

CEPC Higgs combination

ZhangKaili

IHEP

2017-08-14

Outline

Model introduction

Brief look of individual analysis

• Fit Result of $\Delta(Br * \sigma)$ and κ

Combination measurement

- Uniformed, simultaneous fit framework
- Can easily include necessary correlations/uncertainties
- Extensibility for making different assumptions
- Currently, with MC sample,
 - fit Asimov data to get
 - estimated precisions of $\sigma * Br$, Br, and κ of CEPC.

Fit techniques

• Workspace: container of likelihood model and data.

Input: Higgs invariant/recoil mass spectrum+b/c/g template

• POI_(parameter of interest): $\sigma * Br$, Higgs coupling κ

- NP_(nuisance parameter): function & constrains in model besides POI
 - · represents uncertainties
 - · correlated NP share the same name
 - currently set $\Delta \sigma = 0.5\%$, $\Delta Lumi = 0.1\%$
 - more NP can be introduced in the future.
- PDF for fit:
 - signal: CB ball + Gaussian;
 - bkg: 2rd poly exp
- Algorithm:
 - Minuit2 + Minimize

For $\Delta \sigma = 0.5\%$

The response function is $1+0.005\varepsilon$,

 $\varepsilon(-5,5)$, $\sim N(\mu,1)$, and $\mu(-5,5)$

And convolute it to whole model.

The fit determines the value of ε and μ .

So not always $\Delta \sigma = 0.5\%$.

Fit techniques

pdf shape is fixed all the time.

ZH bkg events, like ZZ events in WW channel, will contribute to μ_{ZZ} .

If no specific channels known, will only contribute to μ_{alobal} or κ_z

- For each channel (like eeqq, $\mu\mu\tau\tau$)
 - Input observables from MC sample.
 - Build Combine S+B Pdf

$$Tot = N_{bb} * Pdf + N_{cc} * Pdf_{cc} + \dots + N_{bkg} * Pdf_{bkg}$$

- Add μ s on evnets number N_{bb.} could be:
 - When measure $\sigma * Br$,

$$N_{bb} = N_{bb SM} * \mu_{bb}$$

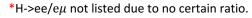
• When measure **Br**,

$$N_{bb} = N_{bb_SM} * \frac{Br_{bb}}{Br_{bbSM}} * \frac{\sigma(ZH)}{\sigma(ZH)_{SM}}$$

• When measure κ ,

$$N_{bb} = N_{bb SM} * \kappa_z^2 * \kappa_b^2$$

• Different channel share the same μ s.


eebb, mmbb, ggbb, vvbb......

Use Combine pdf to make Asimov data

No fluctuation made (Unlike ToyMC test)

• Simultaneous fit combine pdf to Asimov Data with different asumptions.

Channels Table (now 39)

^{*}nn/qq+ $\tau\tau$ without bkg.

S	ignal	Observed	Who takes charge	Last update		
Z	H	Events	who takes charge	Last upuate		
	H->qq					
	bb	7655				
ee	СС	351				
	gg	1058				
	bb	10575				
μμ	СС	538				
	gg	1556	Paivu	2017.7		
	bb	176542	Baiyu	2017.7		
qq	СС	8272				
	gg	25293				
	bb	70608				
vv	СС	3061				
	gg	9633				
			Н→γγ			
П		93	Feng	2015		
VV	γγ	309	reng	2013		
qq		822	Yitian	2017.4		
		Н	->Invisible			
qq		202				
ee	vvvv	8	MoXin	2017.7		
μμ		18				

Observed=tagged signal after cutflow and in fit range.
All events are weighted and normalized to 5ab-1.

	Signal I	Observed	Who takes charge	Last update		
Z	Н	Events				
	H->WW					
	μνμν	52				
	evev	36				
μμ	evμv	105				
	evqq	663				
	μνηη	717				
	μνμν	44	Libo	2017.4		
	evev	22				
ee	evμv	81				
	evqq	612				
	μνηη	684				
VV	qqqq	9022				
	H->ZZ					
VV	μμϳϳ	190				
μμ	vvjj	200	Yuqian	2016.9		
ee	vvjj	69				
			H→II			
μμ		2068				
qq	ττ	36023	Dan	2017.7 *		
VV		12456				
qq		71				
ee	μμ	1	Zhenwei	2017.8		
μμ	μμ	4	Zileliwei	2017.0		
VV		14				

^{*}H->zz->vvvv is tagged H->invisible.

