Weak decays of doubly heavy baryon

Cai-Dian Lu (吕才典)

IHEP, Beijing

[PLB767 (2017) 232,arXiv:1701.03284] [arXiv:1703.09086]

In collaboration with Hua-Yu Jiang, Run-Hui Li, Ying Li, Wei Wang, **Fu-Sheng Yu**, Zhen-Xing Zhao, Zhi-Tian Zou

Outline

1. Introduction to doubly heavy baryons

masses, lifetimes and productions

2. Semi-leptonic decays

form factors in the light-front quark model

3. Non-leptonic decays

topologies and hierarchy

4. Suggestions on the discovery channels

Summary

Motivations

Doubly heavy baryons are predicted in quark model and QCD

Baryons	quarks	$I(J^P)$	Baryons	quarks	$I(J^P)$
Ξ_{cc}^{++}	ucc	$\frac{1}{2}(\frac{1}{2}^+)$	Ξ_{cb}^+	ucb	$\frac{1}{2}(\frac{1}{2}^+)$
Ξ_{cc}^+	dcc	$\frac{1}{2}(\frac{1}{2}^+)$	Ξ^0_{cb}	dcb	$\frac{1}{2}(\frac{1}{2}^+)$
Ω_{cc}^+	SCC	$0(\frac{1}{2}^+)$	Ω_{cb}^{0}	scb	$0(\frac{1}{2}^+)$

- But not established so far
 - $\boldsymbol{\cdot}$ The only evidence was found for $\ \Xi_{cc}^+$ by SELEX

 $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+ \qquad \Xi_{cc}^+ \to p D^+ K^- \qquad [SELEX, 02'; 04']$

But not confirmed by other experiments

 [Babar, 06'; Belle, 13'; LHCb, 13']
 Searching for them is one of the most important purposes of particle physics, to understand the hadron spectroscopy, the perturbative and non-perturbative QCD dynamics of the productions and decays.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Reference	Value (MeV)	Method
INTRESSES OF [23] $3550-3760$ QCD-motivated quark model E_{cc} [24] 3668 ± 62 QCD-motivated quark model E_{cc} [24] 3661 QCD-motivated quark model $M(\Xi_{cc}^{++}) = M(\Xi_{cc}^+)$ [43] 3610 Potential and bag models $M(\Xi_{cc}^{++}) = M(\Xi_{cc}^+)$ [47] 3676 Potential model Potential model $M(\Xi_{cc}^{++}) = M(\Xi_{cc}^+)$ [47] 3676 Potential and bag models Potential model $M(\Xi_{cc}^{++}) = M(\Xi_{cc}^+)$ [47] 3676 Potential and bag models Potential model $M(\Xi_{cc}^{++}) = M(\Xi_{cc}^+)$ [48] 3660 Potential model Potential model $\sim 3.6 \text{GeV}$ [50] 3527 36320 Potential approach + QCD sum rules Bootstrap quark model $2 m_c + 1 \text{GeV}$ [52] 3480 ± 50 Bag model Potential model $2 m_c + 1 \text{GeV}$ [56] 36612 36642 Potential model Relativistic quark model $2 m_c + 1 \text{GeV}$ [58] $36(12^{+17}$ 3642 $3595(12) (\frac{3}{3})$ $Quark model$ $= (2 \times 1.3 + 1) \text{GeV}$		[Karliner, Rosner, 14']	3627 ± 12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	masses of	[23]	3550 - 3760	QCD-motivated quark model
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	[25]	3668 ± 62	QCD-motivated quark model
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ecc	[28]	3651	QCD-motivated quark model
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[43]	3613	Potential and bag models
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[44]	3630	Potential model
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[45]	3610	Heavy quark effective theory
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[46]	3660 ± 70	Feynman-Hellmann + semi-empirical
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M(F_{-}^{++}) = M(F_{-}^{+})$	[47]	3676	Mass sum rules
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[48]	3660	Relativistic quasipotential quark model
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2 (C \cdot V)$	[49]	3607	Three-body Faddeev equations.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~3.6GeV	[50]	3527	Bootstrap quark model + Faddeev eqs.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[51]	<i>ucc</i> : 3649 ± 12 ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\pm 100 MeV$	[[0]	$dcc: 3644 \pm 12$	Quark model
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[52]	3480 ± 50	Potential approach $+$ QCD sum rules
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[53] [= 4]	3690	Nonperturbative string
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Quark model:	[04] [55]	3020 2520	Relativistic quark-diquark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[55]	3642	Dag model Detential model
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 m \perp 1 GoV$	[50] [57]	3649	Relativistic quark model + Bethe Salpeter
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[57]	3612^{+17}	Variational
$=(2 \times 1.3 + 1) \text{ GeV} \qquad [61] \qquad 3540 \pm 20 \qquad \text{Instantaneous approx. + Bethe-Salpeter} \\ =3.6 \text{ GeV} \qquad [62] \qquad 4260 \pm 190 \qquad \text{QCD sum rules} \\ [63] \qquad 3608(15)(\frac{13}{35}), \\ 3595(12)(\frac{21}{22}) \qquad \text{Quenched lattice} \\ 3549(13)(19)(92) \qquad \text{Quenched lattice} \\ \text{Instantaneous approx. + Bethe-Salpeter} \\ M(\Omega_{cc}^{+}) \sim M(\Xi_{cc}) + 0.1 \text{ GeV} \qquad [64] \qquad 3549(13)(19)(92) \qquad \text{Quenched lattice} \\ [66] \qquad 3605 \pm 17 \pm 14^{+0}_{-78} \\ [66] \qquad 3603(15)(16) \qquad \text{Lattice, } M_f = 2 + 1 \\ [67] \qquad 3513(23)(14) \qquad \text{LGT, twisted mass ferm., } m_{\pi} = 260 \text{ MeV} \\ \text{LGT, } N_f = 2 + 1, m_{\pi} = 200 \text{ MeV} \\ \text{LGT, } N_f = 2 + 1, m_{\pi} = 210 \text{ MeV}_{\underline{A}} \\ \end{bmatrix}$		[59]	3678	Quark model
$ = 3.6 \text{ GeV} \begin{bmatrix} 62 \\ 63 \end{bmatrix} = \frac{4260 \pm 190}{3608(15)\binom{13}{35}}, \\ 3595(12)\binom{21}{22} \end{bmatrix} & \text{QCD sum rules} \\ \text{Quenched lattice} \\ \text{Quenched lattice} \\ \text{Quenched lattice} \\ \text{Quenched lattice} \\ \text{Lattice, Admin-wall + KS fermions} \\ \text{Lattice, N_f = 2 + 1} \\ \text{LGT, twisted mass ferm., } m_{\pi} = 260 \text{ MeV} \\ \text{LGT, N_f = 2 + 1, } m_{\pi} = 200 \text{ MeV} \\ \text{LGT, N_f = 2 + 1, } m_{\pi} = 210 \text{ MeV}_A \\ \end{bmatrix} $	=(2×1.3+1)GeV	[61]	3540 ± 20	Instantaneous approx. + Bethe-Salpeter
$= 3.6 \text{ GeV} \begin{bmatrix} [63] \\ [63] \end{bmatrix} = 3608(15)\binom{13}{35}, \\ 3595(12)\binom{21}{22} \end{bmatrix} = 0$ Quenched lattice Quenched lattice Quenched lattice Quenched lattice Quenched lattice Quenched lattice Lattice, domain-wall + KS fermions Lattice, $N_f = 2 + 1$ LGT, twisted mass ferm., $m_{\pi} = 260 \text{ MeV}$ LGT, $N_f = 2 + 1, m_{\pi} = 200 \text{ MeV}$ LGT, $N_f = 2 + 1, m_{\pi} = 200 \text{ MeV}$ LGT, $N_f = 2 + 1, m_{\pi} = 210 \text{ MeV}_A$		[62]	4260 ± 190	QCD sum rules
$M(\Omega_{cc}^{+}) \sim M(\Xi_{cc}) + 0.1 \text{GeV} \begin{bmatrix} 64 \\ 65 \\ 66 \end{bmatrix} \begin{bmatrix} 66 \\ 3549(13)(19)(92) \\ 3665 \pm 17 \pm 14^{+0}_{-78} \\ 3603(15)(16) \\ 67 \end{bmatrix} \begin{bmatrix} 3513(23)(14) \\ 3595(39)(20)(6) \\ 3595(39)(20)(6) \\ 3568(14)(19)(1) \end{bmatrix} $ Quenched lattice Quenched lattice Lattice, domain-wall + KS fermions Lattice, $N_f = 2 + 1$ LGT, twisted mass ferm., $m_{\pi} = 260 \text{ MeV}$ LGT, $N_f = 2 + 1, m_{\pi} = 200 \text{ MeV}$	=3.6 GeV	63	$3608(15)(\frac{13}{35}),$	
$M(\Omega_{cc}^{+}) \sim M(\Xi_{cc}) + 0.1 \text{GeV} \begin{bmatrix} 64 \\ 65 \\ 66 \end{bmatrix} \begin{bmatrix} 65 \\ 3665 \pm 17 \pm 14^{+0}_{-78} \\ 3603(15)(16) \\ 3513(23)(14) \end{bmatrix} \qquad \text{Quenched lattice} \\ \text{Lattice, domain-wall + KS fermions} \\ \text{Lattice, } N_f = 2 + 1 \\ \text{LGT, twisted mass ferm., } m_{\pi} = 260 \text{ MeV} \\ \text{LGT, } N_f = 2 + 1, m_{\pi} = 200 \text{ MeV} \\ \text{LGT, } N_f = 2 + 1, m_{\pi} = 210 \text{ MeV} \\ \text{LGT, } N_f = 2 + 1, m_{\pi} = 2 + 1, m_{\pi} = 2 + 1 \text{ MeV} \\ LG$			$3595(12)\binom{21}{22}$	Quenched lattice
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[64]	3549(13)(19)(92)	Quenched lattice
Image: Complex	$M(O^{+}) \sim M(T^{+}) + 0.1 Ge$	[65]	$3665 \pm 17 \pm 14^{+0}_{-78}$	Lattice, domain-wall $+$ KS fermions
[67] $3513(23)(14)$ LGT, twisted mass ferm., $m_{\pi}=260$ MeVTable from [Karliner, Rosner, 14'][68] $3595(39)(20)(6)$ LGT, $N_f = 2 + 1, m_{\pi} = 200$ MeV $3568(14)(19)(1)$ LGT, $N_f = 2 + 1, m_{\pi} = 210$ MeV	$\frac{1}{2} \frac{1}{2} \frac{1}$	[66]	3603(15)(16)	Lattice, $N_f = 2 + 1$
Table from [Karliner, Rosner, 14'] [68] [69] $3595(39)(20)(6)$ $3568(14)(19)(1)$ LGT, $N_f = 2 + 1, m_{\pi} = 200 \text{ MeV}$ LGT, $N_f = 2 + 1, m_{\pi} = 210 \text{ MeV}_A$		[67]	3513(23)(14)	LGT, twisted mass ferm., $m_{\pi}=260$ MeV
LGT, $N_f = 2 + 1$, $m_{\pi} = 210 \text{ MeV}_A$	Table from [Karliner Rosper	1 /'] ^[68]	3595(39)(20)(6)	LGT, $N_f = 2 + 1, \ m_{\pi} = 200 \text{ MeV}$
	ימטוב ווטווו נוגמווווכו, ווטטווכו,	[69]	3568(14)(19)(1)	LGT, $N_f = 2 + 1$, $m_\pi = 210 \text{ MeV}_A$

