Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

Charm spectroscopy at LHCb: results and prospects

23 September 2017, Nankai University

杨振伯

> Introduction

► LHCb detector

[PRL 119 (2017) 112001] \rightarrow Observation of the Ξ_{cc}^{++} baryon

Characteria Constraints Series Constraints (2017) States [PRL 118 (2017) 182001]

Prospects and summary

Spectroscopy

 Spectroscopy: collecting and sorting energy levels
 An indispensable procedure to elucidate the underlying dynamics of complex phenomena
 Study of hadron spectroscopy can reveal properties of strong interactions between quarks

Quark model: SU(3)

 Hadrons are composed of (invisible) quarks (u, d, s)
 Mesons (qq') and baryons (qq'q') are SU(3) multiplets

U

Numerous hadrons are well classified, and predictions confirmed

S

SU(4) quark model

- When extended to (u, d, s, c) quarks, hadrons form SU(4) multiplets
- All C = 0 and C = 1 ground states observed
 - C = 2 baryons
 - Isospin doublet: $\mathcal{Z}_{cc}^+(ccd)$ and $\mathcal{Z}_{cc}^{++}(ccu)$ Isospin singlet: $\Omega_{cc}^+(ccs)$ Three with $J^P = 1/2^+$ and three with $3/2^+$

Theoretical calculations of \mathcal{Z}_{cc} > Many models calculated the masses: (non-)relativisticQCD potential models, QCD sum rules, bag model ...• $m(\Xi_{cc}^{+,++}) \in (3.5, 3.7)$ GeV, $m(\Omega_{cc}^{+}) \approx m(\Xi_{cc}) + 0.1$ GeV• Mass splitting between Ξ_{cc}^{+} and Ξ_{cc}^{++} : a few MeV

Lattice QCD: $M(\Xi_{cc}) \approx 3.6 \text{ GeV}, \quad M(\Omega_{cc}^+) \approx 3.7 \text{ GeV}$

> Lifetime: $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$ • $\tau(\Xi_{cc}^{++}) \in (200 - 700)$ fs • $\tau(\Xi_{cc}^{+}) \in (50 - 250)$ fs HQET: two charm quarks considered as a heavy diquark, doubly heavy baryon similar to a heavy meson *Qq*

Experimental results

> SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with targets, dedicated to study charm baryons

• Observed Ξ_{cc}^+ in $\Xi_{cc}^+ o \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ o p D^+ K^-$ decays

- Signal yields: 15.9 ($\Lambda_c^+ K^- \pi^+$) and 5.62 (pD^+K^-)
- Short lifetime: $\tau(\mathbf{Z}_{cc}^+) < 33$ fs @90% CL, but not zero
- Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$
- Mass (combined): 3518.7 ± 1.7 MeV

20%

Experimental results (cont.)

> SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with targets, dedicated to study charm baryons

Observed Ξ_{cc}^+ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to p D^+ K^-$ decays

- Signal yields: 15.9 $(\Lambda_c^+ K^- \pi^+)$ and 5.62 $(pD^+ K^-)$
- Short lifetime: $\tau(\mathbf{Z}_{cc}^+) < 33$ fs @90% CL, but not zero
- Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$
- Mass (combined): 3518.7 \pm 1.7 MeV/ c^2

Comment on "First observation of doubly charmed baryon Ξ_{cc}^+ "

V.V.Kiselev^{*} and A.K.Likhoded, State Research Center "Institute for High Energy Physics" Protvino, Moscow region, 142280 Russia Fax: +7-0967-744739

We speculate on a possible interpretation of events selected by the SELEX collaboration and stress an insufficient evidence for the observation of doubly charmed baryon.

PACS numbers: 14.20.Lq, 13.30.-a, 13.85.Ni

No evidence observed by FOCUS, BaBar, Belle, and LHCb

The LHCb detector

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Designed for precision measurements in *b*, *c* flavor sectors Acceptance: $2 < \eta < 5$

Excellent vertex, tracking and hadron ID

LHCb data taking

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Search for Ξ_{cc} at LHCb JHEP 12 (2013) 090

 \succ Search for $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ at 7 TeV, $\mathcal{L} = 0.65 \text{ fb}^{-1}$

- $N(\Lambda_c^+) pprox \mathbf{0.8}$ M, requiring high- p_{T}
- No significant peaking structure observed in the range [3.3,3.8] GeV
- Experiment sensitivity strongly depends on the \mathcal{Z}_{cc}^+ lifetime

 $R \equiv \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} < 1.5 \times 10^{-2} \text{ for } \tau = 100 \text{ fs},$

 $< 3.9 \times 10^{-4} \text{ for } \tau = 400 \text{ fs} \quad @95\%$ Significantly below the value given by SELEX than

Sensitivity increased by ~40 from 100 fs to 400 fs

Search for Ξ_{cc} at LHCb (cont.)

