

Prospects of Charm physics at BESIII and Beyond

Xiao-Rui Lyu (吕晓睿) 中国科学院大学

(On behalf of the BESIII collaboration)

- Introduction
- Status of BESIII
- Upgrade plan
- Physics prospects
- Summary

Charm facilities

- Hadron colliders (huge cross-section, energy boost)
 - Tevetron (CDF, D0)
 - LHC (LHCb, CMS, ATLAS)
- e⁺e⁻ Colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - B-factories (Belle(-II), BaBar)
 - Threshold production (CLEOc, BESIII)
 - Can not compete in statistics with Hadron colliders & B-factories!!!
 - Quantum Correlations (QC) and CP-tagging are unique
 - Only D meson pairs, no extra CM Energy for pions
 - Systematic uncertainties cancellations while applying double tag technique

EXAMPLE SITE SET UP: SET UP:

€SⅢ Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

Here on charmed hadron decays

Leptonic and hadronic decays of charmed hadrons (D^0 , D^+ , D_s^+ and Λ_c^+) provide an ideal test-bed to explore weak and strong effects

> leptonic decays

 $f_{D(s)+}, f^{K(\pi)}_{+}(0)$: better calibrate LQCD $|V_{cs(d)}|$: better test on CKM unitarity

> hadronic decays

Hadronic decays: structure, SU(3) symmetry

 $D^0 \overline{D}{}^0$ mixing parameters and CP violation

Strong phase in D⁰ decays: Constraint on γ/ϕ_3 in B decays and D mixing parameters

> **BFs of** Λ_c^+ decays

No absolute BF measurements of Λ_c^+ using near threshold data before BESIII

 $U = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$

EXAMPLES III Precision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

 $D_{(s)}$ & Λ_c decays

δ and γ/ϕ_3 input

- *D* hadronic parameters for a final state $f: \frac{A(\overline{D}^0 \to f)}{A(D^0 \to f)} \equiv -r_D e^{-i\delta_D}$
- Charm mixing parameters: $\mathbf{x} = \frac{\Delta M}{\Gamma}$, $\mathbf{y} = \frac{\Delta \Gamma}{2\Gamma}$ - Time-dependent WS $\mathbf{D}^{\mathbf{0}} \to \mathbf{K}^{+} \pi^{-} \mathbf{rate} \Rightarrow$ $\mathbf{y}' = \mathbf{y} \cos \delta_{K\pi} - \mathbf{x} \sin \delta_{K\pi}$ (LHCb)
 - $-\delta_{K\pi}$: QC measurements from Charm factory
- γ/ϕ_3 measurements from $B \rightarrow D^0 K$
 - $-b \rightarrow u : \gamma/\phi_3 = argV^*_{ub}$
 - most sensitive method to constrain γ/ϕ_3 at present
 - GLW, ADS method
 - r_D , δ_D : QC measurements from Charm factory
 - GGSZ method
 - c_i , s_i : QC measurements from Charm factory

Time-integrated decay rates

- Anti-symmetric wavefuction: $\Gamma^{2}_{ij} = |\langle i | D^{0} \rangle \langle j | \overline{D}^{0} \rangle - \langle j | D^{0} \rangle \langle i | \overline{D}^{0} \rangle|^{2}$
- Double tag rates:
 - $A_i^2 A_j^2 \left[1 + r_i^2 r_j^2 2r_i r_j \cos\left(\delta_i + \delta_j\right) \right]$
 - CP tag: r=1, $\delta=0$ or π ; l^{\pm} tag: r=0
- Single and Double tag rates

