent values. For measurements of average particle production
yields, it thus does not matter that the experimental response changes over time as long as
one can track these changes and estimate the detection e�ciency during each period inde-
pendently or globally for the entire data-taking run. This means that insofar as it possible
to obtain an average e�ciency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.139) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.

The detection e�ciency is rarely uniform across the acceptance of a measurement. One
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623 Correcting Measurements of Correlation Functions

This result is correct even in cases where the e�ciency varies over time. To demonstrate
this, let us assume, for simplicity’s sake, that an experiment can be divided into two time
periods featuring particle detection e�ciencies "1 and "2. Let us also assume that the prob-
ability of observing the events during the two time periods is unmodified by this change,
and let us denote the number of events detected in the two periods as Nev

1 and Nev
2 .

The average multiplicities measured during the two periods are noted hnii with i = 1, 2.
Given the definition of e�ciency and the above result, one can write
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The average e�ciency is calculated as a weighted average of the e�ciencies of the two
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This conclusion can clearly be generalized to multiple time periods when the detection e�-
ciency might have taken di↵erent values. For measurements of average particle production
yields, it thus does not matter that the experimental response changes over time as long as
one can track these changes and estimate the detection e�ciency during each period inde-
pendently or globally for the entire data-taking run. This means that insofar as it possible
to obtain an average e�ciency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.139) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.

The detection e�ciency is rarely uniform across the acceptance of a measurement. One

This conclusion can be generalized to 
multiple time periods when the detection 
efficiency might have taken different values.  
For measurements of <N>, it does not matter 
that the experimental response changes over 
time as long as one can track these changes 
and estimate the detection efficiency during 
each period independently or globally for the 
entire data-taking run.  
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• Split the measurement acceptance into two parts of size Ω1 and Ω2 with 
respective efficiencies ε1 and ε2.  

• The average number of produced particles can be properly determined by 
summing corrected yields in part 1 and 2 individually 

624 Data Correction Methods

must thus also consider whether the average e�ciency correction procedure outlined above
is robust when the detection e�ciency is a function of kinematical variables. For simplic-
ity’s sake, let us partition the measurement acceptance into two parts of size⌦1 and⌦2 with
respective e�ciencies "1 and "2. The average multiplicity measured in these two regions
may be written

hnii = "ihNii, (12.144)

where

hNii =

Z

⌦i

d3N
dp3 dp3, (12.145)

with the full kinematical range ⌦ corresponding to

⌦ =

2
X

i=1

⌦i. (12.146)

The average number of produced particles can be properly determined by summing cor-
rected yields in part 1 and 2 individually:

hNi =
2
X

i=1

hNii =

2
X

i=1

hnii

"i
. (12.147)

If the fractions fi = hNii/hNi of the total yield produced in the two parts of the acceptance
are known a priori, one can write an average e�ciency (as in the case of the time-varying
e�ciency discussed above):

"avg =
f1"1 + f2"2

f1 + f2
= f1"1 + f2"2, (12.148)

since f1 + f2 = 1 by definition. Unfortunately, the fractions fi are in general not known
a priori, and it is thus not possible to formally define a model independent average e�-
ciency across the full acceptance ⌦. However, in cases where the production cross-section
is nearly constant within the experimental acceptance, one can write

fi =

R

⌦i

d3N
dp3 dp3

R

⌦
d3N
dp3 dp3

⇡

R

⌦i
dp3

R

⌦
dp3
=
⌦i

⌦
, (12.149)

which satisfies
P

i fi = 1. The size of the fractions fi is then fixed by the relative sizes
of the ⌦i, and a model independent average e�ciency can be formulated. The e�ciency
correction, defined by Eq. (12.139), is thus applicable in spite of the fact the e�ciency may
vary through the acceptance of the measurement.

12.4.2 The Unfriendly Variance

Studies of the variance (as well as higher moments) of physical observables are often of
interest to probe the dynamics of physical systems. We have discussed in § 11.3.3, for in-
stance, that the study of fluctuations of the net charge of produced particles or ratios of
species integrated yields are particularly useful to probe the collision dynamics of large
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• If the fractions fi = ⟨Ni⟩/⟨N⟩ of the total yield produced in the two parts of the 
acceptance are known a priori, one can write an average efficiency (as in the 
case of the time-varying efficiency discussed above):  

• Unfortunately, the fractions fi are in general not known a priori, and it is thus 
not possible to formally define a model independent average efficiency 
across the full acceptance Ω.  