Masses of **bc** baryons

[Karliner, Rosner, 14']

 $M(\Xi_{bc}^{+}) = M(\Xi_{bc}^{0}) \sim 6.9 \text{GeV} \pm 100 \text{MeV}$

-	Reference	Value (MeV)	Method
	Present work	6914 ± 13	
	[25]	6916 ± 139	QCD-motivated quark model
	[28]	6938	QCD-motivated quark model
	[44]	6930	Potential models
Quark modal	[46]	6990 ± 90	Feynman-Hellmann + semi-empirical formulas
Quark mouer.	[47]	7029	Mass sum rules
mh_1mo_11GoV	[48]	6950	Relativistic quasipotential quark model
IIID+IIIC+IGev	[49]	6915	Three-body Faddeev equations.
-(1611211)Co	V [52]	6820 ± 50	Potential approach and QCD sum rules
= (4.0 + 1.3 + 1)Ge	V [53]	6960	Nonperturbative string
-60 CoV	[54]	6933	Relativistic quark-diquark
= 0.9 Gev	[55]	6800	Bag model
	[58]	6919	Variational
	[59]	7011	Quark model
	[60]	6789	Coupled channel formalism
	[61]	6840 ± 10	Instantaneous approx. $+$ Bethe-Salpeter
	[62]	6750 ± 50	QCD sum rules

 $M(\Omega_{bc}^{0}) \sim M(\Xi_{bc}) + 0.1 \text{GeV}$

Lifetimes

Priority to search for Ξ_{cc}^{++}

Literatures	Ecc ⁺⁺	Ecc+	Ω_{cc}^+	
Karliner, Rosner, 2014	185	53		(fs)
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10		
iselev, Likhoded, 2002	460±50	160±50	270±60	
iberina, Melic, Stefancic, 1998	1550	220	250	ambiguity
Chang, Li, Li, Wang, 2007	670	250	210	of lifetimes
LEV colleboration	$\tau(\Xi^{+}) < 33$	$f_{\rm C}$ \bigcirc 000/	aanfidanaa	-

SELEX collaboration: $\tau(\Xi_{cc}^+) < 33 \text{ fs}$ @ 90% confidence

Compared to
$$\begin{aligned} & au(\Lambda_c^+) = (200 \pm 6) \times 10^{-15} s, \\ & au(\Xi_c^0) = (112^{+13}_{-10}) \times 10^{-15} s, \end{aligned}$$

 $\tau(\Xi_c^+) = (442 \pm 26) \times 10^{-15} s,$ $\tau(\Omega_c^0) = (69 \pm 12) \times 10^{-15} s.$

Lifetimes [Karliner, Rosner, 14']

Baryon	This work	[28]	[52]	[71]	[72]
$\Xi_{cc}^{++} = ccu$	185	$430 {\pm} 100$	$460{\pm}50$	500	~ 200
$\Xi_{cc}^+ = ccd$	53	$120{\pm}100$	$160{\pm}50$	150	~ 100
$\Xi_{bc}^+ = bcu$	244	$330{\pm}80$	$300{\pm}30$	200	-
$\Xi_{bc}^0 = bcd$	93	$280{\pm}70$	270 ± 30	150]

 $imes 10^{-15} s$

				-
	lifetime ratio	average lifetime	b-hadron species	
charm decay		$1.520 \pm 0.004 \text{ ps}$	B ⁰	
on a court	$B^+/B^0 = 1.076 \pm 0.004$	1.638 ± 0.004 ps	B^+	
dominated	$B_s^0/B^0 = 0.990 \pm 0.004$	1.504 ± 0.005 ps	$B_s^{\ 0}$	
		1.413 ± 0.006 ps	B _{sL}	
arm: Vcs ~ 1		1.608 ± 0.010 ps	B _{sH}	
1200		0.507 ± 0.009 ps	B_c^+	(
tom: VCD ~ $\lambda^2 \sim 0.04$	$\Lambda_b/B^0 = 0.965 \pm 0.007$	1.466 ± 0.010 ps	Λ_b	
		1.567 ± 0.040 ps	Ξ_b^-	
$10^{-15}s$,	$\tau(\Xi_c^+) = (442 \pm$	$\times 10^{-15}s$,	$\Lambda_c^+) = (200 \pm 6)$	$ au(\Lambda$
$0^{-15}s.$ 7	$ au(\Omega_c^0) = (69 \pm 1)$	$< 10^{-15} s,$	$\Xi_c^0) = (112^{+13}_{-10}) >$	$\tau(\Xi$

cross sections of production @ LHC

 $\sigma(\Xi_{cc})$ is close to $\sigma(B_c)$ @ LHC

Ξ	
$\square cc$	

_	$\sqrt{S} = 7.0 \text{TeV}$	$\sqrt{S} = 14.0 \text{TeV}$
$[{}^{3}S_{1}]$	38.11	69.40
$[^1S_0]$	9.362	17.05
Total	47.47	86.45

in unit of nb

 $p_t \ge 4GeV \qquad |y| \le 1.5$

[J.-W. Zhang, X.-G. Wu, T. Zhong, Y. Yu, Z.-Y. Fang, Phys.Rev. D 83, 034026 (2011)]