+ $z_f \equiv$	$\star z_f \equiv 2\cos\delta_f, r_f \equiv \frac{A_{DCS}}{A_{CF}}, R_M \approx \frac{x+y}{2}$						
C-odd	f	$ar{f}$	<i>l</i> +	ŀ	CP+	CP-	
f	$R_M \left[1 + r_f^2 \left(2 - z_f^2 \right) + r_f^4 \right]$						
\bar{f}	$1 + r_f^2 (2 - z_f^2) + r_f^4$	$R_M \left[1 + r_f^2 \left(2 - z_f^2 \right) + r_f^4 \right]$					
l^+	r_f^2	1	R_M				
l-	1	r_f^2	1	R_M			
CP+	$1 + r_f (r_f + z_f)$	$1 + r_f (r_f + z_f)$	1	1	0		
CP-	$1 + r_f (r_f - z_f)$	$1 + r_f (r_f - z_f)$	1	1	4	0	
Single Tag	$1 + r_f^2 - r_f^2$	$c_f z_f (A - y)$	1	1	$2[1 \pm (A$	- y)]	

.2..2

q

 $\psi(3770) \rightarrow [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$ $= -[D_{CP+}D_{CP-} - D_{CP-}D_{CP+}]/\sqrt{2}$ $D_{CP+} = [D^0 \pm \bar{D}^0] / \sqrt{2}$

BESIII data samples

$D^{0(+)}$, D_{s}^{+} , Λ_{c}^{+} samples (pb⁻¹)

> D⁰⁽⁺⁾ samples

$> D_s^+/D_s^+/\Lambda_c^+$ samples

Physics at Charm threshold

- Decay constants & form factors for Charmed meson
- Quantum correlations at $\psi(3770)$
 - CPV measurements
 - Strong phase measurements
- Rare decays
- Charm baryons
- D^0 - \underline{D}^0 mixing & CPV @ $\psi(4040)$

Many new BESIII results have been released! See Peirong, Dayong, Lei and Yi's talks.

Double Tag (DT) techniques

- 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- *D* generated in pair \Rightarrow absolute Branching fractions
- At $\psi(3770)$ charm production is $D^0 \overline{D}^0$ and $D^+ D^-$
- Fully reconstruct about 15% of $D_{(S)}$ decays

Double tag techniques: Hadronic tag on one side, on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum (Double tag efficiency is high.)

吕晓睿

$D_{(S)}$ Leptonic decays

Purely Leptonic:

- Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
- Multiple tests with charm: f_D , f_{Ds} and f_D/f_{Ds}
- To validate Lattice QCD calculation of $f_{B(s)}$ and provide constrain of CKM-unitarity
- Sensitive to New Physics (Charged Higgs contribution, ...)

Semi-leptonic: form facotr (FF)

- $D_{(s)} \rightarrow P l \nu$ (Theoretically clean)
- Measure |V_{cx}| x FF
- Charm physics:
 - CKM-unitarity $\Rightarrow |V_{cx}|$, extract FF, test LQCD
 - Input LQCD FF to test CKM-unitarity

BESIII Detector

Crystals: 28 cm(15 X₀) Barrel: |cosθ|<0.83 Endcap: 0.85 < |cosθ| < 0.93

TOF BTOF: two layers ETOF: 48 crys. for each

₿€SШ

Joint BBL Workshop on Charm Decays

Exps.	MDC Spatial	MDC dE/dx	EMC Energy	Exps.	TOF
	resolution	resolution	resolution		Time
CLEO-c	110 µm	5%	2.2-2.4 %		resolution
BaBar	125 μm	7%	2.67 %	CDFII	100 ps
Belle	130 µm	5.6%	2.2 %	Belle	90 ps
BESIII	115 µm	<5% (Bhabha)	2.4%	BESIII	68 ps (BTOF) 60 ps (ETOF)

MUC: Efficiency ~ 96% backgroun level: < 0.04 Hz/cm²(B-MUC), < 0.1 Hz/cm²(E-MUC)

Data/MC consistency

• For tracking efficiency data/MC difference < 1%

• For photon detection efficiency data/MC difference < 1%

BESIII upgrade

- MDC: Malter effect found in inner chamber in 2012, add water vapor to the chamber to cure the aging problem.
- New inner chamber, built by IHEP, is ready now.
- CGEM as the inner chamber ongoing : Italy group in collaboration with other groups.
- New ETOF (built by USTC & IHEP) was installed in 2015 to improve the time resolution.