• However, in cases where the production cross-section is nearly constant 
within the experimental acceptance, one can write
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respective e�ciencies "1 and "2. The average multiplicity measured in these two regions
may be written
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which satisfies
P

i fi = 1. The size of the fractions fi is then fixed by the relative sizes
of the ⌦i, and a model independent average e�ciency can be formulated. The e�ciency
correction, defined by Eq. (12.139), is thus applicable in spite of the fact the e�ciency may
vary through the acceptance of the measurement.

12.4.2 The Unfriendly Variance

Studies of the variance (as well as higher moments) of physical observables are often of
interest to probe the dynamics of physical systems. We have discussed in § 11.3.3, for in-
stance, that the study of fluctuations of the net charge of produced particles or ratios of
species integrated yields are particularly useful to probe the collision dynamics of large
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Instrumentally Induced Correlations
We have seen in § 12.4.3 that the normalized density r2 and normalized cumulant R2 are
robust when measured according to Method 2 and to a lesser extent when estimated with
Method 1, even when the e�ciency varies throughout the acceptance of the measurement.
However, the robustness is lost if the detection e�ciency varies with time or event-by-event
relative to some global event parameter. Let us illustrate this statement for a detection sys-
tem featuring two performance states, that is, with e�ciency of detection globally taking
two distinct values for two classes of events, either separated in time, run, or some other
“external” parameter.

For simplicity’s sake, let us assume a correlation measurement between identical parti-
cles in the same kinematic range. The detection of both particles of the pair thus have same
e�ciency dependence on the measured coordinates. However, let us also assume that two
distinct classes of events of knowable size (i.e., how many events belong to each class)
exist and feature di↵erent detection e�ciencies we shall denote as "i, with i = 1, 2. The
approach discussed here will hold for higher numbers of performance classes. We saw ear-
lier in this chapter that is possible to define an e↵ective or average e�ciency "avg, provided
the relative sizes of the two event classes are known. This average e�ciency may then be
used to correct average single-particle densities according to Eq. (12.134). Such correction
is unfortunately not possible for correlation functions if the two sets of events are mixed.
To demonstrate this statement, let us define the fraction of events reconstructed with e�-
ciencies "i as fi, and satisfying

P

i fi = 1. Let us also assume the two-particle e�ciency
factorizes (i.e., "i(x1, x2) = "i(x1)"i(x2)). If the data are analyzed indiscriminately of event
classes, the measured single-particle and two-particle densities may be written

n̂1(x) =
⇥

f1"1(x) + f2"2(x)
⇤

⇢1(x), (12.186)

n̂2(x1, x2) =
⇥

f1"1(x1)"1(x2)

+ f2"2(x1)"2(x2)
⇤

⇢2(x1, x2). (12.187)

It is thus easy to verify that the ratio r2 is not robust under such circumstances:

r̂meas
2 (x1, x2) = ⇠(x1, x2)r̂2(x1, x2),

with

r̂2(x1, x2) ⌘
⇢2(x1, x2)
⇢1(x1)⇢1(x2)

, (12.188)

and

⇠(x1, x2) =
f1"1(x1)"1(x2) + f2"2(x1)"2(x2)

⇥

f1"1(x1) + f2"2(x1)
⇤ ⇥

f1"1(x2) + f2"2(x2)
⇤ . (12.189)

which is manifestly di↵erent from unity in general. The function ⇠(x1, x2) measures the ex-
tent to which the robustness of the observable r2 is broken by having di↵erent e�ciencies
for two classes of events. This is illustrated in Figure 12.11 which displays the function
⇠(x1, x2) for two arbitrary e�ciency curves "1(x) and "2(x) and f1 = f2 = 0.5 correspond-
ing to a situation where an equal amount of data is acquired with the e�ciency curves. All
this said, it is quite remarkable that while large and arbitrary non uniformities (of order
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Robustness Function
Integrating over x1 and x2 
does not make this equal 
to unity.



