

Status of Charmed Baryon Studies at Belle

Xingyu Zhou (周兴玉) for the Belle Collaboration (zhouxy@buaa.edu.cn, Beihang University)

Joint Workshop on Charm Hadron Decays @ BESIII, Belle and LHCb, on September 23-24, 2017, at Nankai University

Outline

1 Introduction to the Belle experiment

2 Studies of excited Ξ_c states ■ Ξ'_c , $\Xi_c(2645)$, $\Xi_c(2790)$, $\Xi_c(2815)$, $\Xi_c(2980) \to (\pi)\gamma/\pi\Xi_c$ ■ $\Xi_c(3055)$, $\Xi_c(3080) \to \Lambda D$

3 Studies of the Λ_c^+ state

4 Studies of the Ω⁰_c state and its excited states ■ Ω⁰_c → Ω⁻π⁺π⁰, Ω⁻π⁺π⁺π⁻, Ξ⁻K⁻π⁺π⁺, Ξ⁰K⁻π⁺, Ξ⁻K⁰π⁺, Ξ⁰K⁰, ΛK⁰K⁰, Σ⁺K⁻K⁻π⁺ ■ Ω⁰_c(3000), Ω⁰_c(3050), Ω⁰_c(3066), Ω⁰_c(3090), Ω⁰_c(3119) → Ξ⁺_cK⁻

Introduction to the Belle experiment

Csl calorimeter	Time Of Flight	Aerogel
S.C. solenoid		3.5GeV e
8GeV e-		Central Drift
Silicon Vertex Detector	κ K _L μ system	Chamber

Asymmetric energy e⁺e⁻ collider
General purpose detector

- Detect charged particles and photons
- Good momentum/vertex resolution
- K/π separation up to 3.5 GeV/c
- Data at Υ (4S) and some other energies
- ♦ Integrated luminosity ~1 ab⁻¹

On resonance:	$\Upsilon(5S): 121 fb^{-1}$
	$\Upsilon(4S): 711 f b^{-1}$
	$\Upsilon(3S): 3 f b^{-1}$
	$\Upsilon(2S): 25 fb^{-1}$
	$Y(1S): 6 f b^{-1}$
Off resonance/ s	scan: $\sim 100 fb^{-1}$

Study of excited Ξ_c States decaying into Ξ_c^0 and Ξ_c^+ Baryons

PRD 94, 052011 (2016)

- $\Xi_c(2980) \to \Xi_c(2645)\pi$
- $\Xi_c(2815) \rightarrow \Xi_c(2645)\pi$

• $\Xi_c(2645) \rightarrow \Xi_c \pi$

•
$$\Xi_c(2980) \rightarrow \Xi'_c \pi$$

• $\Xi_c(2815) \rightarrow \Xi'_c \pi$

•
$$\equiv_c(2790) \rightarrow \equiv'_c \pi$$

• $\equiv'_c \rightarrow \equiv_c \gamma$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Like the ground Ξ_c , each of the excited Ξ_c has an isodoublet.
- Mass and width measurements of the first five isodoublets of excited Ξ_c states are performed using 980/fb of Belle data.
- Previous measurements (CLEO,BaBar, Belle) were with low statistics. For widths, only upper limits were given for many states.
- The ground Ξ_c^+ and Ξ_c^0 are reconstructed from 10 and 7 decay modes, respectively.

Mass and width of $\Xi_c(2645)/\Xi_c(2815)$ extracted from $M(\Xi_c\pi)/M(\Xi_c\pi\pi)$ spectra

Mass and width of $\Xi_c(2980)$ extracted from $M(\Xi_c \pi \pi)$ spectra

The results support the new name of the isodoublet, namely $\Xi_c(2970)$ instead of $\Xi_c(2980)$.

7/33

Mass and width of $\Xi'_c/\Xi_c(2790)$ extracted from $M(\Xi_c\gamma)/M(\Xi'_c\pi)$ spectra

No width of Ξ'_c is given, because it decays electromagnetically and its intrinsic widths are experimentally negligible.