Planned in 2014 to make full search

- Searching for both Ξ_{cc}^+ and Ξ_{cc}^{++} with more decays
- No progress due to lack of MC (tech. issue) and manpower
- Analysis restarted in the summer 2016
 Still focusing on Ξ⁺_{cc}
 In a seminar by Fu-Sheng Yu in UCAS in Dec. 2016 (invited by Jibo), Ξ⁺⁺_{cc} → Λ⁺_c K⁻π⁺π⁺ is labelled as the most promising channel
 - Owing to longer lifetime of \mathcal{Z}_{cc}^{++} and the large branching fraction

Search for the $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

Longer lifetime than Ξ⁺_{cc} → higher sensitivity at LHCb
 Decay: B(Ξ⁺⁺_{cc} → Λ⁺_cK⁻π⁺π⁺) ~ 10%, Λ⁺_c → pK⁻π⁺
 F.-S. Yu, arXiv:1703.09086
 Data sample: LHCb Run-II at √s = 13 TeV, ~1.7 fb⁻¹
 Dedicated exclusive trigger ensuring high efficiency, full event reconstruction at trigger level
 Run-I data (2012) also analyzed for cross-check

Preselections

≻ Huge hadronic background expected
 ≻ Online selection to select clean Λ⁺_c → pK⁻π⁺ and reasonably reject Ξ⁺⁺_{cc} background

- Tracks with good track-fit quality, good PID, and away from PV
- Good vertices, large decay length significance, large $p_{
 m T}$
- Clone tracks removed

Loose offline preselection to remove obvious background

Mass spectrum after selection PRL119(2017)112001
 A significant structure in right sign (RS) combinations at around 3620 MeV/c²
 Not present in wrong sign (WS) combinations
 Not observed for Λ⁺_c sidebands candidates
 Distributions similar except the peak in RS

Fit to the peak structure

PRL119(2017)112001

$$m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Lambda_c^+ K^- \pi^+ \pi^+) - m_{\text{cand}}(\Lambda_c^+) + m_{\text{PDG}}(\Lambda_c^+)$$

- Default fit range: $3620 \pm 150 \text{ MeV}/c^2$
- Signal: DSCB function + Gaussian
 - Mass, yield and overall resolution free, others fixed to simulation
- Bkg: 2nd order Chebychev polynomial
 - All parameters free

 $N_{\rm sig} = 313 \pm 33$ $m = 3621.80 \pm 0.72 \, {\rm MeV}/c^2$ $\sigma = 6.63 \pm 0.82 \, {\rm MeV}/c^2$

Mass resolution consistent with simulation Local stat. significance

above 12σ

Mass result

After corrections to biases due to selection and final-state radiation

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^+) = 1134.94 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \text{ MeV}$

Systematic uncertainties

Source	Value [MeV/ c^2]
Momentum-scale calibration	0.22
Selection bias correction	0.14
Unknown Ξ_{cc}^{++} lifetime	0.06
Mass fit model	0.07
Sum of above in quadrature	0.27
Λ_c^+ mass uncertainty	0.14

Value consistent with many theoretical calculations

Signal properties: weakly decay PRL119(2017)112001

Peaking structure remains significant (> 12 σ) after requiring minimum decay time $t > 5\sigma_t$

Indeed a weak decay!