EMMI Workshop, Wuhan, China Oct 2017

Relation Between Integral and Differential Correlations

• Definition: Single & Pair Densities

• Factorize average yield and kinematic dependence

ρ1(φi ,ηi ) = N(φi ,ηi ) / ΔφΔη

79

Single Density:

Pair Density: ρ2 (φ1,η1,φ2,η2 ) = N(φ1,η1)N(φ2,η2 ) / Δφ
2Δη2

Histogram — number of singles per 
event normalized per bin width

Histogram — number of pairs 
per event normalized per bin 
width

ρ1(φi ,ηi ) = N P1(φi ,ηi )
N = ρ1(φi ,ηi )dφi dηi

accept
∫

1= P1(φi ,ηi )dφi dηi
accept
∫

Single Probability Distribution

ρ2 (φ1,η1,φ2,η2 ) = N(N −1) P2 (φ1,η1,φ2,η2 )

Pair Probability Distribution

N(N −1) = ρ2 (φ1,η1,φ2,η2 )
accept
∫ dφ1dη1dφ2dη2

1= P2 (φ1,η1,φ1,η1)
accept
∫ dφ1dη1dφ2dη2

Avg Multiplicity

Avg Number of Pairs
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Differential Correlation Functions

• Two-Particle Cumulant

• Normalized Cumulant

• Factorization of probability and integral

• Readily extended to 3 or more particles 

C(φ1,η1,φ2,η2 ) = ρ2 (φ1,η1,φ2,η2 )− ρ1(φ1,η1)ρ1(φ2,η2 )

80

R2 (φ1,η1,φ2,η2 ) =
ρ2 (φ1,η1,φ2,η2 )− ρ1(φ1,η1)ρ1(φ2,η2 )

ρ1(φ1,η1)ρ1(φ2,η2 )
= ρ2 (φ1,η1,φ2,η2 )
ρ1(φ1,η1)ρ1(φ2,η2 )

−1

R2 (φ1,η1,φ2,η2 ) =
ρ2 (φ1,η1,φ2,η2 )

ρ1(φ1,η1)ρ1(φ2,η2 )
−1= N(N −1)

N 2
P2 (φ1,η1,φ2,η2 )
P1(φ1,η1)P1(φ2,η2 )

−1

Factorizes in the absence of 
correlations.
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Acceptance Averaging

• Two-Particle Correlation Fcts
• Most general case: 6 coordinates

• Most common analyses:  vs. Δφ or vs. Δη or vs. Δφ, Δη or vs η1, η2

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

81

C(Δη) = 1
Ω(Δη)

C(Δη,η )
− ηo−Δη/2( )

ηo−Δη/2

∫ dη

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

Ω(Δη) = 2ηo − Δη

Note: This is an acceptance average NOT a 
correction
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Efficiency & Robustness (1)

• Model the Probability of observing n particles given N (in a 
given “bin”) were produced with binomial distribution.

• Model the Probability of observing particle fluctuations…

• Singles

• Pairs

Pdet (n | N;ε ) =
ε N (1− ε )N−n

n!(N − n)!
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PM (n(η1),n(η2 ) | N(η1),N(η2 );ε1,ε2 ) = PT (N(η1),N(η2 ))
ε1

N (η1 )(1− ε1)
N (η1 )−n(η1 )

n(η1)!(N(η1)− n(η1))!
ε2

N (η2 )(1− ε2 )
N (η2 )−n(η2 )

n(η2 )!(N(η2 )− n(η2 ))!N1,N2=1

∞

∑

True Probability distributionMeasured  Probability distribution

PM (n(η1) | N(η1);ε1, ) = PT (N(η1))
ε1

N (η1 )(1− ε1)
N (η1 )−n(η1 )

n(η1)!(N(η1)− n(η1))!N1=1

∞

∑

Measured  Probability distribution True Probability distribution



EMMI Workshop, Wuhan, China Oct 2017

•Singles Average
•True

•Measured

•Pair Averages
•True

•Measured

Efficiency & Robustness (1)

N = PT (N )∫ NdN

n = PM (n)∫ ndn
n = PT (N )dN nPdet (n | N;ε )∫ dn∫ = ε PT (N )N dN∫
n = ε N

83

N1N2 = Pp (N1,N2 )∫ N1N2dN1dN2

n1n2 = Pm (n1,n2 )∫ n1n2dn1dn2

n1n2 = ε1ε2 N1N2
Correct for any PT PDF 
Only requires binomial sampling.
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Efficiency & Robustness (III)

• Correlation function measurement

• Goal: 