୬ ୯ ୯ 8 / 33

First observation of $\Xi_{\rm c}(2980)$ in the $\Xi_{\rm c}'\pi$ final state

- Signal shape: Breit-Wigner function convoluted with a double-Gaussian resolution function
- Background shape: Polynomial function

Particle	Yield	Mass	Width
$\Xi_{c}(2645)^{+}$	1260 ± 40	$2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}$	$2.06 \pm 0.13 \pm 0.13$
PDG		2645.9 ± 0.5	$2.6 \pm 0.2 \pm 0.4$
$\Xi_{c}(2645)^{0}$	975 ± 36	$2646.43 \pm 0.07 \pm 0.07^{+0.28}_{-0.40}$	$\underline{2.35 \pm 0.18 \pm 0.13}$
PDG		2645.9 ± 0.5	< 5.5
$\Xi_c(2815)^+$	941 ± 35	$2816.73 \pm 0.08 \pm 0.06^{+0.28}_{-0.40}$	$2.43 \pm 0.20 \pm 0.17$
PDG		2816.6 ± 0.9	< 3.5
$\Xi_c(2815)^0$	1258 ± 40	$2820.20 \pm 0.08 \pm 0.07^{+0.28}_{-0.40}$	$\underline{2.54 \pm 0.18 \pm 0.17}$
PDG		2819.6 ± 1.2	< 6.5
$\Xi_c(2980)^+$	916 ± 55	$2966.0 \pm 0.8 \pm 0.2^{+0.3}_{-0.4}$	$28.1 \pm 2.4^{+1.0}_{-50}$
PDG		2970.7 ± 2.2	17.9 ± 3.5
$\Xi_c(2980)^0$	1443 ± 75	$2970.8 \pm 0.7 \pm 0.2^{+0.3}_{-0.4}$	$30.3 \pm 2.3^{+1.0}_{-1.8}$
PDG		$2968.0 \pm 2.6 \pm 0.5$	20 ± 7
$\Xi_c^{\prime+}$	7055 ± 211	$2578.4 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	
PDG		2575.6 ± 3.0	
$\Xi_{c}^{\prime 0}$	11560 ± 276	$2579.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	
PDG		2577.9 ± 2.9	
$\Xi_c(2790)^+$	2231 ± 103	$2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$8.9 \pm 0.6 \pm 0.8$
PDG		2789.8 ± 3.2	< 15
$\Xi_c(2790)^0$	1241 ± 72	$2794.9 \pm 0.3 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$10.0 \pm 0.7 \pm 0.8$
PDG		2791.9 ± 3.3	< 12

- Masses: \sim 1 order improvement of precision
- widths: 5 first measurements
- Measurement of the isospin splitting consistent with nonrelativistic quark model (J. phys. G 29, 2685 (2003))

Particle	$M(\Xi_{c}^{+}) - M(\Xi_{c}^{0}) (MeV/c^{2})$
Ξ _c (2645)	$-0.85 \pm 0.09 \pm 0.08 \pm 0.48$
$\Xi_{c}(2815)$	$-3.47 \pm 0.12 \pm 0.05 \pm 0.48$
$\Xi_c(2980)$	$-4.8 \pm 0.1 \pm 0.2 \pm 0.5$
Ξ,	$-0.8 \pm 0.1 \pm 0.1 \pm 0.5$
$\Xi_{c}(2790)$	$-3.3 \pm 0.4 \pm 0.1 \pm 0.5$

Study of excited Ξ_c States in the ΛD final state

PRD 94, 032002 (2016)

• Relative branching fractions (BF) of $\Sigma_c K$ and ΛD decays reveal the internal structure of Ξ_c states.

- Chiral quark model: Ξ_c(3055), Ξ_c(3080) as D-wave and S-wave excitation in N=2 (radial) states. Small coupling to AD. PRD86,034024(2012)
- Relative BFs ($\Lambda D / \Sigma_c K$) for $\Xi_c(3055)$, $\Xi_c(3080)$ are studied using 980/fb of Belle data.
- Relative BF ($\Sigma_c^* K / \Sigma_c K$) for $\Xi_c(3080)$ is also studied.
- D^{+/0} mesons are reconstructed in
 - \diamond D⁺ \rightarrow K⁻ $\pi^+\pi^+$
 - $D^0 \rightarrow K^-\pi^+, D^0 \rightarrow K^-\pi^+\pi^-, D^0 \rightarrow K^-\pi^+\pi^0$

Observation of $\Xi_c(3055)$ **and** $\Xi_c(3080)$ **in the** ΛD **final state**

Resonance	Mass (MeV/c^2)	Width (MeV)	Significance (σ)
$\Xi_c(3055)^0$	$3059.0 \pm 0.5 \pm 0.6$	$6.4 \pm 2.1 \pm 1.1$	8.6
$\Xi_c(3055)^+$	$3055.8 \pm 0.4 \pm 0.2$	$7.0 \pm 1.2 \pm 1.5$	11.7
$\Xi_c(3080)^+$	$3079.6 \pm 0.4 \pm 0.1$	< 6.3	4.8

13/33

Widths of $\Xi_c(3055)$ and $\Xi_c(3080)$ extracted from Simultaneous fit of ΛD , $\Sigma_c K$ and $\Sigma_c^* K$ modes

In the simultaneous fit, the masses are not constrained to be the same, because we find inconsistency for the mass of the $\Xi_c(3080)^+$ among the three decay modes.