Individual analysis intro

bb/cc/gg

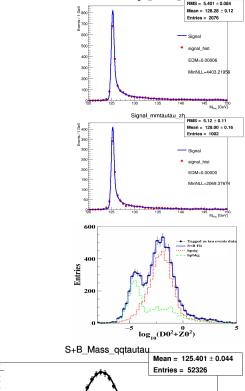
- Higgs ~70% to dijets bb/cc/gg
 - Flavor tagging algorithm
- Pre_CDR
 - bb/cc/gg separated (not reasonable)
 - $v\bar{v}H$, $\bar{q}qH$ results are extrapolated from ILC studies.
 - Bkg estimation optimistic
- Baiyu, Liboyang's template fit
 - $Z \rightarrow ee \mu\mu qq vv$, H $\rightarrow bb/cc/gg$ are studies.
 - 2D fit, with dijets' b/c likeness
 - In $Z \rightarrow ee \mu\mu qq vv$, Tot=bb+cc+gg+bkg_{zh}+bkg_{sm}.
 - Build individual pdf by MC, then fit to determine fraction.
 - the shape of bkg is fixed.
 - Which means we have a wonderful understanding with bkg,
 - · may be more suitable for CEPC.
 - toyMC to measure the precision
- Repeat their template in my model
 - Result is consistent.

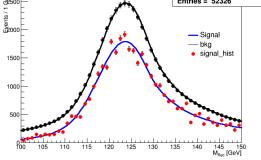
$$B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$$

Pre_CDR	μ_bb	μ_сс	μ_gg
ееН	1.1%	14.6%	5.6%
mmH	0.9%	12.6%	3.8%
qqH	0.4%	3.0%	2.6%
vvH	0.45%	3.2%	2.8%
Combined	0.28%	2.2%	1.6%

Baiyu's	μ_bb	μ_сс	μ_gg
ееН	1.2%	14.4%	7.8%
mmH	1.1%	12.8%	6.9%
qqH	0.4%	8.0%	5.2%
vvH	0.4%	3.8%	1.6%
Combined	0.3%	3.2%	1.6%

Mine	μ_bb	μ_cc	μ_gg
ееН	1.26%	14.96%	7.16%
mmH	1.04%	14.36%	5.28%
qqH	0.47%	8.08%	6.76%
vvH	0.40%	3.80%	1.54%
Combined	0.27%	3.39%	1.42%

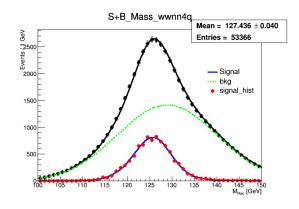

$\tau \tau$


	CDR	Currently
ττ	1.2%	0.53% (overestimated)

- Pre_CDR concludes the precision result but no description.
- Signal and ZH events(Main WW) share the same shape
 - Dan use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal
 - Distance from beam spot
 - Determine the ratio, then use ratio to produce signal sample.
- Currently,
 - $qq\tau\tau$ and $vv\tau\tau$'s bkg not ready; only signal.
 - So this 0.53% can be overestimated.
 - (only considering mm $\tau\tau$, precision is 2.71%)

Dan's result	mm	vv	qq
ττ	2.68%	1.86%	0.76%

	CDR	Mine
WW	1.5%	1.26%



• Pre_CDR's result contains:

Channel	Precision	Comment
$Z \to \mu\mu, H \to WW^* \to \ell\nu qq, \ell\ell\nu\nu$	4.9%	CEPC Full Simulation
$Z \rightarrow ee, H \rightarrow WW^* \rightarrow \ell\nu qq, \; \ell\ell\nu\nu$	7.0%	Scaled from $\mu^+\mu^-$ channel
$Z \to \nu \bar{\nu}, H \to WW^* \to qqqq$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

Currently have 11 channels of WW (with box)

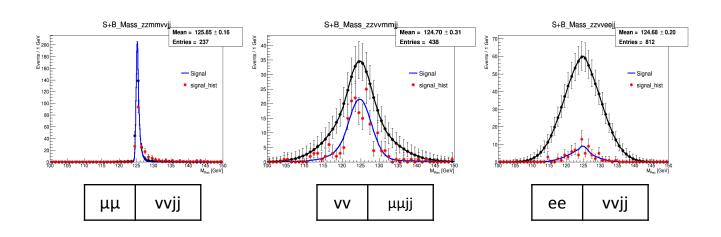
- Data entry is different with Pre_CDRs'.
- Others are undergoing

