

Charm Physics Prospects at Belle II

Chengping Shen

BESIII-BELLE-LHCb粲强子物理联合研讨会 http://indico.ihep.ac.cn/event/7195/

2017年9月23-24日

Outline

- The Belle II experiment
- Charm mixing and CP violation
- Leptonic charm decays
- Rare charm decays
- Summary

The Belle II experiment

The B Factory Legacy

Discover (or constrain) new physics!

Physics at Belle II

- Good chance to see/confirm new phenomena:
 - CPV from the new physics (non KM).
 - lepton universality in B decays (R_D , R_{D^*} , R_K)
 - $B \rightarrow \tau v$ to probe charged Higgs.
 - Lepton flavor violations in τ decays.
- Will help to diagnose (if found) or constrain (if not found) NP.
- Physics motivation independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics.
- Many more topics: CPV in charm, new hadrons, ...

Physics reach with 50 ab⁻¹ (75 ab⁻¹):

- 1. Physics at Super B Factory (Belle II authors + guests) > arXiv:1002.5012
- 2. SuperB Progress Reports: Physics (SuperB authors + guests) > arXiv:1008.1541
- 3. B2TIP report: confluence.desy.de/display/BI/B2TiP+WebHome: > PTEP soon

Need O(100x) more data \rightarrow Next generation B-factories

High-Luminosity Asymmetric B Factory

- ➡ Target luminosity is ℒ = 8x10³⁵ cm⁻²s⁻¹ (x40 w.r.t. BELLE)
- Achievable in the nano-beam scheme (P. Raimondi for SuperB)
 - double beam currents
 - squeeze beams @ IP by 1/20

paramators		КЕКВ		SuperKEKB		unita
parameters		LER	HER	LER	HER	unics
beam energy	E _b	3.5	8	4	7	GeV
CM boost	βγ	0.4	25	0.	0.28	
half crossing angle	φ	П		41.5		mrad
horizontal emittance	٤ _x	18	24	3.2	4.6	nm
emittance ratio	К	0.88	0.66	0.37	0.40	%
beta-function at IP	$\beta_x * / \beta_y *$	1200	0/5.9	32/0.27	25/0.30	mm
beam currents	lь	1.64	1.19	3.6	2.6	А
beam-beam parameter	ξγ	129	90	0.0881	0.0807	
beam size at IP	$\sigma_x * / \sigma_y *$	100/2		10/0.059		μm
Luminosity	Ľ	2.1x	10	8x10 ³⁵		cm ⁻² s ⁻¹

High-Luminosity Asymmetric B Factory

Colliding bunches

New superconducting / permanent final focusing quads near the IP

Belle II Detector

- All sub-detectors are upgraded from Belle II:
 - Except for ECL crystals and a part of Barrel KLM

Belle II Detector

5. K₁ and μ 4. EM Calorimeter (barrel+endcap): detector: CsI(TI), waveform sampling **Resistive Plate** Counter (barrel) Illator + WLSF + improved IP and secondary vertex resolution PC (end-caps) • better K/ π separation and flavor tagging machine background rejection 1. Ve • higher K_S, π^0 and slow pions reconstruction efficiency 2 layers DEP (4GeV) 2. Central Drift Chamber 3. Particle Identification smaller cell size, long lever arm Barrel : Time-of-Propagation counters End-cap : prox. foc. ARICH

- All sub-detectors are upgraded from Belle II:
 - Except for ECL crystals and a part of Barrel KLM

last B2GM (Feb. 2017)

detector. First physics

runs on Y(4S) and Y(6S)!

~20±20 fb -1

Vacuum scrubbing & beam

background studies with

BEASTI

13

(C) Phase 1 commissioning results

15

Belle II Status

Belle II Roll-In completed April 11, 2017 CERNCOURER

Belle II rolls in

On 11 April, the Belle II detector at the KEK laboratory in Japan was successfully "rolled-in" to the collision point of the upgraded SuperKEKB accelerator, marking an important milestone for the international B-physics community. The Belle II experiment is an international collaboration hosted by KEK in Tsukuba, Japan, with related physics goals to those of the LHCb experiment at CERN but in the pristine environment of electron-positron collisions. It will analyse copious quantities of B mesons to study CP violation and signs of physics beyond the Standard Model (CERN Courier September 2016 p32).