More checks: 2D mass distribution

PRL119(2017)112001

20

> Signal candidates only present in Λ_c^+ signal region

More tests: Run-I data

PRL119(2017)112001

Signal peak presents in Run-I data sample with significance above 7σ

More checks: others

PRL119(2017)112001

Multiple candidates: not creating fake narrow structure
 Checking combinations of tracks from Λ_c⁺ and Ξ_{cc}⁺⁺: not peaking
 MVA efficiency as a function of mass: very smooth
 Varying MVA selector cut: structure stays significant
 Varying particle ID selections: no peaking structure emerging in WS combinations, structure stays in RS sample

6. Using a cut based selection instead of using MVA, requiring good vertex fit quality, Ξ_{cc}^{++} vertex displaced and tracks are not produced from PV: peak significance $> 12\sigma$

Comparion with SELEXPRL119(2017)112001Large mass difference, inconsistent with being isospin
partners
 $m(\Xi_{cc}^{++})_{LHCb} - m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV/c}^2$ Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in the LHCb
result

➢ Giovanni Passaleva, LHCb发言人 "The LHCb Chinese scientists played a crucial role in the observation of the new particle. They are being rewarded for a long standing and highly recognized experimental effort. A group of Chinese theorists provided also fundamental inputs to drive the analysis to the right direction and gave key suggestions to achieve this result. ➢ Vincenzo Vagnoni, LHCb物理协调人 "Our Chinese colleagues have been very active in the LHCb physics analysis. They ever played a leading role in the discovery of pentaguark states in 2015 and this time in the **discovery of \Xi_{cc}^{++}.** I am looking forward to their continuous efforts on this exciting topic in the future."

Highlighted by PRL editors as "Editors' Suggestion"

Viewpoint: A Doubly Charming Particle

Raúl A. Briceño, Department of Physics, Old Dominion University, Norfolk, VA 23529, USA and Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA September 11, 2017 • *Physics* 10, 100

High-precision experiments at CERN find a new baryon containing two charm quarks.

Figure 1: The LHCb Collaboration has provided evidence for a doubly charmed baryon called Ξ_{cc}^{++} [1]. The baryon is formed when two charm quarks, produced in high-energy proton-proton collisions, join a light quark.

Observation of excited Ω_c^0 **states**

[PRL 118 (2017) 182001]

Ω_c baryons

Experimental knowledge of charmed baryons is limited
 Only two Ω_c(css) states observed, many others to be filled in the table

 \succ LHCb has great potential to study excited states of Ω_c

Observation of excited Ω_c^0 resonances

 $\hookrightarrow pK^{-}\pi^{+}$

- Data sample 3.3 fb⁻¹ of LHCb data at 7, 8 and 13 TeV
- \succ Decay chain: $\Omega_c^{**0} \rightarrow \Xi_c^+ K^-$
 - Mass spectrum studied up to 3450 MeV
- Clean $\Xi_c^+
 ightarrow pK^-\pi^+$ signals
 Cabibbo suppressed, but high selection
 - efficiency at LHCb

LHCb, PRL118 (2017) 182001

LHCb, PRL118 (2017) 182001

Five new Ω_c^0 resonances in $\Xi_c^+ K^-$

- Not clear who is who
- Spin and parity need to be determined via 3-body decays or decays from heavier baryons

Prospects

Full of opportunities and challenges in charm spectroscopy

- \succ Determine the \mathcal{Z}_{cc}^{++} lifetime, cross-section, and J^{I}
 - Difficult to determine efficiencies, possible biases
 - How to determine the J^P ?
 - > Other decays of $\Xi_{cc}^{++}: \Xi_c^+\pi^+, \Lambda_c^+\pi^+, pD^+K^-\pi^+, \dots$
 - BF's and/or efficiencies smaller, and more data needed
- > The isospin partner Ξ_{cc}^+ and the Ω_{cc}^+
 - Lower efficiencies due to shorter lifetime
 - Smaller production ratio for Ω_{cc}^+
 - More data and more clever triggers/selections awaited
 - The excited states (singly or doubly charmed)?
 - Detection power of low p_{T} hadrons/photons to be improved

Prospects

8 fb⁻¹ expected by end of 2018 (including 3 fb⁻¹ Run1)
 Huge amount of open charms produced (and recorded?)
 Detector fully replaced in 2019-2020 to achieve 50 fb⁻¹
 More efficient and powerful
 Phase II upgrade for 300 fb⁻¹ is on the way
 To make the impossible be possible

Inputs from you are needed. When?

low!