Resonance	Width (MeV)
$\overline{\Xi_c(3055)^+}$ $\Xi_c(3080)^+$	$\begin{array}{c} 7.8 \pm 1.2 \pm 1.5 \\ 3.0 \pm 0.7 \pm 0.4 \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

State	$BR(\Lambda D^+)/BR(\Sigma_c^{++}K^-)$	$BR(\Sigma_c^{*++}K^{-})/BR(\Sigma_c^{++}K^{-})$
Ξ _c (3055)⁺	$5.09 \pm 1.01 \pm 0.76$	
Ξ _c (3080) ⁺	1.29±0.30±0.15	1.07±0.27±0.01

The chiral quark model has been used to identify $\Xi_c(3055)$ as *D*-wave excitation in N=2 shell, and predict **PRD86,034024 (2012)**

	$\Sigma_c \bar{K}$	$\Xi_c^*(2645)\pi$	$\Xi_c^\prime \pi$	$\Sigma_c^* \bar{K}$	$D\Lambda$	total
$ \Xi_c^2 D_{\lambda\lambda}(3/2^+)\rangle$	2.3	0.5	1.0	0.1	0.1	4.0
$ \Xi_c^2 D_{\rho\rho}(3/2^+)\rangle$	5.6	0.8	3.3	0.3	-	10.0

Further identifies $\Xi_c(3080)$ as an *S*-wave excitation mode in N=2 shell and predicts that its decay into ΔD is forbidden.

- o Belle results contradicts some theory results.
- \circ Crucial input to understand the nature of excited Ξ_c baryons.

First observation of the doubly Cabibbo suppressed decay of a charmed baryon

$$\Lambda^+_{ extsf{c}} o extsf{pK}^+ \pi^-$$

PRL 117, 011801 (2016)

16/33

 Doubly Cabibbo-suppressed (DCS) decays seen in charm mesons, but not previously in baryons. Naïve expectation: ^{B(DCS)}/_{B(CF)} = tan⁴ θ_c = 0.285% Since W-exchange diagram is absent in DCS decay, ^{B(DCS)}/_{B(CF)} may be smaller than the naïve expectation.
 This analysis uses 980/fb of data collected at and near Y(1S) Y(2S) Y(2S) Y(4S) and

at and near $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(4S)$ and $\Upsilon(5S)$ resonances.

Study of $\Lambda_c^+ \rightarrow p K^+ \pi^-$

After subtracting the contribution $\Lambda^*(1520)$ and Δ isobar intermediates, which only contribute to CF decay, the revised ratio

$$\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.10 \pm 0.17) \tan^4 \theta_c$$

compatible with naïve expectation: no large W-exchange contribution in CF decay.

Study of $\Lambda_c^+ \rightarrow \phi p \pi^0$ with a search for the pentaquark state P_s^+ and measurement of $\Lambda_c^+ \rightarrow K^- \pi^+ p \pi^0$

PRD 96, 051102(R) (2017)

♦LHCb's hidden-charm pentaquark (P_c^+) discovery in J/ψp of $\Lambda_b^0 \rightarrow J/\psi pK^-$

• Strange analog state (P_s⁺) may appear in $\phi p \text{ of } \Lambda_c^+ \rightarrow \phi p \pi^0$ assuming production mechanism is flavor independent

- V. Kopeliovich, arxiv:1510.05958 [hep-ph], R. F. Lebed, PRD92, 114030
- Cabibbo-suppressed decay
- ♦ LEPS & CLAS observed a bump at \sqrt{s} ~2.2 GeV in ϕ photoproduction
 - PRL95, 182001, PRC89 055208, PRC90 019901

• This analysis used 916/fb of data collected at and near $\Upsilon(4S)$ and $\Upsilon(5S)$