"Roll-in" involves moving the entire 8 m-tall, 1400 tonne Belle II detector system from its assembly area to the beam-collision point 13 m away. The detector is now integrated with SuperKEKB and all its seven subdetectors, except for the innermost vertex detector, are in place. The next step is to

install the complex focusing magnets around the Belle II interaction point. SuperKEKB achieved its first turns in February 2016, with operation of the main rings scheduled for early spring and phase-III "physics" operation by the end of 2018. Compared to the previous Belle

experiment, and thanks to major upgrades made to the former KEKB collider, Belle II will allow much larger data samples to be collected with much improved precision. "After six years of gruelling work with many unexpected twists and turns, it was a moving and gratifying experience for everyone on the team to watch the Belle II detector move to the interaction point," says Belle II spokesperson Tom Browder. "Flavour physics is now the focus of much attention and interest in the community and Belle II will play a critical role in the years to come."

Motivation for **BEAST II**:

- Machine commissioning
- Radiation safe environment for the VXD

First Cosmics in a B field:

The Belle II detector is now in place at the SuperKEKB facility in Japan.

Belle II Collaboration

750 colleagues, 101 institutions, 23 countries/regions

Status of Belle II Physics Book

- Belle II physics book (630p), to be printed by PTEP / Oxford University Press <u>https://confluence.desy.de/display/BI/B2TiP+ReportStatus</u>
- A few small unfinished areas, but otherwise close to complete and ready for review to commence.
- Await formation of Belle II publication committee to conduct collaboration wide review and form full collaboration author list ASAP.

Charm mixing and CP violation

Mixing and CP violation

• Open-flavor neutral meson transforms to anti-meson:

 $K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq \text{mass eigenstate} |D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}$)

$$|D_{1,2}\rangle \equiv \rho |D^0\rangle \pm q |\overline{D^0}\rangle$$
 (CPT: p²+q²=1)

- Mixing parameters: $\mathbf{x} \equiv 2 \frac{M_1 M_2}{\Gamma_1 + \Gamma_2}$, $\mathbf{y} \equiv \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}$
- Unique system: only up-type meson for mixing
- Standard Model(SM) predicts: $\sim \mathcal{O}(1\%)$ • $\mathcal{O}(1\%)$ • $\mathcal{O}(1\%)$
- Precise measurement of x, y: effectively limit the New Physics(NP) modes; and search for NP, eg: |x| ≫ |y|

 Three types of Charged-conjugated-Parity combined symmetry Violation (CPV):

$$\mathcal{A}^{f}_{CP} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = \mathbf{a}^{f}_{d} + \mathbf{a}^{f}_{m} + \mathbf{a}^{f}_{i}$$

$$a_d^f$$
: (direct CPV) CPV in decay $|\bar{A}_{\bar{f}}/A_f| \neq 1$
 $\left| \underbrace{\stackrel{P^0}{\longrightarrow} f}_{f} \right|^2 \neq \left| \underbrace{\stackrel{\bar{P}^0}{\longrightarrow} \bar{f}}_{f} \right|^2$

•
$$a_m^f$$
: CPV in mixing with $r_m = |q/p| \neq 1$
 $\left| \frac{P^0}{f} \right|^2 \neq \left| \frac{P^0}{f} \right|^2 \neq \left| \frac{P^0}{f} \right|^2$

•
$$a_i^f$$
: CPV in interference with $\arg(q/p) \neq 0$

- SM with only a source: the phase in CKM
- in charm sector, it's predicted at $\sim \mathcal{O}(10^{-3})$
- $\bullet~\sim 1\%$ exp. sensitivity to observe CPVightarrowNP

 D^0 - D^0 mixing observation in more channels, and CPV searches are two of most important physical goals for Charm WG at our Belle II experiment.

Belle II Vertex Detector Upgrade

Belle II:

 $\sigma \approx 40 \,\mu\text{m}$

$\bigcup_{B\in II} D^{\theta} \to K^+K^- Decay Time Resolution$

• Time-dependent amplitude of $D^0 \to f$ (here $t[\tau_{D^0}]$ and $\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{\bar{A}_f}$):

 $\Gamma(D^0(t) \to f) \propto |\mathcal{A}_f|^2 e^{-t} \left(\frac{1+|\lambda_f|^2}{2} \cosh(yt) - \operatorname{Re}(\lambda_f) \sinh(yt) \frac{1-|\lambda_f|^2}{2} \cos(xt) + \operatorname{Im}(\lambda_f) \sin(xt) \right) \otimes_t \operatorname{Res}(t)$

