

中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS

Si-PIN、CdZnTe和SiC半导体探测器的研究进展

杜园园, 曹学蕾, 王科, 张春雷, 张万昌

中国科学院高能物理研究所天体中心

2017年12月6日

第一届同步辐射光源会议,北京

- 半导体探测器的研究背景和意义
- 半导体探测器的研究进展
- **↓** HXMT卫星中Si-PIN探测器的应用
- **↓** CdZnTe探测器在航天中的应用
- **↓** SiC探测器的研究进展

X射线和γ射线核辐射技术的应用

Industrial CT Medical imaging Security inspection Image: Security inspectinspectinspection Im

Nuclear safeguards

Astronomy investigation

射线分类及探测技术

光子能量 / eV

X射线和y射线核辐射探测器的发展

半导体探测器对所用材料的要求:

平均原子序数高、较大的禁带宽度大、较高的电阻率、优异的载流子传输特性(电子迁移率寿命大)、工作时的漏电流和噪声较低。

各种半导体探测器材料比较

	Ζ	Eg (eV)	W (eV/ehp)	ρ at RT ($\Omega cm)$
Si	14	1.12	3.6	
Ge	32	0.66	2.9	
InP	49/15	1.4	4.2	107
GaAs	31/33	1.4	4.3	108
CdTe	48/52	1.4	4.4	10 ⁹
CdZnTe(CZT)	48/52	1.6	4.7	10 ¹¹
HgI_2	80/53	2.1	4.2	10 ¹³
TlBr	81/35	2.7	5.9	1011
Diamond	6	5	13	>1013

6

Also: SiC, Pbl₂, CdMnTe, ZnSe, GaSe, GaN

A lucie.

各种探测器性能比较

常用材料: Si、Ge元素半导体, GaAs化合物半导体。

Si探测器具有较高的探测效率和能量分辨率。

Si探测器由于自身的禁带宽度 E_g 仅为1.06 eV,且原子序数小,对高能射线的阻止本领和探测效率较低。

高纯锗(HPG)半导体探测器具有较高的探测效率和能量分辨率。 但Ge探测器必须在液氮温度下工作才具有优良的能量分辨率。

GaAs原子序数大、禁带宽度大,对γ射线探测效率高。 制备成的探测器可在室温下工作,但是由于电阻率低,电荷载流子漂移程短,

限制了GaAs探测器的发展。

CZT探测器优势

SiC探测器优势

在外太空、高能物理实验等高温高压以及强辐射环境下,探测器的<mark>耐高温</mark>和 <mark>耐辐照</mark>性能备受关注。

SiC: 大禁带宽度、高临界击穿场强、强热稳定性、高电子迁移率、高热导率,高硬度。

材料	4H-SiC	6H-SiC	3C-SiC	Si	Ge
禁带宽度/eV	3.3	3.0	2.3	1.1	0.66
电子迁移率/cm ² ·V·s ⁻¹	800-1000	370	750	1450	3900
空穴迁移率/cm ² ·V·s ⁻¹	50-115	50	40	450	1900
离位能/eV	21.8	21.8	21.8	12.8	14.4
击穿电压/MV·cm ⁻¹	3.0	2.4	>1.5	0.5	0.1

SiC探测器禁带宽度大,在高温下性能将优于Si和Ge探测器,离位能大,具有 比Si更好的抗辐照性能,有望取代Si作为耐高温抗辐照半导体探测器的材料。

Si平面探测器的应用

➡ Si平面工艺探测器主要优点:

- ▶ 漏电流小:比面垒探测器一般要小2个数量级。
- ▶ 噪声低,能量分辩率高,计数率高。
- ▶ 一致性好,易于制备结构复杂探测器及大面积阵列探测器。
- ▶ 可以集成化,如前级FET集成在探测器上,可大大提高其能量分辨率。

▶ Si平面工艺探测器基本工艺 :

Si片 ---氧化 ----光刻 ---腐蚀 ----离子注入 ---退火 ----制做电极 ---热处理 --- 做电极引线。

➡ Si-PIN探测器结构及特点:

➢ Si-PIN探测器结构简单;

▶10mm² 探测器、-40℃时能量分辨率可以达到140~150eV@5.9KeV。

HXMT卫星中Si-PIN探测器的应用

2017年6月15日发射的HXMT卫星—慧眼

"慧眼"采用分舱室式设计,有效载荷(科学探测仪器)位于卫星上部,服务舱以资源-2卫星平台为基础位于卫星下部。卫星总质量约2500kg,将运行在高度550km、倾角43°的近地圆轨道,在轨设计寿命4年。