Excepted signal events of each type

	Wei Yu	aian's	work		↑ Mila
$WW^* \rightarrow qqqq$	3498	3502	3506	20808	72735
$WW^* \rightarrow \tau \nu qq$	1181	1182	1183	7025	24558
$WW^* \rightarrow \mu \nu qq$	1103	1104	1105	6562	22939
$WW^* \rightarrow evqq$	1111	1112	1114	6612	23112
$WW^* \to \tau \nu \tau \nu$	99	99	99	593	2072
$WW^* \rightarrow \mu \nu \tau \nu$	186	186	186	1107	3872
$WW^* \rightarrow e \nu \tau \nu$	187	187	188	1116	3901
$WW^* \rightarrow e \nu \mu \nu$	175	175	175	1052	3644
$WW^* \rightarrow \mu \nu \mu \nu$	87	87	87	517	1808
$WW^* \rightarrow evev$	88	88	88	525	1836
Z boson decay	ee	μμ	ττ	νν	qq

Libo's summary

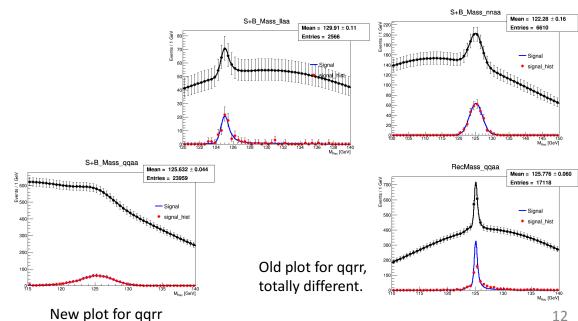
Category	Signal	Relative uncertainty	Efficiency of sel
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow evev$	20±7	35%	25.0%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu\mu\nu$	44 ± 8	18.2%	43.1%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow e\nu\mu\nu$	53±8	15.1%	27.6%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow evqq$	435 ± 23	5.3%	37.0%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu qq$	551 ± 24	4.5%	48.0%
$Z \to \mu^+ \mu^-; H \to WW^* \to evev$	23 ± 5	21.7%	25.8%
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu \nu \mu \nu$	39 ± 7	18%	44.8%
$Z \to \mu^+ \mu^-; H \to WW^* \to e \nu \mu \nu$	93 ± 10	11%	54.1%
$Z \to \mu^+ \mu^-; H \to WW^* \to evqq$	573 ± 25	4.0%	51.7%
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu \nu qq$	756 ± 30	4.4%	68.4%
$Z \rightarrow \nu \bar{\nu}; H \rightarrow WW^* \rightarrow qqqq$	8403 ± 202	2.4%	34.7%
$Z \to \mu^+ \mu^-; H \to WW^* \to qqqq$	±	2.93%	


	CDR	Mine
ZZ	4.3%	5.57%

• 3 final Z, one off-shell.

Channel	Precision	Comment
$\sigma(Z(\nu\bar{\nu})H + \nu\bar{\nu}H) \times BR(H \to ZZ)$	6.9%	CEPC Fast Simulation
$BR(H o ZZ^*)$	4.3%	Extrapolation from FCC-ee [36]

- Pre_CDR's result from extrapolating the FCC-ee.
- Now has 3 channels clear and easy to study
 - Others are rather difficult; undergoing by Yuqian.

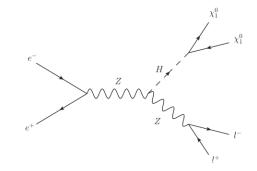

	CDR	Mine
ZZ	9.0%	7.31%

Z	Н	Mine	CDR
11		90	62+56
VV	γγ	328	339
qq		828	582

Signal events comparison

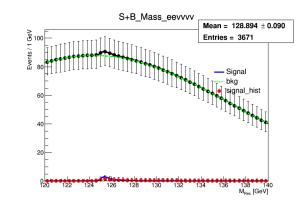
- 3 channels of $\gamma\gamma$ (ll, vv, $qq + \gamma\gamma$, lepton= μ , τ)
- Pre_CDR assume ECAL's resolution $\sim \frac{16\%}{\sqrt{E}} \oplus 1\%$, then to 9%.
- Ilrr, vvrr are fast simulated by Feng in 2015, and now outdated.
- qqrr updated by Yitian in 2017.4.
- Awaiting update.