• In addition, the precise measurement of branching fraction of Cabibbo favored decay $\Lambda_c^+ \rightarrow p \pi^+ K^- \pi^0$ is presented

Exclude events of M(pπ⁰) within 10 MeV of mass of Σ⁺

•Two dimensional fit is performed to $pK^+K^-\pi^0$ and K^+K^- invariant masses in order to extract the Λ_c^+ signal yield

◆ 148.4±61.8 for $\Lambda_c^+ \rightarrow p\phi\pi^0$ with 2.4 σ statistical significance

♦ 75.9±84.8 for
$$\Lambda_c^+ \rightarrow pK^+K^-\pi^0$$
 with 1.0 σ statistical significance

$$\begin{aligned} \mathcal{B}(\Lambda_c^+ \to \phi p \pi^0) \ < \ 15.3 \times 10^{-5}, \\ \mathcal{B}(\Lambda_c^+ \to K^+ K^- p \pi^0)_{\rm NR} \ < \ 6.3 \times 10^{-5}, \end{aligned}$$

Search for P_s^+ and measurement of $\Lambda_c^+ \to K^- \pi^+ p \pi^0$

М

• Select $\Lambda_c^+ \rightarrow pK^+K^-\pi^0$ candidates in which $M(K^+K^-)$ is within 20 MeV of the mass of ϕ

♦77.6±28.1 evens

$$\mathcal{B}(\Lambda_c^+ \to P_s^+ \pi^0) \times \mathcal{B}(P_s^+ \to \phi p) < 8.3 \times 10^{-5}$$

• Fit to $M(pK^-\pi^+\pi^0)$ spectrum

 Two crystal ball functions with a common mean for signal, and a linear function for background

$$\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%$$

 World best measurement, consistent with BESIII (PRL116, 052001)

$$\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0) = (4.53 \pm 0.23 \pm 0.30)\%$$

$$M_{P_{s}^{+}} = (2.025 \pm 0.005) \text{GeV}/c^{2}$$

$$\Gamma_{P_{s}^{+}} = (0.022 \pm 0.012) \text{GeV}$$
he
$$\int_{10^{-5}}^{10^{-5}} \int_{10^{-0}}^{0^{-0}} \int_{10^{-2}}^{0^{-0}} \int_{10^{-2}}^{0^{-0}}$$

Measurement of branching fractions of hadronic decays of the Ω_c^0 state

Preliminary results to be submitted to PRD

Signal modes:

- $\Omega_c^0 \rightarrow \Omega^- \pi^+ \pi^0$
- $\Omega_c^0 \rightarrow \Omega^- \pi^+ \pi^+ \pi^-$
- $\Omega_c^0 \rightarrow \Xi^- K^- \pi^+ \pi^+$
- $\Omega_c^0 \to \Xi^0 K^- \pi^+$

Normalizing mode:

• $\Omega_c^0 \to \Omega^- \pi^+$

- $\Omega_c^0 \rightarrow \Xi^- \bar{K}^0 \pi^+$
- $\Omega_c^0 \rightarrow \Xi^0 \bar{K}^0$

•
$$\Omega_c^0 \to \Lambda \bar{K}^0 \bar{K}^0$$

• $\Omega_c^0 \rightarrow \Sigma^+ K^- K^- \pi^+$

Invariant mass distributions for signal modes (Preliminary)

590

24 / 33

Invariant mass distributions for resonant substructures in parts of signal modes (**Preliminary**)

25 / 33

Results (Preliminary)

Mode	Branching Ratio	Substructure	Previous Measurement
	with respect to $\Omega^-\pi^+$		
$\Omega^{-}\pi^{+}$	1.0		
$\Omega^{-}\pi^{+}\pi^{0}$	$2.00 \pm 0.17 \pm 0.11$		$1.27 \pm 0.3 \pm 0.11$ [3]
$\Omega^- \rho^+$		> 71%	
$\Omega^{-}\pi^{+}\pi^{-}\pi^{+}$	$0.32 \pm 0.05 \pm 0.02$		$0.28 \pm 0.09 \pm 0.01$ [3]
$\Xi^- K^- \pi^+ \pi^+$	$0.68 \pm 0.07 \pm 0.04$		$0.46 \pm 0.13 \pm 0.03$ [3]
$\Xi^{*0}(1530) - K^{-}\pi^{+}$		$(55 \pm 16)\%$	
$\Xi^{-}K^{*0}\pi^{+}$		$(33 \pm 9)\%$	
$\Xi^{0}K^{-}\pi^{+}$	$1.20 \pm 0.16 \pm 0.09$		$4.0 \pm 2.5 \pm 0.4$ [2]
$\Xi^0 \bar{K^*}$		$(57 \pm 10\%)$	
$\Sigma^+ K^- K^- \pi^+$	< 0.32		
$\Xi^- \overline{K^0} \pi^+$	$2.12 \pm 0.24 \pm 0.14$		
$\Xi^0 \bar{K^0}$	$1.64 \pm 0.26 \pm 0.12$		
$\Lambda ar{K^0} ar{K^0}$	$1.72 \pm 0.32 \pm 0.14$		