LHC ($\sqrt{S} = 14.0 \text{ TeV}$) in unit of nb

[C.-H. Chang, C.-F. Qiao, J.-X. Wang, X.-G. Wu, Phys.Rev. D71 (2005) 074012]

 B_c well studied at LHCb, discovery and establishment of Ξ_{cc} would not be far

2. Semi-leptonic decays

Key point is to calculate form factors First try in the light-front quark model Wei Wang, Fu-Sheng Yu, Zhen-Xing Zhao, arXiv: 1707.02834

Form factors with di-quark assumption

- $Q_1Q_2q \rightarrow q'Q_2q$
- weak decays of $Q_1 \rightarrow q'$
- diquark assumption: spectators [Q2q]
- diquark is dominated by J^P=0⁺

$$\langle B'(P', S'_z) | (V - A)_\mu | B(P, S_z) \rangle = \bar{u}(P', S'_z) \left[\gamma_\mu f_1(q^2) + i\sigma_{\mu\nu} \frac{q^\nu}{M} f_2(q^2) + \frac{q_\mu}{M} f_3(q^2) \right] u(P, S_z) - \bar{u}(P', S'_z) \left[\gamma_\mu g_1(q^2) + i\sigma_{\mu\nu} \frac{q^\nu}{M} g_2(q^2) + \frac{q_\mu}{M} g_3(q^2) \right] \gamma_5 u(P, S_z)$$

B'

W

В

Form factors in light-front quark model

- LRQM: all particles are on-shell

m_u	m_d	m_s	m_c	m_b	$m_{[cu]}$	$m_{[cd]}$
0.25	0.25	0.37	1.4	4.8	1.4 + 0.25	1.4 + 0.25

Form factors in LFQM $F(q^2) = \frac{F(0)}{1 - \frac{q^2}{m_{pole}^2}}$

	channels	$f_1(0)$	$f_{2}(0)$	$g_1(0)$	$g_2(0)$	$m_{ m pole}$
	$\Xi_{cc}^{++} \to \Lambda_c^+$	0.653	-0.739	0.533	-0.053	D^*
	$\Xi_{cc}^{++} \to \Sigma_c^+$	0.653	-0.739	0.533	-0.053	D^*
c decay	$\Xi_{cc}^{++}\to\Xi_c^+$	0.754	-0.783	0.620	-0.080	D_s^*
	$\Xi_{cc}^+ \to \Sigma_c^0$	0.653	-0.739	0.533	-0.053	D^*
	$\Xi_{cc}^+ \to \Xi_c^0$	0.754	-0.783	0.620	-0.080	D_s^*
	$\Xi_{bc}^+ \to \Sigma_c^{++}$	0.136	-0.081	0.130	-0.009	B^*
b decay	$\Xi_{bc}^{0}\to\Lambda_{c}^{+}$	0.136	-0.081	0.130	-0.009	B^*
	$\Xi_{bc}^0 \to \Sigma_c^+$	0.136	-0.081	0.130	-0.009	B^*
	$\Xi_{bc}^+ \to \Lambda_b^0$	0.639	-1.707	0.499	-0.232	D^*
c decay	$\Xi_{bc}^+ \to \Xi_b^0$	0.725	-1.801	0.571	-0.269	D_s^*
	$\Xi_{bc}^0 \to \Xi_b^-$	0.725	-1.801	0.571	-0.269	D_s^*

Semi-leptonic decays

· · · · · · · · · · · · · · · · · · ·		
channels	\mathcal{B}	
$\Xi_{cc}^{++} \to \Lambda_c^+$	5.16×10^{-3}	$ V_{cd} ^2 \sim \lambda^2 \sim 0.05$
$\Xi_{cc}^{++} \to \Sigma_c^+$	$ 2.50 \times 10^{-3} $	
$\Xi_{cc}^{++}\to\Xi_c^+$	5.58×10^{-2}	V _{cs} ² ~1
$\Xi_{cc}^+ \to \Sigma_c^0$	7.13×10^{-4}	IV _{cd} I ² ~λ ² ~0.05
$\Xi_{cc}^+ \to \Xi_c^0$	1.58×10^{-2}	V _{cs} ² ~1
$\Xi_{bc}^+ \to \Sigma_c^{++}$	3.11×10^{-5}	$ V_{\rm ub} ^2 \sim 26 \sim 10-5$
$\Xi^0_{bc} o \Lambda^+_c$	1.53×10^{-5}	$(m_b)_5$
$\Xi_{bc}^0 \to \Sigma_c^+$	1.19×10^{-5}	phase space $(\overline{m_c})^{\circ} \sim 300$
$\Xi_{bc}^+ \to \Lambda_b^0$	6.53×10^{-3}	V _{cd} ² ~λ ² ~0.05
$\Xi_{bc}^+ \to \Xi_b^0$	6.79×10^{-2}	$ V_{\alpha\alpha} ^2 \sim 1$
$\Xi_{bc}^0 o \Xi_b^-$	2.56×10^{-2}	
	$ \begin{array}{c} \label{eq:channels} \\ \hline \text{channels} \\ \hline \Xi_{cc}^{++} \rightarrow \Lambda_c^+ \\ \hline \Xi_{cc}^{++} \rightarrow \Sigma_c^+ \\ \hline \Xi_{cc}^{++} \rightarrow \Xi_c^0 \\ \hline \Xi_{cc}^+ \rightarrow \Sigma_c^0 \\ \hline \Xi_{bc}^+ \rightarrow \Sigma_c^0 \\ \hline \Xi_{bc}^+ \rightarrow \Sigma_c^{++} \\ \hline \Xi_{bc}^0 \rightarrow \Lambda_c^+ \\ \hline \Xi_{bc}^0 \rightarrow \Sigma_c^+ \\ \hline \Xi_{bc}^+ \rightarrow \Sigma_b^0 \\ \hline \Xi_{bc}^+ \rightarrow \Xi_b^0 \\ \hline \Xi_{bc}^+ \rightarrow \Xi_b^0 \\ \hline \Xi_{bc}^0 \rightarrow \Xi_b^- \end{array} $	$\begin{array}{ c c c c } \hline \text{channels} & \mathcal{B} \\ \hline \Xi_{cc}^{++} \to \Lambda_c^+ & 5.16 \times 10^{-3} \\ \hline \Xi_{cc}^{++} \to \Sigma_c^+ & 2.50 \times 10^{-3} \\ \hline \Xi_{cc}^{++} \to \Xi_c^+ & 5.58 \times 10^{-2} \\ \hline \Xi_{cc}^{+} \to \Sigma_c^0 & 7.13 \times 10^{-4} \\ \hline \Xi_{cc}^+ \to \Sigma_c^0 & 1.58 \times 10^{-2} \\ \hline \Xi_{bc}^+ \to \Sigma_c^{++} & 3.11 \times 10^{-5} \\ \hline \Xi_{bc}^0 \to \Lambda_c^+ & 1.53 \times 10^{-5} \\ \hline \Xi_{bc}^0 \to \Sigma_c^+ & 1.19 \times 10^{-5} \\ \hline \Xi_{bc}^+ \to \Xi_b^0 & 6.53 \times 10^{-3} \\ \hline \Xi_{bc}^+ \to \Xi_b^0 & 6.79 \times 10^{-2} \\ \hline \Xi_{bc}^0 \to \Xi_b^- & 2.56 \times 10^{-2} \\ \hline \end{array}$