$H \rightarrow invisible$


CDR Mine

invisible 0.14% \

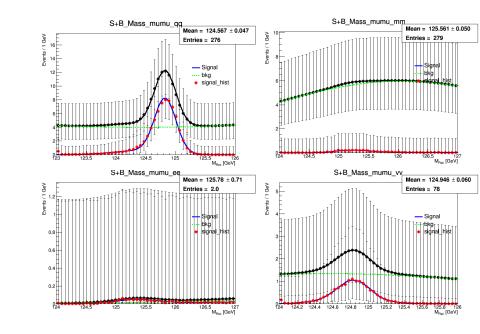
- In pre_CDR, plan to search exotic decay
 - SUSY $H \rightarrow \chi_1 \chi_1$ assume $\sigma = 200$ fb.


In this case, extrapolated from ILC studies, precision is 0.14%

- Here, treat H->ZZ->vvvv as invisible.
 - 3 channels analyzed by Moxin, Z->ee/mumu/qq
 - As large bkg, my precision of μ is ~10%.
 - The Br precision is 0.18% (in pre_CDR it's 0.28%)

Table 11: Branching ratio measurement and upper limit

	e^+e^-h	$\mu^+\mu^-h$	$qar{q}h$
Br	$0.11 \pm 0.49\%$	$0.18\% \pm 0.27\%$	$0.06\% \pm 0.34\%$
CL 95% upper limit	1.06%	0.69%	0.42%
Combination	Br $0.18\% \pm 0.1$	18%, CL 95% uppe	er limit 0.50%


$\mu\mu$ and other rare decays

	CDR	Mine
μμ	17%	15.0%

• $\mu\mu$ process

- Pre_CDR's 17% not reliable;
- Zhen Wei separate Z->ee,mm, vv and qq
- Small signal window;
- After cut 90 signals left.

- $Z\gamma$, $e\mu$, ee process are studied.
 - Since low stats and no clear ratio, not taken into fit model.

$\Delta(Br * \sigma)$ fit Result

	PreCDR	$\sigma(ZH)*\operatorname{Br}$	PreCDR for ΔBr	Fit result for ΔBr
$\sigma(ZH)$	0.51%	set to 0.50%		
$\Delta(Br*\sigma)$	0.28%	0.20%		
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.27%	0.57%	0.57%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.39%	2.3%	3.43%
$\sigma(ZH) * Br(H \to gg)$	1.6%	1.42%	1.7%	1.51%
$\sigma(ZH) * Br(H \to WW)$	1.5%	1.26%	1.6%	1.36%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.57%	4.3%	5.59%
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	0.53%*	1.3%	0.73%*
$\sigma(ZH) * Br(H \to \gamma \gamma)$	9.0%	7.31%	9.0%	7.33%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	15.00%	17%	15.00%
$Br(H \rightarrow inv.)$	\	\	0.28%	0.18%(Moxin)

In general, fit result is consistent with results of Pre_CDR and Individual studies.

k framework

Define as the ratio of the coupling to SM expects.

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$$

• In CEPC, κ occurs on three places:

For Production,

as now only ZH sample,

 κ_7^2 ;

For Partial decay,

no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_h^2 , κ_c^2 , κ_a^2 , κ_τ^2 , κ_V^2 , κ_H^2 , κ_{Inv}^2

For Total width Γ_H . $\Gamma_H = \Gamma_{SM} + \Gamma_{RSM}$

for exotic decays.

- κ framework varies for different assumptions.
- Here our fit, as sample limited, we set:
 - $\Gamma_{RSM} = 0$

Assume Γ_H constant currently

Currently the model can't fit out the Higgs width, need to import from outside. (in Pre CDR 2.8%)

- So set 9κ : κ_Z^2 , κ_W^2 , κ_h^2 , κ_c^2 , κ_a^2 , κ_τ^2 , κ_v^2 , κ_u^2 , κ_{Inv}^2

• $N_{bb} = N_{bb SM} * \kappa_z^2 * \kappa_b^2$ Fit principle is all the same with $\Delta(Br * \sigma)$. (replace μ_{bb} to $\kappa_z^2 \kappa_b^2$)

κ : current precision result

κ	7	8	9
$\kappa_{ m b}$	0.54%	0.54%	0.54%
$\kappa_{ m c}$	1.82%	1.82%	1.82%
κ_{g}	0.95%	0.95%	0.95%
κ_{γ}	4.01%	4.04%	4.04%
$\kappa_{ au}$	0.76%*	0.77%	0.77%
κ_{μ}		6.95%	6.95%
$\kappa_{inv(H o vvvv)}$			10.78%
$\kappa_{ m Z}$	0.51%	0.52%	0.52%
$\kappa_{ m W}$	0.82%	0.83%	0.83%

9: Assume Γ_H constant.