- Most precise measurements of 4 branching fractions
- First measurements of 3 branching fractions
- Upper limit of 1 branching fraction
- Clear observations of 4 resonant substructures

Observation of excited Ω_c^0 charmed baryons in e⁺e⁻ collisions

Preliminary results to be submitted to PRD (RC)

This year, five excited Ω_c^0 states were discovered by LHCb in $\Xi_c^+ K^- \colon$

- Ω⁰_c(3000)
- Ω⁰_c(3050)
- Ω⁰_c(3066)
- Ω⁰_c(3090)
- Ω⁰_c(3119)

We tried to confirm these states in e^+e^- collisions with Belle data.

$M(\Xi_c^+K)$ (Preliminary)

ର୍ଚ 28 / 33

Results (Preliminary)

- The masses and intrinsic widths of all six are fixed to the values given by LHCb
- Strong confirmation of $\Omega_c^0(3066)$ and $\Omega_c^0(3090)$
- confirmation of $\Omega_c^0(3000)$ and $\Omega_c^0(3050)$
- No confirmation of $\Omega_c^0(3119)$ (but no disagreement due to the small statistics)
- confirmation of wide excess at higher mass.

Ω_c Excited State	3000	3050	3066	3090	3119	3188
Yield	37.7 ± 11.0	28.2 ± 7.7	81.7 ± 13.9	86.6 ± 17.4	3.6 ± 6.9	135.2 ± 43.0
Significance, (σ)	4.0	4.7	7.4	5.8	0.6	3.2
LHCb Mass (MeV/c^2)	$3000.4 \pm 0.2 \pm 0.1$	$3050.2 \pm 0.1 \pm 0.1$	$3065.5 \pm 0.1 \pm 0.3$	$3090.2 \pm 0.3 \pm 0.5$	$3119 \pm .0.3 \pm 0.9$	$3188 \pm 5 \pm 13$
Belle Mass (MeV/c^2)	$3000.7 \pm 1.0 \pm 0.2$	$3050.2 \pm 0.4 \pm 0.2$	$3064.9 \pm 0.6 \pm 0.2$	$3089.3 \pm 1.2 \pm 0.2$	-	$3199\pm9\pm4$
(fixed Γ)						

- Alternatively, the masses of the five signals are measured by fitting the same distribution without constraining the masses.
- In all cases, the results are consistent with the LHCb values.

Summary

- \blacklozenge Mass and widths of 5 excited Ξ_{c} states decaying into $\Xi_{c}\pi$
 - Masses:~1order improvement of precision
 - ♦ Widths: 5 first measurements $(\Xi_c(2645)^0, \Xi_c(2815)^+, \Xi_c(2815)^0, \Xi_c(2790)^+, \Xi_c(2790)^0)$
- Higher excited Ξ_c decaying into ΛD
 - Relative BFs (AD / $\Sigma_c K$) for $\Xi_c(3055)$, $\Xi_c(3080)$
 - Relative BF (Σ_c^*K / Σ_cK) for $\Xi_c(3080)$
 - ♦ Mass and width of Ξ_c(3055)⁰
- Studies of Λ_c⁺ decay modes
 - Upper limit on $\Lambda_c^+ \rightarrow p\phi\pi^0$ and P_s
 - Precise measurement of B.F. of $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$
 - ♦ First observation of DCS decay of $\Lambda_c^+ \rightarrow pK^+\pi^-$
 - Studies of the Ω_c^0 state and its excited states
 - Four of the Ω_c^0 decay branching fractions are measured most precise to date, and three are measured first time.
 - Four of the five Ω⁰_c excited states discovered by LHCb are confirmed.

Thanks for your attention !

Study of $\Lambda_c^+ \rightarrow \rho K^+ \pi^-$ — Dalitz Plot