• “Raw” Measurement

• Ratio Fct

Produced

MeasuredC2
(measured )(η1,η2 ) =

1
Δη2 n(η1)n(η2 ) − n(η1) n(η2 )

= 1
Δη2 ε1(η1)ε2 (η2 ) N(η1)N(η2 ) − N1(η1) N2 (η2 ){ }

C2
(True)(η1,η2 ) = ρ2 (η1,η2 )− ρ1(η1)ρ1(η2 )

R2
(Measured )η1,η2 ) =

n(η1)n(η2 )
n(η1) n(η2 )

−1

=
ε1(η1)ε1(η2 ) N(η1)N(η2 )
ε1(η1)ε1(η2 ) N(η1) N(η2 )

−1

=
N(η1)N(η2 )
N(η1) N(η2 )

−1

= R2
(True)(η1,η2 )

Efficiencies cancel >>> Robust Observable
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ALICE Meeting; C Pruneau

Efficiency vs. Momentum Coordinates

• Example for ALICE detector

• Determined from HIJING events propagated through 
detector simulation with GEANT and detector response 
simulator
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0 0.5 1 1.5
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1
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 (GeV/c)
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p0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
η
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0
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0.4
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0.8
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f x
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cc
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0.76
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0.8

0.82
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Efficiency (+) 0-5%

Single Particle Efficiency Pair Efficiency

ε1(η, p⊥ )
ε2 (η1, p⊥,1,η2, p⊥,2 ) /ε1(η1, p⊥,1)ε1(η2, p⊥,2 )
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Folding of Singles vs Event Mixing

• Ratio R requires product of single yields
• Can be obtained from actual singles

• Can be obtained from mixed events 

RM (η1,η2 ) =
n1(η1)n2 (η2 )
n1(η1) n2 (η2 )

−1

Rm (η1,η2 ) =
n1n2 (η1,η2 )

n1(η1) n2 (η2 )
=

n1n2 (η1,η2 ) same
n1n2 (η1,η2 ) mixed

−1

No event 
mixing 
required

Greater 
flexibility 
w/ cuts
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Two Methods

• Method 1: Ratio of averages (Common Approach)
•Measure pair yields (same and mixed) directly vs Δη.

• Calculate R(Δη) by taking the ratio of same to mixed.

•Method 2: Average of Ratio

•Measure R(η1,η2) by taking the ratio of same to mixed.

• Average out     dependence, i.e. project onto Δη to get R(Δη)η

87

RM (Δη) =

1
Ω(Δη)

ρ2 (Δη,η )dη
accept
∫

1
Ω(Δη)

ρ1⊗ ρ1(Δη,η )dη
accept
∫

−1

RM (Δη) =
1

Ω(Δη)
R2 (Δη,η )dη

accept
∫ = 1

Ω(Δη)
ρ2 (Δη,η )

ρ1⊗ ρ1(Δη,η )
−1

⎛
⎝⎜

⎞
⎠⎟
dη

accept
∫

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

Ω(Δη) = 2ηo − Δη
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Method 1 vs. Method 2: Correlation Model

• Correlation Model:

• Longitudinal Model w/ Two-particle emission correlated vs. 

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

• Assumed factorization of the dependence 
on the relative and average pseudorapidity. 

• Factorization may not be realized 
in practice

C(Δη,η )∝ exp −
Δη2

2σ Δη
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

η 2

2ση
2

⎛

⎝
⎜

⎞

⎠
⎟
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Method 1 vs. Method 2: Efficiency Model

• Use a simple but non trivial correlation model

• Use a simple model of the detection efficiency and edge 
effects.

ε(η) = εq (η)exp −
η −η<( )2

2σε
2

⎛

⎝
⎜

⎞

⎠
⎟     for   η <η<

= εq (η)                                for   η< <η <η>

= εq (η)exp −
η −η>( )2

2σε
2

⎛

⎝
⎜

⎞

⎠
⎟     for   η >η>

εo  =1

εq (η) = 1+α η −ηo( ) + β η −ηo( )2
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Efficiency, Pair Yield

• Efficiency

• Pair Yield
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Method 2: Results

Product of singles

R2 (Method 2)

