

Beam Optics design for CEPC collider ring

Yiwei Wang, Yuan Zhang, Yuanyuan Wei, Sha Bai, Dou Wang, Huiping Geng, Chenghui Yu, Jie Gao

IHEP, Beijing

1st workshop on applications of high energy Circular Electron-Positron Collider (CEPC) synchrotron radiation source 6-8 Dec 2017

Outline

- Introduction
- Optics of Collider ring (linear optics, nonlinearity correction)
 - Interaction region
 - Arc region
 - RF region
 - Straight section region
 - Whole ring
- Summary

Introduction

- The circumference of CEPC collider ring is **100 km**.
- In the RF region, the **RF cavities are shared by two ring for H mode**.
- **Twin-aperture of dipoles and quadrupoles is adopt in the arc region** to reduce the their power. The distance between two beams is 0.35m.
- Compatible optics for H, W and Z modes
 - For the W and Z mode, the optics except RF region is got by scaling down the magnet strength with energy.
 - For H mode, all the cavities will be used and bunches will be filled in half ring.
 - For W & Z modes, half number of cavities will be used and bunches can be filled in full ring.

Parameters of CEPC collider ring

	Higgs	W	Z	D. Wang
Number of IPs				
Energy (GeV)	120	80	45.5	
Circumference (km)				
SR loss/turn (GeV)	1.68	0.33	0.035	
Half crossing angle (mrad)				
Piwinski angle	2.75	4.39	10.8	
N_{e} /bunch (10 ¹⁰)	12.9	3.6	1.6	
Bunch number	286	5220	10900	
Beam current (mA)	17.7	90.3	83.8	
SR power /beam (MW)	30	30	2.9	
Bending radius (km)				
Momentum compaction (10 ⁻⁵)				
$\beta_{IP} x/y (m)$				
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029	
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076	
$\xi_x / \xi_y / \text{IP}$	0.024/0.094	0.009/0.055	0.005/0.0165	
RF Phase (degree)	128	134.4	138.6	
$V_{RF}(GV)$	2.14	0.465	0.053	
f_{RF} (MHz) (harmonic)	650			
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67	
Bunch length σ_{z} (mm)	3.48	3.7	5.18	
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)	
Energy spread (%)	0.098	0.066	0.037	
Energy acceptance requirement (%)	1.21			
Energy acceptance by RF (%)	2.06	1.48	0.75	
Photon number due to beamstrahlung	0.25	0.11	0.08	
Lifetime due to beamstrahlung (hour)	1.0			
<i>F</i> (hour glass)	0.93	0.96	0.986	
$L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.0	4.1	1.0	

Parameters of CEPC collider ring

D. Wang 20171127

	Higgs	W	2	2	
Number of IPs		2	•		
Energy (GeV)	120	80	45.5		
Circumference (km)	100				
SR loss/turn (GeV)	1.68	0.33	0.035		
Half crossing angle (mrad)	16.5				
Piwinski angle	2.58	4.39	12.8	9.03	
N_{e} /bunch (10 ¹⁰)	15	3.6	4	.8	
Bunch number	248	5220	8334		
Beam current (mA)	17.9	90.3	192.3		
SR power /beam (MW)	30	30	6.7		
Bending radius (km)	10.9				
Momentum compaction (10 ⁻⁵)	1.14				
$\beta_{IP} x/y (m)$	0.36/0.002				
Emittance x/y (nm)	1.21/0.0037	0.54/0.0018	0.17/0.0029		
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076		
$\xi_{\rm x} / \xi_{\rm y} / {\rm IP}$	0.031/0.116	0.009/0.055	0.0084/0.062	0.017/0.088	
$V_{RF}(\text{GV})$	2.14	0.465	0.053	0.1	
f_{RF} (MHz) (harmonic)	650 (217500)				
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67	2.38	
Bunch length σ_{z} (mm)	3.26	3.7	6.16	4.33	
HOM power/cavity (kw)	0.56 (2cell)	0.32(2cell)	0.7(2cell)		
Energy spread (%)	0.098	0.066	0.037		
Energy acceptance requirement (%)	1.52				
Energy acceptance by RF (%)	2.06	1.48	0.75	1.7	
Photon number due to beamstrahlung	0.29	0.11	0.25		
Lifetime due to beamstrahlung (hour)	1.0				
Lifetime (hour)	0.33 (20 min)	3.5	7.4		
F (hour glass)	0.93	0.96	0.986		
$L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.49	4.1	5.83	8.26	

Time structure

Top-up injection

	Higgs	W	Z
Injection Energy (GeV)	120	80	45.5
Bunch number	286	5220	8334
Bunch distance (ns)	583	64	31
Ne/bunch (10^10)	12.9	3.6	1.6
Beam current (mA)	17.7	90.3	83.8
Number of Injection Cycles	1	5	5
Current decay	3%	3%	3%
Ramping Cycle (sec)	10	6	2
Filling time (sec)	27	160	272
Collider Lifetime (hour)	0.33	3.5	7.4
Injection frequency (sec)	37	383	811

Transfer efficiency is 92% if the emmitance of LINAC is 300nm while beam lifetime is 14min.