- ► Time resolution Res(t) is essential in t-dept. measurements of $D^0 \overline{D^0}$ mixing and CPV
- Determine D^0 proper time: $t = \frac{\ell_{dec}}{c\beta\gamma} = \frac{m_D}{cp}\vec{d}\cdot\frac{\vec{p}}{p}$ and its uncertainty σ_t

- ▶ Based on MC study, time resolution = 140 fs: $2 \times$ better than BaBar (270 fs)
- Time error σ_t : factor 3 improvement; and $RMS(\sigma_t)$: reduced by a factor 2.
 - $Res = Gauss(\mu, k\sigma_t)$, so reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics

$$t=rac{\ell}{eta\gamma c}=rac{\ell}{c}rac{m_D}{|ec p|}$$

decay time resolution of prompt D⁰ = 0.15 ps (also excellent)

Belle II

Mixing/CPV precision for $D^0 \rightarrow K^+ \pi^-$

- generate $D^0 \rightarrow K^+ \pi$ decays with mixing (study II: + CPV)
- smear decay time according to resolution $\sigma = 0.14 \ ps$
- generate and fit ensembles of 1000 experiments corresponding to 5, 20, 50 ab⁻¹ of data)

Toy MC study #1: no CPV

- fit decay time distribution for R_D, x², y
- use same PDF for *D*⁰ and *D*⁰bar (convolved with Gaussian resolution function)

$$\frac{dN(D^0 \rightarrow f)}{dt} ~\propto~ e^{-\overline{\Gamma}\,t} \, \left\{ R_D ~+~ \sqrt{R_D}\,y'(\overline{\Gamma}t) ~+~ \frac{(x'^2+y'^2)}{4}(\overline{\Gamma}\,t)^2 \right\} \label{eq:relation}$$

Toy MC study #2: include CPV

- fit decay time distribution for R_D, x', y', |q/p|, φ (note: sensitive to sign of x)
- use different PDFs for *D*⁰ and *D*⁰bar (convolved with the same Gaussian resolution function)

$$\begin{split} D^{0}(t) &\propto \quad \left\{ \left| R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma}t) + \left| \frac{q}{p} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma}t)^{2} \right\} \\ \overline{D^{0}}(t) &\propto \quad \left\{ \overline{R}_{D} + \left| \frac{p}{q} \right| \sqrt{\overline{R}_{D}} (y' \cos \phi + x' \sin \phi) (\overline{\Gamma}t) + \left| \frac{p}{q} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma}t)^{2} \right\} \end{split}$$

Preliminary

Effect upon Mixing and CPV Precision

Toy MC no CPV results (preliminary):

	5 ab-1	20 ab ⁻¹	50 ab ⁻¹
x ² (x 10 ⁻⁵) x ² (%)	14.4 0.72	7.0 0.35	4.4 0.22
y' (%)	0.156	0.075	0.047

LHCb 3 fb⁻¹

4.3 0.08 competitive for y'?

Toy MC allowing for CPV results (preliminary):

	5 ab-1	20 ab ⁻¹	50 ab ⁻¹
x' (%)	0.37	0.23	0.15
y' (%)	0.26	0.17	0.10
q/p	0.197	0.089	0.051
φ (deg)	15.5	9.2	5.7

$\underset{\text{Belle II}}{\text{Relie II}} Mixing/CPV Precision for D^0 \rightarrow K_S \pi^+\pi^-: \overset{\text{PRD 89,}}{\underset{(2014)}{\text{PRD 89,}}}$

Fitting the time-dependent Dalitz plot yields x, y, |q/p| and $\phi = Arg(q/p)$

- Signal yield determined from 2-dim. fit to $M_{K\pi\pi}$ and $\Delta M = M_{K\pi\pi\pi} M_{K\pi\pi}$. Yield is 1.2 x 10⁶ events with a purity of 96%.
- For events in signal region, do unbinned ML fit to m⁺ = M (Kπ⁺)², m⁻ = M(Kπ)², and decay time t. Fit parameters are x, y, τ, resolution function parameters (2-3 Gaussians), and decay model: magnitudes and phases of 13 intermediate resonances.
- Do fit separately (+ simultaneously) for D⁰ and D⁰bar samples to obtain |q/p|, φ.