91

Perfect Reconstruction for any factorized 
efficient model w/ sufficient statistics
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FIG. 6: (Color Online) (left) Function R2(�⌘) obtained by ⌘ average of ⇢2/⇢1⇢1 distributions obtained with (a) perfect e�ciency,
b) flat response with smooth edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.48, ↵ = 0.4, � = 0.4.(right)
Ratios of the distributions R2(�⌘) obtained by Method 2 for imperfect e�ciency to that obtained with perfect e�ciency.
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FIG. 7: (Color Online) (left) Function R2(�⌘) obtained with Method 1 for cases of perfect e�ciency, flat response with smooth
edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.7, ↵ = 0.2, � = 0.2 (dash blue), ✏
o

= 0.56, ↵ = 0.3, � = 0.3
(dash purple), ✏

o

= 0.48, ↵ = 0.4, � = 0.4 (solid light blue). (right) Ratios of these distributions to that obtained with perfect
e�ciency.

of the deviation strongly depends on the ⌘ dependence
of the correlation function. If the dependence is weak, or
the correlation function essentially constant within the ⌘
acceptance, than deviations are very small. However, if
both the e�ciency and the correlation function exhibit
rapid dependence on ⌘, than arbitrarily large deviation
may occur between the measured and actual correlation
function. We thus conclude that Method 1 is non ro-
bust for measurements of correlations as a function of
�⌘. It however may remain reliable and su�cient in a
wide variety of contexts and analyses, provided of course,
as for Method 2, the pair e�ciency factorizes. Wherever
high accuracy is required and strong variations of the ef-
ficiency throughout the acceptance are present, Method
2 is however strongly advised.

There are several instrumentals e↵ects that may break
the factorization. We discuss three such e↵ects in sec-
tions VII, ?? and IX. However, we first discuss in the
section the case of correlation functions measured as a
function of the di↵erence between two particles azimuthal
angles, ��, for which periodic boundary conditions lead
to considerable simplifications and robustness of correla-
tion functions obtained with Method 1 as well as Method
2.

B. Azimuthal Distributions

Correlation functions measured as a function of the
relative azimuthal angle of emission of two particles con-

R2(Δη)     Method 2

R2(Δη)     Method 1
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o
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Ratios of the distributions R2(�⌘) obtained by Method 2 for imperfect e�ciency to that obtained with perfect e�ciency.
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FIG. 7: (Color Online) (left) Function R2(�⌘) obtained with Method 1 for cases of perfect e�ciency, flat response with smooth
edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.7, ↵ = 0.2, � = 0.2 (dash blue), ✏
o

= 0.56, ↵ = 0.3, � = 0.3
(dash purple), ✏

o

= 0.48, ↵ = 0.4, � = 0.4 (solid light blue). (right) Ratios of these distributions to that obtained with perfect
e�ciency.

of the deviation strongly depends on the ⌘ dependence
of the correlation function. If the dependence is weak, or
the correlation function essentially constant within the ⌘
acceptance, than deviations are very small. However, if
both the e�ciency and the correlation function exhibit
rapid dependence on ⌘, than arbitrarily large deviation
may occur between the measured and actual correlation
function. We thus conclude that Method 1 is non ro-
bust for measurements of correlations as a function of
�⌘. It however may remain reliable and su�cient in a
wide variety of contexts and analyses, provided of course,
as for Method 2, the pair e�ciency factorizes. Wherever
high accuracy is required and strong variations of the ef-
ficiency throughout the acceptance are present, Method
2 is however strongly advised.

There are several instrumentals e↵ects that may break
the factorization. We discuss three such e↵ects in sec-
tions VII, ?? and IX. However, we first discuss in the
section the case of correlation functions measured as a
function of the di↵erence between two particles azimuthal
angles, ��, for which periodic boundary conditions lead
to considerable simplifications and robustness of correla-
tion functions obtained with Method 1 as well as Method
2.

B. Azimuthal Distributions

Correlation functions measured as a function of the
relative azimuthal angle of emission of two particles con-

Method 2 Perfect

Small deviations
Method 1 rather robust in view 

of large inefficiencies put in
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Why?

• If efficiency, yield, or correlation varies with avg-rapidity, 
then g or R2 cannot be factorized out of the integrals. 
• The numerator and denominator are in general NOT equal.