Summary

 "The LHCb experiment is charmed to announce observation of a new particle with two heavy quarks" (LHCb实验粲然宣布发现双粲重子)——CERN press release
)

- Mass $m = 3621.40 \pm 0.78$ MeV/ c^2 , inconsistent with the Ξ_{cc}^+ reported by SELEX being its isospin partner
- New window opened for charm hadron spectroscopy studies

 > Observation of five new excited Ω_c^{**0} resonances
 "人类首次破天荒地同时 发现了5个粒子"

——国内媒体报道

Thank you

Backup slides

The LHCb detector

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

The LHCb detector JINST 3 (2008) \$08005

IJMPA 30 (2015) 1530022

Trigger

Comput. Phys. Commun. 208 35-42 Int. J. Mod. Phys. A 30, 1530022 (2015)

Run II Turbo stream: Candidates reconstructed at trigger level saved for offline analyses directly

Signal properties: intermediate resonances

 $\gg \overline{K}^*(892)^0$, $\Sigma_c(2455)^{++}$, $\Sigma_c(2520)^{++}$

PRL119(2017)112001

• Spectator model predicts almost equal lifetimes

> True for bottom hadrons: 1.5 ps $\pm 10\%$

Lifetimes of $\frac{1}{2^+}$ states

True for charm semi-leptonic decay width:

 $\Gamma(H_c \to l\nu_l X) = \frac{\operatorname{Br}(H_c \to l\nu_l X)}{\tau_{H_c}} \approx 0.3 \, \mathrm{ps}^{-1}$

- But charm hadron lifetimes known to vary a lot
- Explained by non-spectator decays and Pauli interference, qualitatively

≻ Destructive/constructive interference $(\Gamma_s^{-/+})$: $cuq/csq \rightarrow suq/ssq(u\bar{d})$

- $\gg W \text{-exchange process (enhancement): } cdq \rightarrow suq$ $\gg \Gamma(\Xi_c^0: W + \Gamma_s^+) > \Gamma(\Lambda_c^+: W + \Gamma_s^-) > \Gamma(\Xi_c^+: \Gamma_s^{+-})$
- Expectation: $\tau(\Xi_{cc}^{++}(ccu)) \gg \tau(\Xi_{cc}^{+}(ccd))$
- Calculations give $\tau(\Xi_{cc}^{++}) \in [200 700]$ fs Refs.[5, 6, 12 49-52]

Studies of Ξ_{cc} by FOCUS

- FOCUS (Fermilab E831) studies charm hadrons produced in photon-nuclear fixed target collisions
- FOCUS didn't confirm Ξ_{cc}^+ observed by SELEX in $\Lambda_c^+ K^- \pi^+$ decay

Studies of Ξ_{cc} by BaBar and Belle

- e^+e^- colliders working at $\Upsilon(4S)$ mass $\sqrt{s} = 10.58$ GeV
- Large Λ_c^+ yields: ≈ 0.6 M at BaBar, ≈ 0.8 M at Belle
- SELEX-like Ξ_{cc}^+ signal not confirmed in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays

 $R = \frac{\sigma(\Xi_{cc}^{+}) \times BF(\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+})}{\sigma(\Lambda_{c}^{+})} < 2.7 \times 10^{-4} \text{ (BaBar)} \quad 1.5 \times 10^{-4} \text{ (Belle)} \quad @ 95\% \text{ CL}$

 $\Omega_{\mathcal{C}}^{**0}$ results

Resonance	Mass (MeV)	Γ (MeV)	Yield	N _o
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
a.a. a	-0.5	<1.2 MeV, 95% C.L.		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000 \pm 140 \pm 130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		<2.6 MeV, 95% C.L.		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$	$1670 \pm 450 \pm 360$	
$\Omega_{c}(3066)_{fd}^{0}$			$700\pm40\pm140$	
$\Omega_{c}(3090)_{fd}^{0}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\rm fd}$			$190\pm70\pm20$	

More results from SELEX (unpublished)

Summary I

- Double charm is here to stay
 - Selex has seen 3 double charmed baryon states in 3, 1 and 2 decay modes.
 - $\Xi_{cc}^{+}(3520)$ seen decaying into three different single charm states.
 - $\Xi_{cc}^{++}(3780)$ excited state shows chain decay via pion emission.
 - $\Xi_{cc}^{++}(3452)$ ground state observed in two different decay modes. Splitting is too large (67 MeV) for this state to sensibly be the isospin partner of the $\Xi_{cc}^{++}(3519)$. Radiative decays are suppressed?
 - This logic requires at least two more weakly decaying states, the isospin partners of the $\Xi_{cc}^{++}(3452)$ ground state and the partner of the EM decay suppressed $\Xi_{cc}^{++}(3519)$.
 - Selex has some hints of these but makes no claims now.
 - No report yet on the third double charm baryon, the $\Omega_{cc}^{+}(ccs)$