Other possible upgrade plan is under discussion

New Inner Drift Chamber

- An aluminum outer cylinder was manufactured for the chamber cosmic-ray test
- The outer cylinder was assembled after wiring had been finished

EXE The performance of the new chamber

After half year's cosmic ray test, the efficiency > 99%

The chamber is stored in a clean room and is ready to be replaced.

Cylindrical GEM Inner Tracker in a nutshell

BESIII is building a cylindrical GEM detector (CGEM-IT) to replace the **BESIII** Inner MDC to recover some efficiency loss due to aging and to improve the secondary vertex resolution.

Expected performance of CGEM

Track fitting with Kalman Filter

- Scintillator Endcap TOF: time resolution for π is 138ps.
- New MRPC Endcap-TOF built
- The installation of MRPC ETOF completed in the Oct. of 2015

MRPC Endcap TOF

Time resolution of 60ps achieved; Efficiency ~97%

Data/MC discrepancy

$\epsilon_{data}/\epsilon_{MC}$ -1	2010	2016	2019?
Tracking eff./track	~2%	~1%	~0.5%
PID/track	~2%	~1%	~0.5%
Photon eff./photon	~1%	0.5-1%	~0.5%

Control of systematic errors.

- **BEPCII Upgrade**
 - Top up plan → funding approved
 - No need of beam fill time
 - improve data luminosity by ~30%
 - Increase the maximum beam energy → funding approved currently: 2.30 GeV
 - I: → 2.35 GeV (power cooling hardware replacement,)
 - II: 2.35 GeV < E < 2.45 GeV

bottleneck: ISPB, new magnet and power supply

♦ LNV Λ_c⁺→ peµ

Prospects of charmed hadron decays

Data at 3.773, 4.18 GeV and 4.63GeV

	Systematic	Statistical	
		~3 fb⁻¹	+10 fb ⁻¹
$\Delta f_{D+}/f_{D+}$	~0.9% ^{BESIII}	2.6%	1.3%
$\Delta f_{Ds+}/f_{Ds+}(\mu+\tau)$	~1.6% ^{BESIII-pre.}	~1.5%	~0.7%
Δ f _{D→K} /f _{D→K}	~0.5% ^{BESIII}	0.4%	0.2%
$\Delta \mathbf{f}_{D \rightarrow \pi} / \mathbf{f}_{D \rightarrow \pi}$	~0.7% ^{BESIII}	1.3%	0.6%
$ V_{cs} ^{Ds+\rightarrow I+v}(\mu+\tau)$	~1.6% ^{BESIII-pre.}	~1.4%	~0.7%
V _{cs} ^{D0→K-e+v}	2.5% ^{BESIII} (2.4% ^{LQCD})	0.4%	0.2%
 V _{cd} ^{D+→μ+v}	2.1% ^{BESIII} (1.9→0.5% ^{LQCD})	2.6%	1.3%
V _{cd} ^{D0→π-e+v}	4.5% ^{BESIII} (4.4% ^{LQCD})	1.3%	0.6%
(c _i ,s _i) in $D^0 \rightarrow K^0 \pi^+ \pi^-$	Uncertinaty for γ/ϕ_3	1%	0.5%
Λ +→pK-σ+		4.8%	~2%
$\Lambda_{c}^{+} \rightarrow \mathbf{p} \mathbf{K}^{-} \pi^{+}$		(0.6fb ⁻¹ @4.6)	(3fb ⁻¹ @4.6X)