Semi-leptonic decays are not competitive

	channels	B	with missing energy
	$\Xi_{cc}^{++} \to \Lambda_c^+$	5.16×10^{-3}	200 200 200
	$\Xi_{cc}^{++} \to \Sigma_c^+$	2.50×10^{-3}	
c decay	$\Xi_{cc}^{++}\to \Xi_c^+$	5.58×10^{-2}	$\times 10^{-2}$ ~10^{-4}
	$\Xi_{cc}^+ \to \Sigma_c^0$	7.13×10^{-4}	Non-leptonic: 10 ^{-3~-4}
	$\Xi_{cc}^+ \to \Xi_c^0$	1.58×10^{-2}	
	$\Xi_{bc}^+ \to \Sigma_c^{++}$	3.11×10^{-5}	
b decay	$\Xi^0_{bc} o \Lambda^+_c$	1.53×10^{-5}	×10 ⁻² ~10 ⁻⁷
	$\Xi_{bc}^0 \to \Sigma_c^+$	1.19×10^{-5}	Non-leptonic: 10 ^{-6~-8}
	$\Xi_{bc}^+ \to \Lambda_b^0$	6.53×10^{-3}	
c decay	$\Xi_{bc}^+ \to \Xi_b^0$	6.79×10^{-2}	×10 ⁻⁴ ~10 ⁻⁶
	$\Xi_{bc}^{0} ightarrow \Xi_{b}^{-}$	2.56×10^{-2}	Non-leptonic: 10 ^{-6~-8}

3. Non-leptonic decays

- Only two-body decays are available in theory
- Estimate branching fractions using topological diagrammatic approach

Difficulties in theory

- It is always difficult to understand the dynamics of charm decays, due to large non-perturbative contributions
- Heavy quark effective theory does not work for 1/mc
- Topological diagrammatic approach works well in D decays. ΔA_{CP} was predicted to be (-0.06 ~ -0.19)% in 2012 [Li, Lu, Yu, PRD86,036012], and confirmed by recent LHCb measurements.
- But it does not work in charmed baryon decays so far, due to less data to fix parameters.

SCET: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{QCD}/m_Q)$, $IB/EI \sim O(\Lambda_{QCD}/m_Q)$,

[Leibovich, Ligeti, Stewart, Wise, 04']

b decay: $IC/TI \sim IC'/TI \sim IE/TI \sim IP/TI \sim O(\Lambda_{QCD}/m_Q) \sim 0.2$ $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 0.2$

c decay: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IPI \sim 0$

- Large error
- Strong phases neglected, largest interference

SCET: IC/TI~IC'/TI~IE/TI~ $O(\Lambda_{QCD}/m_Q)$, IB/EI~ $O(\Lambda_{QCD}/m_Q)$,

[Leibovich, Ligeti, Stewart, Wise, 04']

b decay: $IC/TI \sim IC'/TI \sim IE/TI \sim IP/TI \sim O(\Lambda_{QCD}/m_Q) \sim 0.3$ $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 0.3$

Factorization-assisted topological-amplitude approach $B \rightarrow \pi \pi$ $T^{\pi\pi}: C^{\pi\pi}: E^{\pi\pi}: P^{\pi\pi} = 1: 0.47: 0.29: 0.32$ [S.H. Zhou, Q.A. Zhang, C.D. Lu, 16']

SCET: IC/TI~IC'/TI~IE/TI~O(Λ_{QCD}/m_Q), IB/EI~O(Λ_{QCD}/m_Q),

[Leibovich, Ligeti, Stewart, Wise, 04']

b decay: $IC/TI \sim IC'/TI \sim IE/TI \sim IP/TI \sim O(\Lambda_{QCD}/m_Q) \sim 0.3$ $IB/EI \sim IPE/EI \sim O(\Lambda_{QCD}/m_Q) \sim 0.3$

[C.D. Lu, Y.M. Wang, H. Zou, Ali, Kramer, 09']

SCET: IC/TI~IC'/TI~IE/TI~ $O(\Lambda_{QCD}/m_Q)$, IB/EI~ $O(\Lambda_{QCD}/m_Q)$,

[Leibovich, Ligeti, Stewart, Wise, 04']

c decay: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IPI \sim 0$

		$\lambda_{sd} = V_{cs} V_{ud}$	
Λ_c^+	Modes	Representation	$\mathcal{B}_{ ext{exp}}$
	\overline{pK}^0	$\lambda_{sd}(C+E)$	$(3.04 \pm 0.17)\%$
	$\Lambda^0\pi^+$	$\lambda_{sd}(T-C'+B-E)/\sqrt{2}$	$(1.24 \pm 0.08)\%$
	$\Delta^{++}K^{-}$	$\lambda_{sd}E$	$(1.18 \pm 0.27)\%$

_____T7*T7

 Λ_c decay would help to understand dynamics

Topologies of two-body non-leptonic charmed baryon decays

Theoretical Framework

- 1. To understand factorizable contributions
 - tree emitted (T) diagrams
 - Form factors calculated in light-front quark model
- 2. To understand non-factorizable contributions
 - final-state interacting effects
 - Calculate rescattering effects

T diagrams

A =	$-\lambda f_P(M$ -	$-M')f_1$	(m^2)

$$B = -\lambda f_P (M + M') g_1(m^2)$$

 $f_2(0)$ channels $f_1(0)$ $g_{1}(0)$ $g_{2}(0)$ m_{pole} Under SU(3) symmetry $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ |0.653| - 0.739 |0.533| - 0.053$ D^* $\Xi_{cc}^{++} \rightarrow \Sigma_{c}^{+-}$ |0.653| - 0.739 | 0.533 | -0.053 D^* $T_A=0.14, T_B=0.50$ $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+-}$ |0.754| - 0.783 | 0.620 | - 0.080 D_s^* $\Xi_{cc}^+ \to \Sigma_c^0$ |0.653| - 0.739 | 0.533 | -0.053 D^* $\Xi_{cc}^+ \to \Xi_c^0$ |0.754| - 0.783 | 0.620 | - 0.080 D_s^* $\Xi_{bc}^+ \to \Sigma_c^{++}$ 0.136 - 0.081 0.130 - 0.009 B^* $\Xi_{bc}^0 \to \Lambda_c^+$ $T_A=0.10, T_B=0.18$ 0.136 - 0.081 0.130 - 0.009 B^* $\Xi_{bc}^0\to \Sigma_c^+$ B^* 0.136 - 0.081 0.130 - 0.009 $\Xi_{bc}^+ \to \Lambda_b^0$ 0.639 D^* -1.707 | 0.499 |-0.232 $\Xi_{bc}^+ \to \Xi_b^0$ $T_A=0.13, T_B=1.0$ D_s^* 0.725 | -1.801 | 0.571 |-0.269 $\Xi_{bc}^0 \to \Xi_b^-$ 0.725 | -1.801 | 0.571 | D_s^* -0.269

$$\Xi_{cc}^{++} \to pD^{*+} \to pD^0\pi^+$$

 $\rightarrow \Xi_c^+ \rho^0 \rightarrow \Xi_c^+ \pi^+ \pi^ \Xi_{cc}^{+}$

SELEX exp. ever found evidence in this channel

SELEX exp. ever found evidence in this channel

 D^+

 D^0

 $\rightarrow pD$ Ξ_{cc}^+

Theoretical Uncertainties

- Strong couplings between hadrons

 Large ambiguities in literatures
- Off-shell effects of intermediate states

$$F(t,m) = \left(\frac{\Lambda^2 - m^2}{\Lambda^2 - t}\right)^n$$
$$t \equiv (p_1 - p_3)^2 \qquad n = 1$$