Resonance	$\mathbf{Amplitude}$	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.590 ± 0.003	131.8 ± 0.2	0.6045
$K_0^*(1430)^-$	2.059 ± 0.010	-194.6 ± 1.7	0.0702
$K_2^*(1430)^-$	1.150 ± 0.009	-41.5 ± 0.4	0.0221
$K^{*}(1410)^{-}$	0.496 ± 0.011	83.4 ± 0.9	0.0026
$K^{*}(1680)^{-}$	1.556 ± 0.097	-83.2 ± 1.2	0.0016
$K^{*}(892)^{+}$	0.139 ± 0.002	-42.1 ± 0.7	0.0046
$K_0^*(1430)^+$	0.176 ± 0.007	-102.3 ± 2.1	0.0005
$K_2^*(1430)^+$	0.077 ± 0.007	-32.2 ± 4.7	0.0001
$K^{*}(1410)^{+}$	0.248 ± 0.010	-145.7 ± 2.9	0.0007
$K^{*}(1680)^{+}$	1.407 ± 0.053	86.1 ± 2.7	0.0013
$\rho(770)$	1 (fixed)	0 (fixed)	0.2000
$\omega(782)$	0.0370 ± 0.0004	114.9 ± 0.6	0.0057
$f_2(1270)$	1.300 ± 0.013	-31.6 ± 0.5	0.0141
$ \rho(1450) $	0.532 ± 0.027	80.8 ± 2.1	0.0012

Fit projections: (fitted function describes the data well)

		the second se	and the second		the second se		
	Observable	Statistical	Syste	ematic	Total	$\sigma_{ m Belle~II}\!=\!\sqrt{(\sigma_{ m stat}^2+\sigma_{ m stat}^2)}$	$(\mathcal{L}_{ m Belle}) \cdot rac{\mathcal{L}_{ m Belle}}{50 \ { m ab}^{-1}} + \sigma_{ m irred}^2$
			red.	irred.			
	$x^{K_S\pi^+\pi^-}~[10^{-2}]$					LHCb 3 fb⁻¹ (arXiv:1208.3355)	LHCb 1 fb ⁻¹ (JHEP 1604, 033)
X	$976 \ {\rm fb}^{-1}$	0.19	0.06	0.11	0.20		
	50 ab^{-1}	0.03	0.01	0.11	0.11	0.2	0.6
la/nl	$ q/p ^{K_S \pi^+ \pi^-} [10^{-2}]$						
14/121	$976 \ {\rm fb}^{-1}$	15.5	5.2 - 5.6	7.0-6.7	17.8		
	50 ab^{-1}	2.2	0.7-0.8	7.0-6.7	7.0-7.4	20	-
V	$y^{K_S\pi^+\pi^-}$ [10 ⁻²]						
,	$976 { m ~fb^{-1}}$	0.15	0.06	0.04	0.16		
	50 ab^{-1}	0.02	0.01	0.04	0.05	0.2	0.5
ϕ	$\phi^{K_S\pi^+\pi^-}$ [°]						
	$976 \ {\rm fb}^{-1}$	10.7	4.4 - 4.5	3.8-3.7	12.2		
	50 ab^{-1}	1.5	0.6	3.8-3.7	4.0-4.2	15	-

- irreducible systematics related to Dalitz plot model; this will improve with model-independent approach (using BESIII binned phases)
- *improvement in proper time resolution not included here*

Mixing/CPV Precision for $D^0 \rightarrow K^+ \pi \pi^0$

- ► Time-dependent Dalitz plot(TDDP) provides an essential tool in studying $D^0 \overline{D^0}$ mixing.
- Only method: sensitive to linear order in both mixing parameters, especially self-conjugated decays like $K_S^0 hh$ (not rotated by an unknown δ)
- ► TDDP fit on $D^0 \to K^+ \pi^- \pi^0$ WS decays to extract mixing par. $(x''/r_0, y''/r_0)$ $|\mathcal{A}_{\tilde{f}}|^2 = \left[|\mathcal{A}_{\tilde{f}}^{DCS}|^2 e^{-\Gamma t} + \frac{(x^2 + y^2)}{4r_0^2} |\mathcal{A}_{\tilde{f}}^{CF}|^2 (\Gamma t)^2 e^{-\Gamma t} + \left(\frac{y''}{r_0} \operatorname{Re}[\mathcal{A}_{\tilde{f}}^{DCS} \mathcal{A}^*_{\tilde{f}}^{CF}] + \frac{x''}{r_0} \operatorname{Im}[\mathcal{A}_{\tilde{f}}^{DCS} \mathcal{A}^*_{\tilde{f}}^{CF}] \right) (\Gamma t) e^{-\Gamma t} \right] \otimes_t \operatorname{Res}(t)$ $x'' = x \cos \delta_{K\rho} + y \sin \delta_{K\rho}, y'' = y \cos \delta_{K\rho} - x \sin \delta_{K\rho}, r_0 = |\mathcal{A}^{CF}| / |\mathcal{A}^{DCS}|$
- ► BaBar: the evidence (3.2 σ) with 384 fb⁻¹: $\sigma(x'', y'') = \begin{pmatrix} +0.57 & +0.55 \\ -0.68 & -0.64 \end{pmatrix}$ % [PRL 103, 211801 (2009)]
- ToyMC: smear lifetime with Gauss(σ =140 fs); without considering bkg effects.