Linear optics of Interaction region

- Provide local chromaticity correction of both plane
- L*=2.2m, θc=33mrad, GQD0=151T/m, GQF1=102T/m
- IP upstream of IR: Ec < 100 keV within 400m, last bend Ec = 47 keV
- IP downstream of IR: Ec < 300 keV within 250m, last bend Ec = 95 keV
- The vertical emittance growth due to solenoid coupling is less than 4%.
- Relaxed optics for injection can be re-matched easily as the **modular design**.

Nonlinearity correction of Interaction region

- Local chromaticity correction with sextupoles pairs separated by –I transportation
 - up to 3rd order chromaticity corrected with main sextupoles, phase tuning and additional sextupole pair 2,3)
 Ref: 2) Brinkmann 3) Y. Cai

Nonlinearity correction of Interaction region

- **Local chromaticity correction** with sextupoles pairs separated by –I transportation
 - all **3rd** and **4th RDT** due to sextupoles almost cancelled 1)
 - tune shift dQ(Jx, Jy) due to finite length of main sextupoles corrected with Ref: additional weak sextupoles 3,4)
 - Break down of -I due to energy deviation corrected with ARC sextupoles
 - could be further optimized with odd dispersion scheme 5), •

Brinkmann sextupoles 2) or pair of decapoles 3)

1) K. Brown 2) Brinkmann

3) Y. Cai

4) Anton 5) K. Oide

6) J. Bengttson's

Linear optics design of ARC region

• FODO cell, 90°/90°, non-interleaved sextupole scheme, period =5cells

• **Twin-aperture of dipoles and quadrupoles is adopt in the arc region** to reduce the their power. The distance between two beams is 0.35m.

Nonlinearity correction of ARC region

- FODO cell, 90°/90°, non-interleaved sextupole scheme, period =5 cells
 - tune shift dQ(Jx, Jy) is very small
 - DA on momentum: large
 - Chromaticity dQ(δ) need to be corrected with many families
 - DA off momentum: with many families to correct $dQ(\delta)$
 - With 2 families of sextupoles in each 4 periods i.e. 20 cells
 - all 3rd and 4th resonance driving terms (RDT) due to sextupoles cancelled, except small 4Qx, 2Qx+2Qy, 4Qy, 2Qx-2Qy
 - break down of -I due to energy deviation cancelled
 - thus cells numbers equal to 20*N in each ARC region

FODO cell for cryo-module

- 336 / 6 / 2RF stations / 2 sections / 2= 7 cells in each section
- get a smallest average beta function to reduce the multi-bunch instability caused by RF cavities
 - 90/90 degree phase advance
 - as short as possible distance between quadrupoles, but should be larger than a module length (12m)

Optics design of RF region

- **Common RF cavities** for e- and e+ ring (Higgs)
- An electrostatic separator combined with a dipole magnet to avoid bending of incoming beam(ref: K. Oide, ICHEP16)
- RF region divided into two sections for bypassing half numbers of cavities in Z mode

Optics design of Straight section region

- The function of the straight section is phase advance tuning and injection.
 - Independent magnets for two rings
 - 0.3m between two quadrupoles of two rings allows a larger size of quadrupoles

•

Linear optics of the collider ring

An optics fulfilling requirements of the parameters list, geometry,

Sawtooth orbit correction

• With only two RF stations, the sawtooth orbit in CEPC collider ring around 1mm for H and becomes 1um after tapering the magnet strength with beam energy.

$$\delta_E = \frac{U_0}{2N_{RF}E}$$
 =0.35%

Dynamic aperture optimization

Y. Zhang

- SAD is used
- 200 turns tracked
- 100 samples
- IR sextupoles + 32 arc sextupoles (Max. free various=254)
- Damping at each element
- RF ON
- Radiation fluctuation ON
- Sawtooth on with tapering
- The requirements

 $\begin{array}{l} \mathbf{16}\sigma_x \times \mathbf{16}\sigma_y \& \mathbf{0.015} \\ \mathbf{20}\sigma_x \times \mathbf{20}\sigma_y \& \mathbf{0.017} @ \mbox{ Higgs} \\ \mbox{ without errors} \end{array}$

- Linear optics of the CEPC collider ring designed fulfilling requirements of the parameters list, geometry, photon background and key hardware.
- Nonlinearity correction made to give a good start point of dynamic aperture optimization.
- Optimized DA fulfill requirement from beam-beam and injection.
- Study with errors and correction is undergoing.

Damping vs damping+fluctuation

Radiation power due to quadrupoles: $P \propto \int B^2 ds \propto \int K_1^2 \beta ds \cong \sum (K_1 l)^2 \beta / l$

Damping vs damping+fluctuation

-0.005 0.000 0.005 0.015 0.010 $\Delta E/E$ -0.005 0.000 0.005 0.010 0.015 $\Delta E/E$

Hard line: w/ damping only

Dashed line: w/ damping and fluctuation (20 samples, maximum) Dot-dashed line: w/ damping and fluctuation (20 samples, minimum) Further optimization with longer QD0 by MODE is undergoing.

Injection time structure

Top-up injection

X. Cui, T. Bian