• Method 1 is only approximately robust - for slow varying 
functions

• Note: not a problem in azimuthal correlation because of 
periodic boundary conditions.
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FIG. 4: (Color Online) Product of singles ⇢1⇢1 vs. ⌘1, ⌘2 for (a) perfect e�ciency, (b) flat response with smooth edges, and
non-linear response with edge e↵ects shown for ✏

o

= 0.7,↵ = 0.4, � = 0.4.
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FIG. 5: (Color Online) Pair detection e�ciency dependence on ⌘1, ⌘2 for (a) perfect e�ciency, (b) flat response with smooth
edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.7,↵ = 0.4, � = 0.4.

2 however corrects for detection e↵ects by dividing the
pair yield by the product of singles ⇢1 ⇥ ⇢1 obtained ei-
ther by a mixed event technique or by multiplying the
singles spectra onto itself. The product of singles ⇢1⇥⇢1
corresponding to the same three cases are shown in Fig.
4. They are used to divide out the e�ciencies and obtain
the pair to single yield ratio ⇢2/⇢1⇢1 displayed in Fig. 5.
One verifies by direction inspection that the three dis-
tributions are identical as expected from the definition
of Method 2 and the assumed factorization of e�ciency
used in generating the plots. Fig. 6 (a) presents the
⌘ averaged distributions, R2(�⌘), obtained by calcula-
tions with perfect e�ciency, flat response with smooth
edges, and non-linear response with edge e↵ects shown
for ✏

o

= 0.7,↵ = 0.4, � = 0.4. Fig. 6 (b) displays the
ratio of distributions obtained with imperfect e�ciency
to that obtained for perfect e�ciency and illustrates that
all distributions are virtually identical and perfectly cor-
rected by Method 2 as expected.

Correlation analyses are however routinely carried out
with Method 1 rather than Method 2. Given Method
1 also uses a ratio of pair yield and product of singles,
albeit computed directly as a function of �⌘, one would
expect it might produce robust correlation functions, i.e.
independent of detection e�ciency. We proceed to show
that while Method 1 yields results that are approximately
robust, it may in fact produce correlation function that
arbitrarily deviate from the actual distribution. Rather

than calculating ratio of pair yields and product of singles
as a function ⌘1 and ⌘2, Method 1 uses yields calculated
explicitly as a function of �⌘. The ⌘ averaging is carried
out independently for pairs and product of singles (or
mixed events). The ratio R2(�⌘) measured with method
1 can be formally written as follows.

R2(�⌘)Method1 =

R
g(�⌘, ⌘)Rtrue

2 (�⌘, ⌘)d⌘R
g(�⌘, ⌘)d⌘

(35)

where Rtrue

2 is the true value of the correlation function,
and g(�⌘, ⌘) = ✏1⇥✏1⇥⇢1⇥⇢1(�⌘, ⌘) is, in general, a non
trivial function of �⌘, ⌘. Obviously, the function g can-
not be factorized out of the integrals. Method 1 is conse-
quently intrinsically non-robust. This unfortunate con-
clusion is illustrated with the simple correlation model
introduced in sec.IV. Figure 7 (left) displays functions
R2(�⌘) obtained with Method 1 for perfect e�ciency
(solid red), a flat response with smooth edges (dash
red), and non-linear response with edge e↵ects shown for
✏
o

= 0.7, ↵ = 0.2, � = 0.2 (dash blue), ✏
o

= 0.56, ↵ = 0.3,
� = 0.3 (dash purple), ✏

o

= 0.48, ↵ = 0.4, � = 0.4 (solid
light blue). One finds that the distributions are remark-
ably similar in spite of the large di↵erences of e�ciency
used in their calculations. Di↵erences exist however and
are easily visualized in Fig. 7 (right) from the ratios of
distributions to that obtained for perfect e�ciency. Dif-
ferences are maximum near �⌘ ⇠ 0 and amount to de-
viations of a few percent only. Note that the magnitude
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edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.7,↵ = 0.4, � = 0.4.

2 however corrects for detection e↵ects by dividing the
pair yield by the product of singles ⇢1 ⇥ ⇢1 obtained ei-
ther by a mixed event technique or by multiplying the
singles spectra onto itself. The product of singles ⇢1⇥⇢1
corresponding to the same three cases are shown in Fig.
4. They are used to divide out the e�ciencies and obtain
the pair to single yield ratio ⇢2/⇢1⇢1 displayed in Fig. 5.
One verifies by direction inspection that the three dis-
tributions are identical as expected from the definition
of Method 2 and the assumed factorization of e�ciency
used in generating the plots. Fig. 6 (a) presents the
⌘ averaged distributions, R2(�⌘), obtained by calcula-
tions with perfect e�ciency, flat response with smooth
edges, and non-linear response with edge e↵ects shown
for ✏

o

= 0.7,↵ = 0.4, � = 0.4. Fig. 6 (b) displays the
ratio of distributions obtained with imperfect e�ciency
to that obtained for perfect e�ciency and illustrates that
all distributions are virtually identical and perfectly cor-
rected by Method 2 as expected.