- Time-integrated *CP* asymmetries are measured based on partial decay rates: $A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} = a_{d}^{f} + a_{ind}^{f} \quad \text{e.g: in } D^{0} \to K_{S}^{0}h^{+}, \text{ measured asym.: } A_{raw} = A_{CP} + A_{FB} + A_{\epsilon}^{h^{+}} + A_{CP}^{K^{0}}$
- Several measurements are performed at Belle

Channel		Current meas	surement	Belle II	LHCb	BELLE	Bollo II
	$\mathcal{L}(/fb)$	value(%)	References	50 ab ⁻¹ (%)	50 fb ⁻¹ (%)	monouromont	projection
$D^0 o \pi^+ \pi^-$	976	$+0.55\pm 0.36\pm 0.09$	PoS ICHEP2012 (2013) 353	±0.05	±0.03	• measurement	projection
$D^0 o K^+ K^-$	976	$-0.32\pm0.21\pm0.09$	PoS ICHEP2012 (2013) 353	±0.03	± 0.03		1
$D^0 ightarrow \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	PRL 112, 211601 (2014)	±0.09		$8 \longrightarrow D^0 \rightarrow \pi^0 \pi^0$	+ 0.08%-
$D^0 o K^0_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.17$	arXiv:1705.05966	±0.20			
$D^0 ightarrow K^0_S \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	PRL 112, 211601 (2014)	±0.03		$7 - D^0 \rightarrow K_s \pi^0$	+ 0.03%-
$D^0 ightarrow ilde{K}^0_S \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	PRL 106, 211801 (2011)	±0.07			- 0.07%
$D^0 ightarrow K^0_S \eta^\prime$	791	$+0.98\pm 0.67\pm 0.14$	PRL 106, 211801 (2011)	±0.09		$ \overset{6}{\vdash} \overset{D}{\rightarrow} \overset{\kappa}{\kappa_{s}} \eta$	
$D^0 ightarrow \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 0.41 \pm 1.23$	PLB 662, 102 (2008)	±0.13		$5 \stackrel{P}{\longrightarrow} \mathbf{D}^0 \rightarrow \mathbf{K}_n \eta'$	
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	PRL 95, 231801 (2005)	±0.40			
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	$+0.43\pm1.30$	PRL 95, 231801 (2005)	±0.33		$4 - D^0 \rightarrow \pi^* \pi^* \pi^0$ -	0.12%
$D^+ ightarrow \pi^0 \pi^+$	921	$+0.89 \pm 1.98 \pm 0.22$	Belle Preliminary	±0.40			
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	PRL 108, 071801 (2012)	±0.04		³ → K [*] π [*] π [•]	0.4%
$D^+ o \eta \pi^+$	791	$+1.74\pm1.13\pm0.19$	PRL 107, 221801 (2011)	±0.14	± 0.01	$2 \stackrel{L}{\vdash} \mathbf{D}^* \rightarrow \mathbf{n} \pi^*$	
$D^+ ightarrow \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	PRL 107, 221801 (2011)	± 0.14			- 0.1478
$D^+ ightarrow K^0_S \pi^+$	977	$-0.363 \pm 0.094 \pm 0.067$	PRL 109, 021601 (2012)	±0.03	± 0.03	$1 \longrightarrow \eta^{*} \pi^{*}$	• 0.14%
$D^+ ightarrow K^0_S K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	JHEP 02 (2013) 098	± 0.05			
$D_s^+ ightarrow K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104, 181602 (2010)	±0.29	±0.03	-6 -4 -2	0 2 4
$D_s^+ ightarrow K_S^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	PRL 104, 181602 (2010)	± 0.05		no	CPV A _{CP} (%)

- Belle II: precision of $\mathcal{O}(0.01\%)$ (down to SM level). $\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}}/50 \text{ ab}^{-1}) + \sigma_{\text{irred}}^2}$
- With respect to LHCb, Belle II has advantages of excellent γ and π^0 reconstruction.