€SШ

Strong phases in D hadronic decays

	Decay mode	Quantity of interest	Comments	
	$D \rightarrow K_{\rm s}^0 \pi^+ \pi^-$ prel. release	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.	
≻	$D ightarrow K_{ m s}^0 K^+ K^-$	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.	ICH PUR 2016 025
≻	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	<i>R</i> , δ	In bins guided by amplitude models, currently under development by LHCb.	ICD-I OD-2010-025
с¢>	$D \rightarrow K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme can be guided by the CLEO model [18] or potentially an improved model from LHCb in the future.	Status at BESIII ➡ published
Ľ ⟩	$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements of F_+ in bins or c_i and s_i in bins could be explored.	≻ under study ➪ in plan
\succ	$D\!\to K^\pm\pi^\mp\pi^0$	<i>R</i> , δ	Simple 2-3 bin scheme could be considered.	
L	$D \to K^0_{\rm S} K^\pm \pi^\mp$	<i>R</i> , δ	Simple 2 bin scheme where one bin encloses the K^* resonance.	
\succ	$D\!\to\pi^+\pi^-\pi^0$	F_+	No binning required as $F_+ \sim 1$.	
с\$>	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^- \pi^0$	F_+ and c_i and s_i	Unbinned measurement of F_+ required. Additional measurements of F_+ or c_i and s_i in bins could be explored.	
\blacktriangleright	$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i and s_i possible.	
	$D\!\to K^\pm\pi^\mp$	δ	Of low priority due to good precision available through charm-mixing analyses.	

€SШ

Strong phases in D hadronic decays

under study

in plan

	Decay mode	Quantity of interest	Comments	
\succ	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	c_i and s_i	Binning schemes as those used in the CLEO-c	
	nrel release		analysis. With future, very large $\psi(3770) {\rm data}$	
			sets, it might be worthwhile to explore alter-	
			native binning.	
\succ	$D \rightarrow K^0_{ m s} K^+ K^-$	$c_i \text{ and } s_i$	Binning schemes as those used in the CLEO-c	
			analysis. With future, very large $\psi(3770)$ data	
			sets, it might be worthwhile to explore alter-	
			native binning.	ICh DUD 2016 025
				1CD-PUB-2010-025
\succ	$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	R, δ	In bins guided by amplitude models, currently	
			under development by LHCb.	
•				
				at BESIII
	oint RF	SIII-I H	<u>Ch workshon in '</u>	2018 published

8-9 February 2018 IHEP, Beijing Asia/Shanghai timezone

	_		
			the K^* resonance.
\succ	$D \! ightarrow \pi^+ \pi^- \pi^0$	F_+	No binning required as $F_+ \sim 1$.
Ľ	$D \rightarrow K^0_{ m S} \pi^+ \pi^- \pi^0$	F_+ and c_i and s_i	Unbinned measurement of F_+ required. Additional measurements of F_+ or c_i and s_i in bins could be explored.
≻	$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i and s_i possible.
	$D \rightarrow K^{\pm} \pi^{\mp}$	δ	Of low priority due to good precision available through charm-mixing analyses.

Experimental precision reaches of the charmed hadrons

- The precisions of Ac decay rates is reaching to the level of charmed mesons!
- LHCb/BelleII data will further constrain the HFLAV fit
- However, search for more unknown modes are important

HFLAV Fit to world BF data

arXiv:1612.07233

- A fitter to constrain the 12 hadronic BFs and 1 SL BF, based on all the existing experimental data
- Correlated systematics are fully taken into account

Mode	HFAG 2016 (%)	BESIII (%)	PDG 2014 (%)	BELLE (%)	
pK_S^0	1.59 ± 0.07	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30		
$pK^-\pi^+$	6.46 ± 0.24	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$	
$pK^0_S\pi^0$	2.03 ± 0.12	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50		
$pK^0_S\pi^+\pi^-$	1.69 ± 0.11	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35		HFAG Summer 2016
$pK^-\pi^+\pi^0$	5.05 ± 0.29	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	0.08	
$\Lambda\pi^+$	1.28 ± 0.06	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	\sim	
$\Lambda\pi^+\pi^0$	7.09 ± 0.36	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	+ 0.07	
$\Lambda\pi^+\pi^-\pi^+$	3.73 ± 0.21	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	pK	
$\Sigma^0 \pi^+$	1.31 ± 0.07	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	$\uparrow 0.06$	
$\Sigma^+\pi^0$	1.25 ± 0.09	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34		
$\Sigma^+\pi^+\pi^-$	4.64 ± 0.24	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	B	HFAG Fit BESIII 2016
$\Sigma^+ \omega$	1.77 ± 0.21	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	0.04 - Contours contain	68.3%, 95.5% and 99.7% C.L. Belle 2014 CLEO 1998
$\Lambda e^+ u_e$	3.18 ± 0.32	$3.63 \pm 0.38 \pm 0.20$	2.1 ± 0.6	0.008 0.010 0.0	012 0.014 0.016 0.018 0.020 0.022
					$\mathcal{B}(\Lambda_c^+ \to pK_S^{\circ})$