 $\Lambda = m_{\rm exc} + \eta \Lambda_{\rm QCD}$

[Cheng, Chua, Soni, PRD 71, 014030 (2005)]

 p_2

Results are very sensitive to the value of η No first-principle calculations for η We take η from 1.0 to 2.0 p_3

k

Results of Branching Fractions

Baryons	Modes	Representation	Br	
Ξ_{cc}^{++}	$\Sigma_c^{++}\overline{K}^{*0}$	$V_{cs}^* V_{ud} C$	$(1.6 \sim 11)\%$	$\Lambda_c^+ K^- \pi^+ \pi^+$
	$\Xi_c^+\pi^+$	$V_{cs}^* V_{ud}(T+C')$	$(9.0\sim9.4)\%$	
	$\Lambda_c^+\pi^+$	$V_{cd}^* V_{ud}(T+C')$	$(0.6\sim 1.3)\%$	
	pD^+	$V_{cd}^*V_{ud}C'$	$(0.01 \sim 0.08)\%$	
	pD^{*+}	$V_{cd}^*V_{ud}C'$	$(0.3\sim2.8)\%$	$pD^0\pi^+$
Ξ_{cc}^+	$\Xi_c^0\pi^+$	$V_{cs}^* V_{ud}(T+E_2)$	$(2.9\sim 3.8)\%$	— + + –
	$\Xi_c^+ ho^0$	$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(C'-E_2)$	$(0.2\sim 1.8)\%$	$\Xi_c^+\pi^+\pi^-$
	$\Lambda_c^+ \overline{K}^{*0}$	$V_{cs}^* V_{ud}(C+E_1)$	$(0.14 \sim 0.5)\%$	$\Lambda_c^+ K^- \pi^+$
	$\Sigma_c^{++}K^-$	$V_{cs}^* V_{ud} E_1$	$(0.02 \sim 0.1)\%$	
	ΛD^+	$V_{cs}^*V_{ud}(C'+B)$	$(0.1\sim 0.7)\%$	
	pD^0	$V_{cd}^* V_{ud} B$	$(0.0002 \sim 0.001)\%$,)

1. Many resonances

 $Br(\Sigma_c^{++}K^{*0}) = (1.6 \sim 11)\%$

 $K^{*0}, \ (K\pi)_{\text{S-wave}}, \ K_0^*(1430)$

 $\Sigma_c^{++}(2455), \ \Sigma_c^{++}(2520)$

2. Large non-resonant contributions

 $\Lambda_{c}^{+} \underbrace{\begin{matrix} u \\ u \\ u \\ d \\ d \\ d \\ d \\ \pi^{0} \end{matrix}}^{\pi^{+}} K^{-}$

multi-body > two-body $Br(\Lambda_{c}^{+} \to pK^{-}\pi^{+}\pi^{0}) = (4.9 \pm 0.4)\%$ $Br(\Lambda_{c}^{+} \to p(K^{-}\pi^{+})_{\text{nonresonant}}\pi^{0}) = (4.6 \pm 0.9)\%$ $Br(\Lambda_{c}^{+} \to \Lambda\pi^{+}) = (1.30 \pm 0.07)\%$

It would be expected to be as large as O(10%)

- In theory, we can only calculate two-body nonleptonic decays.
- For multi-body processes, we can only give a rough estimation.
- Similarly to $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$, it can also be expected that the branching fractions of $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$ could reach $\mathcal{O}(10\%)$

Prediction on Br of $\Xi_c^+ \to p K^- \pi^+$

 Ξ_c^+ detecting mode, Br not directly measured Under U-spin symmetry

$$\mathcal{A}(\Xi_c^+ \to p\overline{K}^{*0}) = -\mathcal{A}(\Lambda_c^+ \to \Sigma^+ K^{*0})$$

PDG $\Lambda_c^+ \to \Sigma^+ K^{*0}$ saturates $Br(\Lambda_c^+ \to \Sigma^+ K^- \pi^+) = (0.21 \pm 0.06)\%$ $Br(\Xi_c^+ \to p\overline{K}^{*0})/Br(\Xi_c^+ \to pK^-\pi^+) = 0.54 \pm 0.10$

Averaged:
$$Br(\Xi_c^+ \to pK^-\pi^+) = (1.6 \pm 0.5)\%$$

It can be widely used $\tau(\Xi_c^+) = (442 \pm 26) \times 10^{-15} s_c$

Precision can be improved by measurements of Λ_c^+ and Ξ_c^+ decays

Priorities to measure

- **1.** $\mathcal{E}_{cc}^{++} > \mathcal{E}_{cc}^{+}$, due to $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$
- 2. $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ has the largest branching fraction in \mathcal{E}_{cc}^{++} decays. And large $Br(\Lambda_c^+ \rightarrow pK^- \pi^+)$ But suffer 6 tracks. LHCb, PRL 119 (2017) 112001
- 3. $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$ has only 4 tracks. Its branching fraction has large ambiguity. Small $Br(\Xi_c^+ \to pK^-\pi^+)$
- 4. $\Xi_{cc}^{++} \rightarrow pD^+$ has only 4 tracks. Branching fraction and lifetime of D^+ are large
- 5. For \mathcal{Z}_{cc}^+ , $\Lambda_c^+ K^- \pi^+$ has the largest priority.

Non-leptonic decays of Ω_{cc}^+

Modes	$Br(first)(\times 10^{-3})$	$Br(final)(\times 10^{-3})$	Representation
pD^0	0.3	0.008	Bc Vcd Vus
$(p\pi^{-})(D^{+}/D^{0}\pi^{+})$	0.2	0.006	Bc Vcd Vus
$(pK^-\pi^+/\Sigma^+)D^0$	3.	0.08	Bc Vcs Vus
$(pK^-/\Lambda)(D^+/D^0\pi^+)$	10.	0.3	Cem Ved Vud + Be Ves Vus
$(pK^-/\Lambda)(D_s^+/D^0K^+)$	0.5	0.01	Bc Vcd Vus + Ccm Vcd Vus
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(D^{+}/D^{0}\pi^{+})$	50.	2.	Cem Ves Vud
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(D_{s}^{+}/D^{0}K^{+})$	9.	0.3	Bc Vcs Vus + Ccm Vcs Vus
$(\Lambda_c^+\pi^+)\pi^-$	0.2	0.01	-(Ec Vcd Vus)
$(\Lambda_c^+\pi^+)K^-$	3.	0.2	-(Ec Vcs Vus)
$\Lambda_c^+(\pi^+\pi^-)$	0.8	0.04	2 Ec Vcd Vus
$\Lambda^+_{m c}(K^-\pi^+)$	10.	0.7	Ccb Vcd Vud - Ec Vcs Vus
$\Lambda_c^+(K^+K^-)$	0.1	0.006	Ccb Vcd Vus
$(\Lambda_c^+\pi^-)\pi^+$	0.2	0.01	Ec Vcd Vus
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)(\pi^+\pi^-)$	9.	0.5	-(Ct Vcd Vud) + Ec Vcs Vus
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)(K^+\pi^-)$	0.4	0.02	Ct Vcd Vus - Ec Vcd Vus
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)(K^-\pi^+)$	100.	7.	Ccb Vcs Vud + Ct Vcs Vud
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)(K^+K^-)$	10.	0.5	Ccb Vcs Vus + Ct Vcs Vus - Ec Vcs Vus
$(\Lambda_c^+ K^-/\Xi_c^0)\pi^+$	10.	0.6	T Vcd Vud + Ec Vcs Vus
$(\Lambda_c^+ K^-/\Xi_c^0)K^+$	0.6	0.03	Ec Vcd Vus + T Vcd Vus
$(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)\pi^+$	50.	2.	T Vcs Vud
$(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)K^+$	8.	$_{22}0.4$	Ec Vcs Vus + T Vcs Vus