Mixing Constraints in the D⁰-D⁰ system

Belle 1

Current measurements of x, y give many constraints on NP models [see Golowich et al., PRD76, 095009 (2007); 21 models considered, e.g., 2-Higgs doublets, leftright models, little Higgs, extra dimensions, of which 17 give constraints]

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

$\sum_{\text{Belle II}} CPV Constraints in the D^0 - \overline{D}^0 system$

Note: LHCb will dominate most of these measurements, but Belle II should be competitive in y_{CP} and possibly in x^{2} , y', |q/p|, ϕ (see Staric, KEK FFW14). If LHCb sees new physics, it would be important for Belle II to independently confirm.

- No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%
- No clear evidence of direct CPV \leftarrow no CPV at C.L=9.3%

Leptonic charm decays

$D_{(s)}$ (semi-)leptonic decays

▶ (Semi-)Leptoinc charm decays involve both well-understood weak interactions physics and non-perturbative strong-interaction effects \Rightarrow test lattice QCD or measure $|V_{cd}|$ and $|V_{cs}|$.

- leptonic decays are used to extract $|V_{cd}|f_D$ or $|V_{cs}|f_{Ds}$
- semileptonic decays are used to extract $|V_{cd}|f_+^{\pi}(q^2=0)$ or $|V_{cs}|f_+^{\kappa}(q^2=0)$

Leptonic decays yields estimation at Belle II with 50 ab⁻¹

Mode	$D_s^- o \mu^- \bar{ u}$	$D^0 o u ar{ u}$	$D^- o \mu^- ar{ u}$	$D o \pi \ell^+ \nu$
Belle	0.91 ab ⁻¹	0.92 ab ⁻¹		0.28 ab^{-1}
	492±26	$(695\pm1) imes10^3$		126 ± 12
Belle II	27000	$38 imes10^{6}$	1250	$7.0 imes10^5$
Sensitivity	improve $ V_{cs} _{best}$	7 imes better	$<\!2\%$ $ V_{cd} $	comparable to BESII

Rare Charm decays

D ⁰ Mode	BEST (90% C.L.)	<mark>€€</mark> 5Ⅲ (20 fb ⁻¹)	(50 ab ⁻¹)
 	2.2×10 ⁻⁶	5×10 ⁻⁸	2×10-7
µ⁺µ⁻	6.2×10 ⁻⁹	1.7×10-7	1.6×10 ⁻⁸
µ⁺e⁻	2.6×10 ⁻⁷	4.3×10 ⁻⁸	3.0×10 ⁻⁸
e+e-	7.9×10 ⁻⁸	2.4×10 ⁻⁸	1.0×10 ⁻⁹
<i>π</i> ⁰ μ⁺μ⁻	1.8×10 ⁻⁴	1.2×10 ⁻⁷	1.6×10 ⁻⁶
π ⁰ e ⁺ e ⁻	4.5×10 ⁻⁵	7.9×10 ⁻⁸	3.5×10 ⁻⁹
π ⁰ μ⁺e⁻	8.6×10 ⁻⁵	9.7×10 ⁻⁸	7.5×10 ⁻⁷
K⁰µ⁺µ⁻	2.6×10-4	1.1×10 ⁻⁷	5.9×10 ⁻⁶
K ⁰ e⁺e⁻	1.1×10 ⁻⁴	7.5×10 ⁻⁸	8.5×10 ⁻⁹
K ⁰ µ⁺e⁻	1.0×10 ⁻⁴	9.6×10 ⁻⁸	7.7×10 ⁻⁹
ημ⁺μ⁻	5.3×10 ⁻⁴	1.0×10 ⁻⁷	4.1×10 ⁻⁸
ηe⁺e⁻	1.1×10 ⁻⁴	1.0×10 ⁻⁷	8.5×10-9
ημ ⁺e⁻	1.0×10 ⁻⁴	1.0×10 ⁻⁷	7.7×10-9