The least overall χ^2 /ndf=30.0/23=1.3

Precise $B(pK^{-}\pi^{+})$ is useful for constrain V_{ub} determined via baryonic mode

Prospects for Λ_c semi-leptonic decays

- So far, only mode $\Lambda e^+ v_e$ is measured
- Many more semi-leptonic modes can be established at BESIII!

modes	Expected	δΒ/Β		SL	δB/B
	B[%]		D0	$B(Kev) = (3.55 \pm 0.05)\%$	1.4%
$\Lambda l^+ v_l$	3.6	5.4%	D+	B(K0ev)=(8.83±0.22)%	2.5%
$\Lambda^* l^+ \nu_l$	0.7	17%	Ds	B(phiev)=(2.49±0.14)%	5.6%
$(pK^{-}, \Sigma\pi) l^+\nu_l$	0.7	17%	Λc	$B(\Lambda ev) = (2.1 \pm 0.6)\% (PDG2014)$ = (3.63 \pm 0.43)% (BESIII)	29% 12%
$nl^+\nu_l$	0.2	30%		=(3.63±0.13)% (new BESIII)	3%

Other Relevant Λ_c^+ Potentials

- Studies on new Cabibbo-suppressed modes
- Many neutron modes will be firstly measured: to test isospin symmetry <u>PRD93, 056008 (2016)</u>
- Λ_c^+ hadronic weak decays
 - ✓ Decay asymmetry parameters in two-body hadronic weak decays, such as Λ⁺_c → BP and Λ⁺_c → BV
 → to measure the relative phase between the S- and P-wave decays
 - We can provide precise measurements on this observables
- search for Λ_c^+ low rate decays and rare decays
 - ✓ Weak radiative decay $\Lambda_c^+ \rightarrow \gamma \Sigma^+$; predictions of BF are 10⁻⁴ ~10⁻⁵ : expected sensitivity ~10⁻⁴
 - ✓ FCNC, lepton number/family violation, baryon family violation ...: expected sensitivity~10⁻⁵

We will find more the Λ_c -decay Mosaic!

10x more Λ_c^+ pairs

Reaches for rare charm decays? 10-0 SM predictions and experimental reaches 10-1 Cabibbo favor **10**⁻² Single Cabibbo suppressed 10^{-3} 10^{-4} **Doubly Cabibbo suppressed** CLEO-c 10^{-5} $D^0 \rightarrow \overline{K}^{*0} \gamma / \phi \gamma / \rho \gamma / \omega \gamma$ BESIII **Radiative decays** 10⁻⁶ $D^{+} \rightarrow K^{*+} \gamma / \rho^{+} \gamma \quad D^{+}_{s} \rightarrow K^{*+} \gamma / \rho^{+} \gamma$ BESIII final/B factory 10^{-7} Long distance: Vector meson Dominance $D^0 \rightarrow \gamma \gamma / VV'(\rightarrow ll) / hV(\rightarrow ll) / hh'V(\rightarrow ll)$ LHCb Super-B 10-8 10⁻⁹ Super-τ-charm 10⁻¹⁰ $D^0 / D^+ \rightarrow \gamma \gamma / V l^+ l^- / h l^+ l^- / h h^+ l^+ l^-$ Short distance FCNC 10-11 $D^0 \rightarrow \mu^+ \mu^ 10^{-12}$ $D^0 \rightarrow e^+ e^-$ 10⁻¹³ **1**0⁻¹⁴ $D \rightarrow (h) \mu^+ e^-$ 10-15 Forbidden decays: LNV, LFV, BNV $D \rightarrow (hh)e^+e^+/(hh)\mu^+\mu^+$

吕晓睿

EXAMPLES II Prospects of data samples in the coming years

- BESIII collected world's largest samples of J/ψ, ψ(2S), ψ(3770), Y(4260), ... from e⁺e⁻ production.
- It will continue to run a few years.