Non-leptonic *b*-decays of Ξ_{bc}^+

Modes	Br(first)	$Br(final)(\times 10^{-7})$	Representation
$p(\pi^{+}\pi^{-})$	$0.1 imes 10^{-7}$	0.1	Bq Vcd Vub + 2 Eq Vcd Vub
$p(K^-\pi^+)$	$0.6 imes 10^{-7}$	0.6	-(Eq Vcs Vub)
pD^0	$6. \times 10^{-7}$	0.2	Eq Vcb Vcd + Bc Vub Vud + Cbm Vub Vud
pJ/Ψ	0.02×10^{-7}	0.001	Cbm Vcd Vub
$(p\pi^-)\pi^+$	0.04×10^{-7}	0.04	Bq Vcd Vub + Eq Vcd Vub
$(p\pi^{-})(D^{+}/D^{0}\pi^{+})$	$3. \times 10^{-7}$	0.08	Eq Vcb Vcd + Bc Vub Vud
$(p\pi^{+})\pi^{-}$	0.03×10^{-7}	0.03	-(Eq Vcd Vub)
$(p\pi^{+})K^{-}$	$0.5 imes 10^{-7}$	0.5	-(Eq Vcs Vub)
$(pK^{-}\pi^{+}/\Sigma^{+})(\pi^{+}\pi^{-})$	$0.8 imes 10^{-7}$	0.8	Bq Vcs Vub + Eq Vcs Vub
$(pK^{-}\pi^{+}/\Sigma^{+})(K^{+}\pi^{-})$	0.03×10^{-7}	0.03	-(Eq Vcd Vub)
$(pK^-\pi^+/\Sigma^+)(K^+K^-)$	$0.5 imes 10^{-7}$	0.5	-(Eq Ves Vub)
$(pK^-\pi^+/\Sigma^+)D^0$	$60. \times 10^{-7}$	2.	Eq Vcb Vcs + Bc Vub Vus + Cbm Vub Vus
$(pK^-\pi^+/\Sigma^+)J/\Psi$	$0.4 imes 10^{-7}$	0.02	Cbm Vcs Vub
$(pK^{+}/\Lambda)\pi^{+}$	$0.8 imes 10^{-7}$	0.8	Bq Vcs Vub + Eq Vcs Vub
$(pK^-/\Lambda)K^+$	0.04×10^{-7}	0.04	Bq Vcd Vub $+$ Eq Vcd Vub
$(pK^{-}/\Lambda)(D^{+}/D^{0}\pi^{+})$	$60. \times 10^{-7}$	2.	Eq Vcb Vcs $+$ Bc Vub Vus
$(pK^-/\Lambda)(D_s^+/D^0K^+)$	$2. imes 10^{-7}$	0.07	Eq Vcb Vcd + Bc Vub Vud
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})K^{+}$	$0.8 imes 10^{-7}$	0.8	Bq Vcs Vub + Eq Vcs Vub
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(D_{s}^{+}/D^{0}K^{+})$	$60. \times 10^{-7}$	2.	Eq Vcb Vcs + Bc Vub Vus
$(\Lambda_c^+\pi^+)\pi^-$	$30. imes 10^{-7}$	2.	-(Eq Vcb Vcd) + Ec Vub Vud + Tb Vub Vud
$(\Lambda_c^+\pi^+)K^-$	$70. \times 10^{-7}$	3.	-(Eq Veb Ves) + Ec Vub Vus + Tb Vub Vus
$\Lambda_c^+(K^-\pi^+)$	$50. imes 10^{-7}$	3.	-(Eq Vcb Vcs) + Ec Vub Vus
$(\Lambda_c^+\pi^-)\pi^+$	$1. imes 10^{-7}$	0.05	Bq Veb Ved - Ec Vub Vud
$(\Lambda_c^+\pi^-)(D^+/D^0\pi^+)$	$20. \times 10^{-7}$	0.04	Bc Vcb Vud - Ec Vcb Vud
$(\Lambda_{c}^{+}\pi^{+}K^{-}/\Xi_{c}^{+})(K^{+}\pi^{-})$	$5. imes 10^{-7}$	0.3	-(Eq Vcb Vcd) + Ec Vub Vud
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)(K^+K^-)$	$50. imes 10^{-7}$	2.	-(Eq Vcb Vcs) + Ec Vub Vus
$(\Lambda_c^+ K^-/\Xi_c^0)\pi^+$	$2. imes 10^{-7}$	0.1	Bq Vcb Vcs - Ec Vub Vus
$(\Lambda_c^+ K^- / \Xi_c^0) K^+$	$0.9 imes 10^{-7}$	0.05	Bq Vcb Vcd - Ec Vub Vud
$(\Lambda_c^+ K^- / \Xi_c^0) (D^+ / D^0 \pi^+)$	$1. imes 10^{-7}$	0.002	Bc Vcb Vus - Ec Vcb Vus
$(\Lambda_{c}^{+}K^{-}/\Xi_{c}^{0})(D_{s}^{+}/D^{0}K^{+})$	$20. \times 10^{-7}$	0.03	Bc Veb Vud - Ec Veb Vud
$(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)K^+$	$2. imes 10^{-7}$	0.1	Bq Vcb Vcs - Ec Vub Vus
$(\Lambda^{+}_{\pi}\pi^{+}K^{-}K^{-}/\Omega^{0}_{\pi})(D^{+}_{\pi}/D^{0}K^{+})$	$1. \times 10^{-7}$	0.002	Be Veb Vus - Ee Veb Vus

Non-leptonic *c*-decays of Ξ_{bc}^+

Modes	Br(first) B:	$r(final)(\times 10^{-7})$	Representation
$(\Lambda_b^0\pi^+)(K^+\pi^-)$	$0.07 imes 10^{-3}$	0.07	Cct Vcd Vus
$(\Lambda_b^0\pi^+)(K^-\pi^+)$	$30. imes 10^{-3}$	30.	Cct Vcs Vud
$(\Lambda_b^0\pi^+)(K^+K^-)$	$0.8 imes 10^{-3}$	0.8	Cct Vcs Vus
$\Lambda_b^0\pi^+$	$7. imes 10^{-3}$	7.	Ccb Vcd Vud + Tc Vcd Vud
$\Lambda_b^0 K^+$	$0.3 imes 10^{-3}$	0.3	Ccb Vcd Vus + Tc Vcd Vus
$(\Lambda_b^0\pi^+K^-/\Xi_b^0)\pi^+$	$100. \times 10^{-3}$	100.	Ccb Vcs Vud + Tc Vcs Vud
$(\Lambda^0_b\pi^+K^-/\Xi^0_b)K^+$	$4. imes 10^{-3}$	4.	Ccb Vcs Vus + Tc Vcs Vus
$par{B^0}$	$3. imes 10^{-3}$	3.	Ccm Vcd Vud
$par{B^0_s}$	$0.1 imes 10^{-3}$	0.1	Ccm Vcd Vus
$(pK^-\pi^+/\Sigma^+)ar{B^0}$	$20. \times 10^{-3}$	20.	Ccm Vcs Vud
$(pK^-\pi^+/\Sigma^+)ar{B_s^0}$	$0.8 imes 10^{-3}$	0.8	Ccm Vcs Vus