D+ Mode	BEST (90%	B€SⅢ	
	C.L.)	(20 fb ⁻¹)	(50 ab⁻¹)
π⁺e⁺e⁻	1.1×10 ⁻⁶	5.6×10 ⁻⁸	9.6×10 ⁻⁸
<i>π</i> ⁺ μ⁺μ⁻	7.3×10 ⁻⁸	8.7×10 ⁻⁸	5.7×10 ⁻⁷
<i>π</i> ⁺µ⁺e⁻	2.8×10 ⁻⁶	8.3×10 ⁻⁸	2.3×10 ⁻⁷
π -e+e+	1.1×10 ⁻⁶	5.6×10 ⁻⁸	1.7×10 ⁻⁷
<i>π</i> -µ⁺µ⁺	2.2×10 ⁻⁸	8.7×10 ⁻⁸	1.7×10 ⁻⁷
π⁻µ⁺e⁺	2.0×10 ⁻⁶	5.9×10 ⁻⁸	1.7×10 ⁻⁷
K⁺e⁺e⁻	1.0×10 ⁻⁶	6.7×10 ⁻⁸	8.8×10 ⁻⁸
K⁺µ⁺µ⁻	4.3×10-6	1.1×10 ⁻⁷	3.8×10 ⁻⁷
K⁺µ⁺e⁻	2.8×10-6	8.3×10 ⁻⁸	2.5×10 ⁻⁷
K⁻e⁺e⁺	9.0×10 ⁻⁷	6.7×10 ⁻⁸	7.9×10 ⁻⁸
K⁻µ⁺µ⁺	1.0×10 ⁻⁵	1.1×10 ⁻⁷	8.8×10 ⁻⁷
K⁻µ⁺e⁺	1.9×10 ⁻⁶	8.3×10 ⁻⁸	1.7×10 ⁻⁷

$D^0 \rightarrow \gamma V$ rare radiative decays

► Radiative decays of $D^0 \rightarrow V\gamma$: dominated by long-range contribution (~ 10⁻⁵, whereas short-range at 10⁻⁸ level); direct CPV can be enhanced to exceed 1% in NP. [PRL 109,17801(2012)]

- BR measurement to test SM; observing $A_{CP}^{V\gamma} > 3\%$ is a signal of NP. [PRL 109,17801(2012)]
- Belle II sensitivity estimation for A_{CP} based on MC study:
 - similar performance of π^0 veto and resolution of signal or bkg
 - similar signal-to-bkg btw Belle and Belle II \Rightarrow scaling luminosity

Belle II: statistical $\sigma_{A_{CP}}$ at 1-2% level with 50 ab⁻¹.

radiative	Belle A _{CP} results ^[1]	Belle II uncertainty		
decays	976 fb ⁻¹	5 ab ⁻¹	15 ab ⁻¹	50 ab ⁻¹
$D^{0} o ho^{0} \gamma$	$+0.056\pm0.152\pm0.006$	± 0.07	±0.04	± 0.02
$D^0 o \phi \gamma$	$-0.094 \pm 0.066 \pm 0.001$	± 0.03	± 0.02	± 0.01
$D^0 o ar{K}^{*0} \gamma$	$-0.003\pm0.020\pm0.000$	± 0.01	± 0.005	± 0.003

[1] T. Nanut et al.(Belle Collaboration), Phys. Rev. Lett. 118, 051801 (2017)

$D^0 \rightarrow \text{invisible final states}$

- D meson to $v\overline{v}$ is helicity suppressed in SM with Br~1.1x10⁻³⁰
- Under different DM models the Br can reach O(10⁻¹⁵)
 PLB651, 374(2007); Phys.Rept.117,75(1985)
- Use charm tagger method to select an inclusive D⁰ sample which allows the identification of D⁰ invisible decays

An illustration of the charm tagger method. $M_{D^0} \equiv M_{\rm miss}(D_{\rm tag}^{(*)} X_{\rm frag} \pi_s^-)$

Decay diagrams of $D^0 \to \nu \bar{\nu}$.

 $\begin{array}{l} \cdot X_{frag:} \text{ a few unflavored mesons} \\ \text{Four types of } D_{tag} \text{ are reconstructed} \\ \text{using 23 decay modes} \\ D_{tag}^{*} \text{ are reconstructed in five decay} \\ \text{modes: } D^{0}\pi^{+}, D^{-}\pi^{0}, D^{0}\pi^{0}, D^{0}\gamma, D_{s}^{+}\gamma \end{array}$

$D^0 \rightarrow \text{invisible final states}$

• $D^0 \rightarrow$ invisible decays are selected by requiring no remaining final states associated with $\overline{D^0}_{tag}$

- The residual energy in the ECL, E_{ECL} , is used to extract signal events
- 2D fit: M(D⁰), E_{ECL}

$D^0 \rightarrow \text{invisible final states}$

• 2D fit: M(D⁰), E_{ECL}

PRD95, 011102 (2017)