中能X射线望远镜功能连接示意图

表 1 HXMT ME 与 Suzaku HXD 主要技术指标对比

	Suzaku HXD	HXMT ME		
能量分辨率	FWHM 4 keV@59.5 keV (-20°C)	FWHM 3 keV@59.5 keV (-5°C)		
面积	$\sim 160~{ m cm}^2 @20~{ m keV}$	\sim 600 cm ² @20 keV		
探测能区	$12\sim 70~{ m keV}$	$5\sim 30~{\rm keV}$		

Si-PIN探测器的组成 探测器插件组件实物照片 Be Density=1.848g/cm³ Thickness=50µm 1.00 0.98 -

厚度1mm、56mm²两像素的Si-PIN探测器

Si-PIN探测器的工作原理 入射X射线 钝化层 AI负电极 ψ^+ 高阻区熔单 -耗尽区

产生电子、空穴对定向移动形成电信号

 N^{+} AI正电极

晶 Si

Si-PIN 探测器结构示意图

₄ XTP背景型号CdZnTe样机的研制

₄ GECAM项目CdZnTe样机的研制

Missions	Nation	Carrier	Goal	Energy	Electrod	Element	Detector	Pitch
				(keV)	e	size /mm ³	area /cm ²	/mm
HEXIS-2		Satellite	Survey, GRB	3~100	Strip	32×32×2	5535	0.5
HEXIS-1		Balloon	Hard X-ray survey	20~200	Strip	32×32×2	640	0.5
BAT		Satellite	GRB	15~150	Pixel	$4 \times 4 \times 2$	5240	4
AXGAM		Satellite	Survey, GRB	2~200	Pixel	26×26×2	5600	0.3
InFOCµS		Balloon	Hard X-ray survey	20~80	Pixel	27×27×2	150	0.38
HEFT		Balloon	Hard X-ray Survey	20~100	Pixel	23.6×12.9×2	1000	0.5
HEX		Satellite	Lunar mission	20~250	Pixel	2.5×2.5×3	100	2.5
BASIS		Satellite	GRB	10~200	Strip	15×15×2 /10×10×2	750	0.1/10
EXIST		Satellite	Survey, GRB	10~600	Pixel	20×20×5		0.6
MARGIE		Balloon	Survey	20~600	Strip	24×24× 1.5	>1000	0.38
Simbol-X	EURO	Satellite	Hard X-ray survey	4~100	Pixel	10×10×2	256	0.9
ASTROSAT		Satellite	Hard X-ray survey	15~100	Pixel		1000	—
FAR-XITE		Balloon	Survey	20~90	Strip	32×32×2	100	0.5
Con-X HXT		Satellite	Hard X-ray survey	6~40	Pixel	Diameter>23	>1500	< 0.73
INTEGRAL	EURO	Satellite	GRB	15~1000	—	$4 \times 4 \times 2$	2621	

CZT探测器在空间天文观测中的应用

不同尺寸的CZT单平面探测器

不同规格的CZT像素探测器

线阵列像素探测器

64面阵列像素 探测器

256面阵列像素 探测器

大探测面积(30000-40000 cm²)、宽波段(1-100 keV)的X射线天文望远 镜主要科学目标是研究黑洞X射线双星的快速光变以及伴随的能谱变化。

XTP卫星准直型望远镜所用CZT探测器漏电流和 PCB板设计图

单通道前端电子学模块 匹配CZT探测器能谱

对Am²⁴¹源能量分辨率 为2.9KeV@ 59.5KeV。

32路CdZnTe样机实物图

单路CdZnTe样机实物图和能谱

32路均能正常工作,能谱分辨率均在3.5KeV@59.5KeV,符合指标要求 (<u>4KeV@59.5KeV</u>)

单路CdZnTe样机时间谱

单路测试时间间隔谱

单路测试时间间隔谱放大图

时间分辨率约为10us

GECAM项目

- GECAM(引力波暴高能电磁对应体全天监测器)
 - 全天视场,同时监测100%全天,领先现有设备3-10倍
 - 高灵敏度: 比Fermi/GBM好3倍
 - 定位能力:~1 deg,匹配未来需求
 - 宽能量区: 6 keV 2 MeV, 鉴别证认源
 - 对引力波暴电磁对应体的综合探测能力比现有设备提高5-10倍!- 计划2022年发射运行
- 紧紧围绕科学需求,优化设计
 - 两颗微小卫星, < 50 kg/颗
 - 分布于地球两侧,形成全天覆盖
 - 伽玛射线探测器 20个/颗
 - 荷电粒子探测器 5个/颗