Non-leptonic *b*-decays of Ξ_{bc}^{0}

Modes	$Br(first)(\times 10^{-7})$	$Br(final)(\times 10^{-}$	⁷) Representation
$p\pi^-$	0.007×10^{-7}	0.007	Bq Vcd Vub - Eq Vcd Vub
pK^-	$0.2 imes 10^{-7}$	0.2	-(Eq Vcs Vub)
$(p\pi^-)(\pi^+\pi^-)$	0.03×10^{-7}	0.03	-(Bq Vcd Vub) + 2 Eq Vcd Vub
$(p\pi^-)(K^-\pi^+)$	$0.2 imes 10^{-7}$	0.2	-(Eq Vcs Vub)
$(p\pi^{-})D^{0}$	$2. \times 10^{-7}$	0.07	Eq Vcb Vcd + Cbm Vub Vud
$(p\pi^-)J/\Psi$	$0.009 imes 10^{-7}$	0.0005	Cbm Vcd Vub
$(p\pi^-\pi^-)\pi^+$	$0.01 imes10^{-7}$	0.01	Eq Vcd Vub
$(p\pi^{-}\pi^{-})(D^{+}/D^{0}\pi^{+})$	$1. imes 10^{-7}$	0.03	Eq Vcb Vcd
$(pK^-\pi^+/\Sigma^+)\pi^-$	0.009×10^{-7}	0.009	Bq Vcs Vub
$(pK^-/\Lambda)(\pi^+\pi^-)$	$0.1 imes 10^{-7}$	0.1	$-(\mathrm{Bq} \mathrm{Vcs} \mathrm{Vub}) + \mathrm{Eq} \mathrm{Vcs} \mathrm{Vub}$
$(pK^-/\Lambda)(K^+\pi^-)$	0.006×10^{-7}	0.006	Bq Vcd Vub - Eq Vcd Vub
$(pK^-/\Lambda)(K^+K^-)$	$0.2 imes10^{-7}$	0.2	-(Eq Vcs Vub)
$(pK^-/\Lambda)D^0$	$20. imes 10^{-7}$	0.7	Eq Vcb Vcs + Cbm Vub Vus
$(pK^-/\Lambda)J/\Psi$	$0.2 imes10^{-7}$	0.009	Cbm Vcs Vub
$(pK^-\pi^-/\Sigma^-)\pi^+$	$0.2 imes10^{-7}$	0.2	Eq Vcs Vub
$(pK^-\pi^-/\Sigma^-)K^+$	0.01×10^{-7}	0.01	Eq Ved Vub
$(pK^{-}\pi^{-}/\Sigma^{-})(D^{+}/D^{0}\pi^{+})$	$20. \times 10^{-7}$	0.7	Eq Vcb Vcs
$(pK^{-}\pi^{-}/\Sigma^{-})(D_{s}^{+}/D^{0}K^{+})$	$1. \times 10^{-7}$	0.03	Eq Vcb Vcd
$(pK^-\pi^+K^-/\Xi^0)(K^+\pi^-)$	$0.009 imes 10^{-7}$	0.009	Bq Vcs Vub
$(pK^-K^-/\Xi^-)K^+$	$0.2 imes10^{-7}$	0.2	Eq Vcs Vub
$(pK^-K^-/\Xi^-)(D_s^+/D^0K^+)$	$20. imes 10^{-7}$	0.6	Eq Vcb Vcs
$\Lambda_c^+\pi^-$	$10. \times 10^{-7}$	0.6	Bq Vcb Vcd - Eq Vcb Vcd + Cbb Vub Vud + Tb Vub Vud
$\Lambda_c^+ K^-$	$30. \times 10^{-7}$	1.	-(Eq Vcb Vcs) + Tb Vub Vus
$(\Lambda_c^+\pi^-)(K^-\pi^+)$	$20. \times 10^{-7}$	1.	-(Eq Vcb Vcs)
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)\pi^-$	$1. \times 10^{-7}$	0.06	Bq Vcb Vcs + Cbb Vub Vus
$(\Lambda_c^+K^-/\Xi_c^0)(K^+\pi^-)$	$0.6 imes10^{-7}$	0.03	Bq Vcb Vcd - Eq Vcb Vcd
$(\Lambda_c^+K^-/\Xi_c^0)(K^+K^-)$	$20. imes 10^{-7}$	1.	-(Eq Vcb Vcs)
$(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)(K^+\pi^-)$	$0.9 imes 10^{-7}$	0.05	26 Bq Vcb Vcs

Non-leptonic *c*-decays of Ξ_{bc}^{0}

Modes	Br(first)	$Br(final)(\times 10^{-7})$	7) Representation
$(\Lambda_b^0\pi^+)\pi^-$	$0.6 imes 10^{-3}$	0.6	Eb Ved Vud
$(\Lambda_b^0\pi^+)K^-$	$10. \times 10^{-3}$	10.	Eb Vcs Vud
$\Lambda^0_b(\pi^+\pi^-)$	$10. \times 10^{-3}$	10.	-(Ccb Vcd Vud) - Cct Vcd Vud - 2 Eb Vcd Vud
$\Lambda^0_b(K^+\pi^-)$	0.1×10^{-3}	0.1	Ccb Vcd Vus + Cct Vcd Vus
$\Lambda_b^0(K^-\pi^+)$	$40. \times 10^{-3}$	40.	Cct Vcs Vud + Eb Vcs Vud
$\Lambda_b^0(K^+K^-)$	$0.3 imes 10^{-3}$	0.3	Cct Vcs Vus
$(\Lambda_b^0\pi^-)\pi^+$	$2. \times 10^{-3}$	2.	-(Eb Vcd Vud) + Tc Vcd Vud
$(\Lambda_b^0\pi^-)K^+$	0.03×10^{-3}	0.03	Tc Vcd Vus
$(\Lambda_b^0 \pi^+ K^- / \Xi_b^0) (\pi^+ \pi^-)$	$40. \times 10^{-3}$	40.	-(Ccb Vcs Vud) - Eb Vcs Vud
$(\Lambda_b^0\pi^+K^-/\Xi_b^0)(K^+\pi^-)$	$2. imes 10^{-3}$	2.	Eb Vcd Vud + Ccb Vcs Vus
$(\Lambda_b^0\pi^+K^-/\Xi_b^0)(K^+K^-)$	$3. imes 10^{-3}$	3.	Eb Vcs Vud
$(\Lambda_b^0 K^-/\Xi_b^-)\pi^+$	$40. \times 10^{-3}$	40.	-(Eb Vcs Vud) + Tc Vcs Vud
$(\Lambda_b^0 K^-/\Xi_b^-)K^+$	$2. imes 10^{-3}$	2.	-(Eb Vcd Vud) + Tc Vcs Vus
$(\Lambda_b^0 \pi^+ K^- K^- / \Omega_b^-) K^+$	$6. \times 10^{-3}$	6.	-(Eb Vcs Vud)
pB^-	$1. imes 10^{-3}$	1.	Bb Vcd Vud
$(p\pi^-)ar{B^0}$	$3. imes 10^{-3}$	3.	Bb Vcd Vud + Ccm Vcd Vud
$(p\pi^-)ar{B^0_s}$	0.03×10^{-3}	0.03	Ccm Vcd Vus
$(pK^-\pi^+/\Sigma^+)B^-$	$8. imes 10^{-3}$	8.	Bb Vcs Vud
$(pK^-/\Lambda)\bar{B_s^0}$	$1. \times 10^{-3}$	1.	Bb Vcd Vud + Ccm Vcs Vus
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})\bar{B_{s}^{0}}$	$6. \times 10^{-3}$	6.	Bb Vcs Vud
$(pK^-/\Lambda)ar{B^0}$	$30. \times 10^{-3}$	30.	Bb Vcs Vud + Ccm Vcs Vud

Non-leptonic *b*-decays of Ω_{bc}^0

Modes	$Br(first)(\times 10^{-7})$	$Br(final)(\times 10)$	⁻⁷) Representation
pK^-	$0.001 imes 10^{-7}$	0.001	Bq Vcd Vub
$(p\pi^-)(K^-\pi^+)$	0.001×10^{-7}	0.001	Bq Vcd Vub
$(pK^-\pi^+/\Sigma^+)\pi^-$	0.02×10^{-7}	0.02	-(Eq Vcd Vub)
$(pK^-\pi^+/\Sigma^+)K^-$	0.3×10^{-7}	0.3	Bq Vcs Vub - Eq Vcs Vub
$(pK^-/\Lambda)(\pi^+\pi^-)$	0.09×10^{-7}	0.09	2 Eq Vcd Vub
$(pK^-/\Lambda)(K^-\pi^+)$	$0.3 imes 10^{-7}$	0.3	Bq Vcs Vub - Eq Vcs Vub
$(pK^-/\Lambda)(K^+K^-)$	0.001×10^{-7}	0.001	Bq Vcd Vub
$(pK^-/\Lambda)D^0$	$5. imes 10^{-7}$	0.2	Eq Vcb Vcd + Cbm Vub Vud
$(pK^+/\Lambda)J/\Psi$	0.02×10^{-7}	0.001	Cbm Vcd Vub
$(pK^-\pi^-/\Sigma^-)\pi^+$	0.02×10^{-7}	0.02	Eq Vcd Vub
$(pK^{-}\pi^{-}/\Sigma^{-})(D^{+}/D^{0}\pi^{+})$	$2. \times 10^{-7}$	0.07	Eq Vcb Vcd
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(\pi^{+}\pi^{-})$	0.4×10^{-7}	0.4	Eq Vcs Vub
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(K^{+}\pi^{-})$	0.02×10^{-7}	0.02	-(Eq Vcd Vub)
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})(K^{+}K^{-})$	0.3×10^{-7}	0.3	Bq Vcs Vub - Eq Vcs Vub
$(pK^-\pi^+K^-/\Xi^0)D^0$	$50. \times 10^{-7}$	2.	Eq Vcb Vcs $+$ Cbm Vub Vus
$(pK^-\pi^+K^-/\Xi^0)J/\Psi$	0.4×10^{-7}	0.02	Cbm Vcs Vub
$(pK^-K^-/\Xi^-)\pi^+$	0.4×10^{-7}	0.4	Eq Vcs Vub
$(pK^-K^-/\Xi^-)K^+$	0.02×10^{-7}	0.02	Eq Vcd Vub
$(pK^-K^-/\Xi^-)(D^+/D^0\pi^+)$	$50. \times 10^{-7}$	1.	Eq Vcb Vcs
$(pK^-K^-/\Xi^-)(D^+_s/D^0K^+)$	$2. imes 10^{-7}$	0.07	${ m Eq} \ { m Vcb} \ { m Vcd}$
$\Omega^- K^+$	0.4×10^{-7}	0.4	Eq Vcs Vub
$\Omega^-(D^+_s/D^0K^+)$	50. $\times 10^{-7}$	1.	Eq Vcb Vcs
$\Lambda_c^+ K^-$	$1. \times 10^{-7}$	0.05	Bq Vcb Vcd + Cbb Vub Vud
$(\Lambda_c^+\pi^-)(K^-\pi^+)$	0.1×10^{-7}	0.006	$\operatorname{Bq} \operatorname{Vcb} \operatorname{Vcd}$
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)\pi^-$	$20. \times 10^{-7}$	1.	-(Eq Vcb Vcd) + Tb Vub Vud
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)K^-$	$40. \times 10^{-7}$	2.	Bq Veb Ves - Eq Veb Ves + Cbb Vub Vus + Tb Vub Vus
$(\Lambda_c^+K^-/\Xi_c^0)(K^-\pi^+)$	$30. \times 10^{-7}$	1.	Bq Vcb Vcs - Eq Vcb Vcs
$(\Lambda_c^+K^-/\Xi_c^0)(K^+K^-)$	0.1×10^{-7}	0.005	Bq Vcb Vcd
$-(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)(K^+\pi^-)$	$2. \times 10^{-7}$	0.1	-(Eq Vcb Vcd)
$(\Lambda_c^+\pi^+K^-K^-/\Omega_c^0)(K^+K^-)$	$30. \times 10^{-7}$	1.	Bq Vcb Vcs - Eq Vcb Vcs