·No significant signal yield is found ·Br(D⁰ \rightarrow invisible decays)<8.8x10⁻⁵ @ 90%C.L. with sys errors included

→ Belle II yield in 50 ab⁻¹: **38 x 10⁶ inclusive D⁰ decays**

 $e^+e^- \rightarrow D_{\text{tag}} X_{\text{frag}} p \Lambda_c^+$

MC Simulation [5.5 ab^{-1}]

→ Belle II yield in 50 ab⁻¹: 2.8 x 10⁶ inclusive

Unique sample:

- allows measurement of Λ_c absolute branching fractions
- allows measurement of semileptonic Λ_c decays
- allows searches for Λ_c rare decays with missing energy

Summary

- Belle II at SuperKEKB which aims to achieve luminosity of 8.0 × 10³⁵ cm⁻²s⁻¹, will collect 50 ab⁻¹ of dataset, which gives us a rich program for charm physics study.
- Many impacts on charm physics at Belle II with the large dataset are presented, benefiting from the improved tracking efficiency and vertex reconstruction,
 - $D^0 \overline{D^0}$ mixing and *CP* violation measurement with much more precision
 - more precise and exciting results for CP asymmetries
 - competitive in searches of several rare charm decays

Belle II will achieve more precise measurements (mostly one order of magnitude improvement) of charm observables in the next decade, improving our knowledge of charm physics and searching for new physics beyond the Standard Model.

Let's look forwards to the charming news of charm physics from Belle II.

The tracking system

Component	Туре	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m \ Au, \ 0.6 \ mm \ Be,$		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0} \sim 20 \ \mu \mathrm{m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu \text{m}, \ \sigma_z = 2 \ \text{mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		$-83 \leq z \leq 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/eta)^2} \; (ext{with SVD})$

Improvements of vertex detector

CDC

- Belle II Central Drift Chamber (CDC) is larger than that of Belle.
- Smaller drift cells with sense wires and more layers allow better charged track reconstruction and dE/dx measurement compared to Belle.
- Faster readout electronics

	Belle	Belle II
Radius of inner boundary (mm)	88	168
Radius of outer boundary (mm)	863	1111
Number of layers	50	56
Number of sense wires	8400	14336
Gas	HeC ₂ H ₆	HeC ₂ H ₆
Diameter of a sense wire (µm)	30	30

- Key roles:
 - 1. Reconstruct charged tracks with precision momentum measurements.
 - 2. Particle identification using measurements of $\frac{dE}{dx}$.
 - 3. Trigger for charged particles.

Central Drift Chamber (CDC)

Three important roles:

- Track reconstruction and momentum determination
- Particle identification via dE/dx
- Trigger for background rejection

3.5

P

PID=TOP+ARICH

Two Cherenkov detectors for particle identification (mainly Kion and Pion)

- Barrel: Time of Propogation (TOP)
- Endcap: Aerogel Ring-Imaging Chernkov

Electromagnetic Calorimeter (ECL)

E.M. Calorimeter to measure: Energy and angle of electrons/photons Luminosity

Need upgrade due to high backgrounds:

- Barrel: CsI(Tl) crystals reused
 16.1 X₀ (30 cm)
 New electronics 2 MHz waveform sampling
- Endcaps: CsI(Tl), crystals reused
 16.1 X₀ (30 cm)
 Replacement with pure CsI in future (under study)
 Time constant (shaping) 30 ns

The KLong and Muon detector KLM

- 14 iron layers 4.7cm thick
- 15 barrel active layers
 - ✓2 x [scintillator strips + WLS + ^{Nikko} SiPM] ⇐ NEW
 - ✓13 x [double glass RPC + 5 cm orthogonal phi, z strips]
- 14 endcap active layers
 - √14 x [scintillator strips + WLS + SiPM] ← NEW

<u>Higher energy run</u>

- Design: original design maximum energy is 11.05 GeV at Y(6S)
- Possible higher energy run (11.5 GeV 12 GeV) ?
 - If any, higher energy run will be after several years running at $Y(4S) \sim Y(6S)$
 - present max E_{cm} is 11.24 GeV, limited by e⁻ Linac and e⁺ BT magnets
 - In order to inject the electron beam to HER at the required energy for 12 GeV operation, there must be huge reinforcement of Linac (replacement of S-band with C-band, 7.571 → 8.6 GeV
 11.24 GeV region : Λ_b Λ_b threshold