GECAM概念设计图。上部的球状结构为有效载荷,包括伽马射线探测器和荷电粒子探测器;下部为卫星平台。

GECAM有效载荷的原理样机研制(3种探测器)

伽玛射线探测器(GPD): LaBr₃, CZT 方案(备份、提升) 荷电粒子探测器(CPD): PS方案

GECAM中CdZnTe样机的目标: 探测能区为6keV-2MeV,能量分辨率<6%@662keV, 计数率2000-20000Hz,占空比>70%。

□ 分立器件模块:模块下限6keV,能量分辨率优于5%,主要解决能量下限问题。
 □ ASIC集成模块:模块下限6keV,能量分辨率优于5%,可拼接,有效面积达70%。

分立器件的正反面, 模块尺寸为: 43*26mm², CdZnTe探测器尺寸为4*4mm²

分立模块的能谱响应

ASIC 集成芯片CPRE_6的测试

反馈电阻1.2GΩ,反馈电容 15fF,成形增益5倍,达峰时间 0.71μs。关闭比较器,将成形 输出S_OUT接入多道。

SiC探测器的研究进展

Ohmic contact

<u>高性能SiC探测器对SiC材料的要求:</u>

SiC衬底和外延层缺陷少,均匀性好; 2. 较小的反向漏电流和较高的反向偏压;
 3.较大的探测器灵敏区的厚度; 4. SiC表面态密度低。

SiC探测器对金属电极的要求:

- ▶ 欧姆接触:低的比接触电阻率和高的稳定性;
- ▶ 肖特基接触:有较大的肖特基势垒高度,势垒分布均匀。

肖特基二极管的制备和表征

1. 肖特基二极管的封装

肖特基二极管 结构示意图 Schottky contact, 0.1µm, Ni

4H-SiC epi, 100 μ m, N_D=2.9E14cm⁻³

4H-SiC buffer layer, $1\mu m$, $N_D = 1E18cm^{-3}$

4H-SiC bulk, 360 μ m, N_D=1E18cm⁻³

Ohmic contact, 0.1µm Ni/6µm Au

反向I-V特性和耗尽层宽度随电压的变化关系

100µm SiC肖特基二极管探测器的能谱测试

信号计数率为566.11,信号计数率较低,而采用的源为为100µCi的强²⁴¹Am源。

不同能量的γ射线在不同有效区域厚度的SiC探测器的吸收效率

当SiC探测器全耗尽时,吸收率也只有0.8%,因此在灵敏区内产生载流子的 光子较少,造成探测器的计数率低,需要较长的累积时间才能得到幅度较高 的全能峰。

SiC肖特基二极管探测器耐高温性能测试

4H-SiC的禁带宽度是3.3eV,是Si的3倍,由其构成的探测器在高温下的性能将明显优于Si和Ge探测器。

SiC肖特基二极管探测器耐辐照性能测试

辐照试验是在北大化学系进行,辐射源为⁶⁰Co,能量为1.25MeV,剂量率为50rad/s(1.8*10⁵/h)。

计算出辐照前后探测器的势垒高度分别为1.678eV和1.691eV,理想因子分别为1.116和 1.111。经过1Mrad的辐照剂量后,探测器的势垒高度和理想因子均变化不大。

总结

针对目前空前X、γ射线探测和CEPC同步辐射光源对辐射探测器的需求,简单介绍本课题组在Si-PIN、CdZnTe和SiC探测器和样机方面的研究进展。

◆ 2017年6月发射的慧眼HXMT卫星中,ME共装有432个MEDET探测器,每 个MEDET包含两个2像素Si-PIN探测器,探测能区为5-30keV,能量分辨率为 3keV@59.5keV(-5℃)。

◆CdZnTe探测器样机应用于XTP背景型号准直型X射线望远镜中,能量分辨率为4keV@59.5KeV,时间分辨率为10µs;以及GECAM的载荷伽玛射线探测器,能谱分辨率为4.63%@59.5keV,探测下限为3keV。

 ◆采用4H-SiC外延片制备SBD α和γ射线探测器,得到SiC探测器的能量分辨率 为5.65keV@ 59.5KeV (9.49%),可以在25-125 ℃条件下正常工作,经过1Mrad
 ⁶⁰Coγ射线辐照后,探测器性能基本没有变化。

第一届同步辐射光源会议,北京

欢迎大家批评指正!