Correlation analyses are however routinely carried out
with Method 1 rather than Method 2. Given Method
1 also uses a ratio of pair yield and product of singles,
albeit computed directly as a function of �⌘, one would
expect it might produce robust correlation functions, i.e.
independent of detection e�ciency. We proceed to show
that while Method 1 yields results that are approximately
robust, it may in fact produce correlation function that
arbitrarily deviate from the actual distribution. Rather

than calculating ratio of pair yields and product of singles
as a function ⌘1 and ⌘2, Method 1 uses yields calculated
explicitly as a function of �⌘. The ⌘ averaging is carried
out independently for pairs and product of singles (or
mixed events). The ratio R2(�⌘) measured with method
1 can be formally written as follows.

R2(�⌘)Method1 =

R
g(�⌘, ⌘)Rtrue

2 (�⌘, ⌘)d⌘R
g(�⌘, ⌘)d⌘

(35)

where Rtrue

2 is the true value of the correlation function,
and g(�⌘, ⌘) = ✏1⇥✏1⇥⇢1⇥⇢1(�⌘, ⌘) is, in general, a non
trivial function of �⌘, ⌘. Obviously, the function g can-
not be factorized out of the integrals. Method 1 is conse-
quently intrinsically non-robust. This unfortunate con-
clusion is illustrated with the simple correlation model
introduced in sec.IV. Figure 7 (left) displays functions
R2(�⌘) obtained with Method 1 for perfect e�ciency
(solid red), a flat response with smooth edges (dash
red), and non-linear response with edge e↵ects shown for
✏
o

= 0.7, ↵ = 0.2, � = 0.2 (dash blue), ✏
o

= 0.56, ↵ = 0.3,
� = 0.3 (dash purple), ✏

o

= 0.48, ↵ = 0.4, � = 0.4 (solid
light blue). One finds that the distributions are remark-
ably similar in spite of the large di↵erences of e�ciency
used in their calculations. Di↵erences exist however and
are easily visualized in Fig. 7 (right) from the ratios of
distributions to that obtained for perfect e�ciency. Dif-
ferences are maximum near �⌘ ⇠ 0 and amount to de-
viations of a few percent only. Note that the magnitude
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Dependence on z-vertex

• ALICE, STAR Acceptances are functions of the vertex 
position.

• Use a simple model as before...

z
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Method 1 and 2 

Method 1 Method 2

w/o z binningw/o z binning

w/ z binning w/ z binning

Efficiency dependence on “z-vertex”, with gaussian edges, but quadratic dependence 
on eta  in the fiducial volume.

Both methods fail if efficiency is dependent on “z”.
Approximate recovery with fine z-bins using Method 1
Complete recovery with fine z-bins using Method 2
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Part IV: Summary

• Method 2 Robust 
• unless efficiency has dependence on z-vertex 

• but recovery possible for analysis in narrow z-bins

• Method 1 Only Approximately Robust 
• Robustness lost if singles, correlation, or efficiency are function of avg-eta

• Approximate Robustness lost if dependence on z-vertex 

• “Partial” recovery possible for analysis in narrow z-bins

•Bigger Point:
•With differential correlations, it is possible to identify detector features 

more readily than with integral correlations. 

•Integral correlations average over detector issues, they DO NOT 
eliminate them.
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Measurements in Heavy Ion Collisions 
predominantly based on two and multi-
Particle Correlation Function 

Sensitive to a wide range of 
phenomena or aspects of collisions 

Here focused on the structure and 
basic properties of correlation function 
and their measurement.
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Data Analysis Techniques for
Physical Scientists

A comprehensive guide to data analysis techniques for physical scientists, providing
a valuable resource for advanced undergraduate and graduate students, as well as
seasoned researchers. The book begins with an extensive discussion of the
foundational concepts and methods of probability and statistics under both the
frequentist and Bayesian interpretations of probability. It next presents basic
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