Non-leptonic *c*-decays of Ω_{bc}^0

Modes	Br(first)	$Br(final)(\times 10^{-7})$	Representation
$(\Lambda_b^0\pi^+)\pi^-$	$0.07 imes 10^{-3}$	0.07	Eb Vcd Vus
$(\Lambda_b^0\pi^+)K^-$	$1. imes 10^{-3}$	1.	Eb Vcs Vus
$\Lambda_b^0(\pi^+\pi^-)$	$0.3 imes10^{-3}$	0.3	-2 Eb Vcd Vus
$\Lambda^0_b(K^-\pi^+)$	$5. imes 10^{-3}$	5.	Ccb Vcd Vud + Eb Vcs Vus
$\Lambda_b^0(K^+K^-)$	$0.04 imes 10^{-3}$	0.04	Ccb Vcd Vus
$(\Lambda_b^0\pi^-)\pi^+$	$0.07 imes 10^{-3}$	0.07	-(Eb Vcd Vus)
$(\Lambda_b^0 \pi^+ K^- / \Xi_b^0) (\pi^+ \pi^-)$	$5. imes 10^{-3}$	5.	-(Cct Vcd Vud) - Eb Vcs Vus
$(\Lambda_b^0 \pi^+ K^- / \Xi_b^0) (K^+ \pi^-)$	$0.2 imes 10^{-3}$	0.2	Cct Vcd Vus + Eb Vcd Vus
$(\Lambda_b^0\pi^+K^-/\Xi_b^0)(K^-\pi^+)$	80. × 10^{-3}	80.	Ceb Ves Vud + Cet Ves Vud
$(\Lambda_b^0\pi^+K^-/\Xi_b^0)(K^+K^-)$	$4. \times 10^{-3}$	4.	Ccb Vcs Vus + Cct Vcs Vus + Eb Vcs Vus
$(\Lambda_b^0 K^-/\Xi_b^-)\pi^+$	$5. imes 10^{-3}$	5.	Te Ved Vud - Eb Ves Vus
$(\Lambda_b^0 K^-/\Xi_b^-)K^+$	$0.2 imes 10^{-3}$	0.2	-(Eb Vcd Vus) + Tc Vcd Vus
$(\Lambda_b^0\pi^+K^-K^-/\Omega_b^-)\pi^+$	$20. \times 10^{-3}$	20.	Tc Vcs Vud
$(\Lambda_b^0\pi^+K^-K^-/\Omega_b^-)K^+$	$3. \times 10^{-3}$	3.	-(Eb Vcs Vus) + Tc Vcs Vus
pB^-	$0.2 imes 10^{-3}$	0.2	Bb Vcd Vus
$(p\pi^-)ar{B^0}$	0.1×10^{-3}	0.1	Bb Vcd Vus
$(pK^-\pi^+/\Sigma^+)B^-$	$1. imes 10^{-3}$	1.	Bb Vcs Vus
$(pK^-/\Lambda)ar{B^0}$	5. $\times 10^{-3}$	5.	$\operatorname{Ccm} \operatorname{Vcd} \operatorname{Vud} + \operatorname{Bb} \operatorname{Vcs} \operatorname{Vus}$
$(pK^-/\Lambda)ar{B_s^0}$	$0.2 imes10^{-3}$	0.2	Bb Vcd Vus + Ccm Vcd Vus
$(pK^-\pi^+K^-/\Xi^0)ar{B^0}$	$30. \times 10^{-3}$	30.	Ccm Vcs Vud
$(pK^{-}\pi^{+}K^{-}/\Xi^{0})\bar{B_{s}^{0}}$	$4. \times 10^{-3}$	4.	Bb Vcs Vus $+$ Ccm Vcs Vus

Example of Two body decays

Vcs Vud CKM enhanced large G_F² suppressed negligible

Charged final states, easy to measure, but theoretically difficult to calculate

Cross Check via Similarity W-exchange diagram

pure W-exchange process

- Calculated by PQCD
- possible discovery channel

[C.D.Lu, Y.M. Wang, H. Zou, Ali, Kramer, 09']

They are the same at the leading order

 $m_c/m_b << 1$ $m_u/m_b << 1$

 $\begin{array}{l} \mathcal{R}_{f} \equiv f_{\Xi_{bc}}/f_{\Lambda_{b}} \sim \mathbf{1} \\ \mathcal{R}_{\tau} = \tau_{\Xi_{bc}}/\tau_{\Lambda_{b}} \sim \mathbf{0.1} \\ \text{[Li, Lu, Wang, Yu, Zou, PLB767,232(2017), 1701.03284]} \\ \end{array}$

W-exchange via similarity

- pure W-exchange process
- possible discovery channel

- pure W-exchange process
- measured [PDG]

 $\boldsymbol{\Xi_{cc}}^{+} \to (\boldsymbol{\Lambda_{c}}^{+} \boldsymbol{\pi}^{+}) \boldsymbol{K}^{-} \qquad \boldsymbol{C} \ \boldsymbol{\nu}. \boldsymbol{S}. \ \boldsymbol{u} \qquad Br(\boldsymbol{\Lambda_{c}}^{+} \to \boldsymbol{\Delta}^{++} \boldsymbol{K}^{-}) = (1.09 \pm 0.25)\%$

Experimentally, $\Sigma_{c}^{++}(2520)$ is found to decay into $\Lambda_{c}^{+}\pi^{+}$ with branching ratio 100%.

 $\mathcal{BR}(\Xi_{cc}^{+} \to \Sigma_{c}^{++}(2520)K^{-}) \approx \mathcal{BR}(\Lambda_{c}^{+} \to \Delta^{++}K^{-}) \times 0.66 \times 4 \times \frac{1}{2} \times \frac{\tau_{\Xi_{cc}}}{\tau_{\Lambda_{c}}} \in [0.36\%, 1.80\%]$ [Li, Lu, Wang, Yu, Zou, PLB767,232(2017), 1701.03284]

Summary

- We estimate the branching fractions of many channels of doubly heavy baryon weak decays
- We suggest to measure the following processes with the largest possibilities to be observed.

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

$$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$$
$$\Xi_{cc}^{++} \to pD^+$$

• *E_{cc}* has been discovered by LHCb, through the first channel

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

• Also predict branching fraction of $\Xi_c^+ \rightarrow p K^- \pi^+$

Thank you !