8: Assume no exotic decay. set $\kappa_{inv} = 1$

7: Assume lepton universality $\kappa_l = \kappa_{ au} = \kappa_{\mu}$

These assumptions are also used in Pre_CDR.

These simplification little affect the precision.

^{*}result of κ_{τ} is overestimated.

κ : comparison to pre_CDR

7 κ	My fit	Pre_CDR
$\kappa_{ m b}$	0.54%	1.2%
$\kappa_{ m c}$	1.82%	1.6%
$\kappa_{ m g}$	0.95%	1.5%
κ_{γ}	4.01%	4.7%
κ_{μ} = $\kappa_{ au}$	0.76%	1.3%
$\kappa_{ m Z}$	0.51%	0.16%
$\kappa_{ m W}$	0.82%	1.2%

Pre_CDR's result from Michael Peskin's codes, totally theoretic calculation.

Mine from MC sample.

As current no inclusive data, My data don't contain $\Delta(ZH) = 0.5\%$ which is a strong constrain to κ_Z .

Still, Except κ_z , this fit result is much better than the Pre_CDR.

Undergoing.....

Add pseudo data

• If we reuse some MC sample

- Ensure out total $\sigma(ZH) = 0.5\%$
- This new channel only contribute to κ_z
- Then κ_z could be 0.12%
- And all other kappa improved.
- (all constrained by $\kappa_{\rm Z}$'s precision)

Why this kappa result so good? $(\mbox{Meanwhile } \Delta (Br * \sigma) \mbox{ result consistent?})$ Under check.

7 κ	With pseudo	Wo pseudo	Pre_CDR
$\kappa_{ m b}$	0.18%	0.54%	1.2%
κ_{c}	1.72%	1.82%	1.6%
κ_{g}	0.72%	0.95%	1.5%
κ_{γ}	4.02%	4.01%	4.7%
κ_{μ} = $\kappa_{ au}$	0.31%	0.76%	1.3%
$\kappa_{ m Z}$	0.12%	0.51%	0.16%
$\kappa_{ m W}$	0.64%	0.82%	1.2%

Other assumptions (with pseudo)

Let $\kappa_b =$	$\kappa_c = \kappa_g$
5 κ	My fit
$\kappa_{ m q}$	0.175%
κ_l	0.310%
κ_{γ}	4.025%
$\kappa_{ m Z}$	0.118%
$\kappa_{ m W}$	0.635%

Only differ Boson and Fermi		
2 κ	My fit	
$\kappa_{ m V}$	0.107%	
$\kappa_{ m f}$	0.162%	

Combine bb/cc/gg	$\sigma(ZH)*Br$	ΔBr
$\sigma(ZH) * Br(H \to qq)$	0.25%	0.56%
$\sigma(ZH) * Br(H \to WW)$	1.25%	1.35%
$\sigma(ZH) * Br(H \to ZZ)$	5.57%	5.59%
$\sigma(ZH) * Br(H \to \tau\tau)$	0.52%	0.72%
$\sigma(ZH) * Br(H \to \gamma \gamma)$	7.31%	7.33%
$\sigma(ZH) * Br(H \to \mu\mu)$	14.99%	15.00%

Classified by Z decay (will comparible with inclusive data)	$\sigma(ZH)*$ Br	ΔBr
$\sigma(ZH) * Br(Z \to ee)$	1.11%	1.22%
$\sigma(ZH) * Br(Z \to \mu\mu)$	0.87%	1.00%
$\sigma(ZH) * Br(Z \to qq)$	0.32%	0.59%
$\sigma(ZH) * Br(Z \to vv)$	0.34%	0.60%

To dos

Can do a lot to improve this model in the future:

- Wait inclusive data sample
- Study κ framework
- Add Higgs width to model
- Profile likelihood ratio, 2-D Contour,

Thanks for your attention!