	BESIII	Goal
J/ψ	1.3*10 ⁹ 21x BESII	10*10 ⁹
$oldsymbol{\psi}^{'}$	0.6*10 ⁹ 24x CLEO-c	3*10 ⁹
$\psi(3770)$	2.9 fb ⁻¹ 21x CLEO-c	20 fb ⁻¹
Λ _c pair	0.1*10 ⁶	1*10 ⁶
Above open charm threshold	0.5 fb ⁻¹ @ψ(4040), 1.9 fb ⁻¹ @~4260, 0.5 fb ⁻¹ @4360, 1.0 fb ⁻¹ @4420, 0.5 fb ⁻¹ @4600, scan data @4.19~4.28GeV in 2017	>15 fb ⁻¹
R scan and tau	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)	100 pb ⁻¹ (2015)	
ψ (4170)	3 fb ⁻¹ (2016)	

Opportunities for precise determination of strong phase and D mixing, and studies on Λ_c decays

Summary

• **BESIII** is successfully operating since 2008

– Collected large data samples in the τ -charm mass region

• D_(s) physics:

– charm Leptonic and semi-leptonic decays: to more precisely calibrate LQCD and over-constrain CKM matrix

- charm hadron decays: explore the non-perturbative QCD

• Λ_c physics:

– era of precision study of the Λ_c decays using threshold data

 to provide unique data for theorists to develop more reliable models to describe charmed baryons

BEPCII/BESIII upgrade

- beam energy increase
- top-up mode
- **Future goals**: >15 /fb ψ (3770) data, and roughly 50M D^0 , 50M D^+ , 1M Λ_c , 15M Ds, produced near threshold
- More physics results will be released out;

stay tuned

Thank you! 谢谢!

Welcome to join

Joint BESIII-LHCb workshop in 2018

8-9 February 2018 IHEP, Beijing Asia/Shanghai timezone

First precise measurement of

 $B(\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}) \quad PRL 113, 042002 (2014)$

The number of Λc baryons is determined by reconstructing the recoiling $D^{(*)-}\bar{p}\pi^+$ system in events of the type $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = \frac{N(\Lambda_c^+ \to pK^-\pi^+)}{N_{\rm inc}^{\Lambda_c} f_{\rm bias} \varepsilon(\Lambda_c^+ \to pK^-\pi^+)} = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$$

吕晓睿

Specialties of current ongoing experiments

BESIII:

- Threshold production & two
 body production
- Clean background
- Model-independent meas.
- Missing-mass technique: neutron, neutrino ...
- Good photon resolution: $\Sigma, \Xi, \pi^0, \dots$

LHCb:

- Huge statistics
- High background
- Good PID and vertexing
- Complex production
 environment
- Poor in electron and photon reconstruction

BELLE(-II) :

- Large statistics
- High background
- Good PID and vertexing
- Good photon and electron reconstruction

ESI Impacts in LHCb γ/ϕ_3 measurement

Run Period $[E_{CM}]$	Collected / Pro-	Cumulative	Year attained
	jected luminosity	yield factor	
	per run	compared to	
		Run 1	
Run 1 [7,8 TeV]	3 fb^{-1}	1	2012
Run 2 [13 TeV]	$5 {\rm fb}^{-1}$	4	2018
LHCb phase-1 upgrade [14 TeV]	$50 {\rm fb}^{-1}$	60	2030
LHCb phase-2 upgrade [14 TeV]	300 fb^{-1}	${\sim}400$	2035(?)

- By considering the evolution of the LHCb measurements, which may differing among modes, this strong phase uncertainty is
 - 1.7 to 2.2° at the end of Run 2
 - 1.8 to 2.5° at the end of the phase 1 upgrade
- So now compared to the total precision an γ from LHCb expected
 - Run I $\sigma(\gamma) = 7^{\circ}$ limited impact of strong phase measurements
 - Run II $\sigma(\gamma) = 3.5^{\circ}$ becomes significant
 - Upgrade phase I σ(γ) ~ strong phase uncertainty