Theoretical Progress on Charm Weak Decays

Fu-Sheng Yu Lanzhou University

2017.09.23 @ NankaiU

Joint workshop on charmed hadron decays @ BESIII, Belle, LHCb

Outline

- **1. Theories in charm decays**
- 2. To search for new physics CP violation
- 3. To search for exotic states weak decay is a new tool

Many recent works cannot be included See Prof. Cai-Dian Lu's and Prof. Wei Wang's talks

粲物理的一个特点:

理论与实验紧密结合

Theories of heavy flavor decays

- Amplitudes are described by effective Hamiltonian based on OPE in the heavy-quark limit
- QCD-inspired methods at the leading $1/m_Q$
 - PQCD, QCDF, SCET
 - + NLO, NNLO effects by α_s
 - perturbative, successful in B decays
- ✤ Big Problem in charm : 1/m_c power corrections
 - Non-perturbative
 - Long-distance contributions are important around 1GeV and below, final-state interaction or resonance.

* In phenomenology

- some data to be explained
- some important observables to be predicted

+ Basic ideas:

- · Calculate what we can HQET and factorization
- Parametrize what we cannot $1/m_Q$ corrections
- Include important information SU(3) breaking
- Non-perturbations/corrections extracted from data
- Predict some observables to be tested

Theoretical Methods for Charm decays

- Factorization-Assisted Topological-amplitude approach [Li, Lü, FSY, 12'][Qin, Li, Lü, FSY, 13']
- Topologies with SU(3) symmetry [Cheng, Chiang, 10'][Cheng, Chiang, Kuo, 16']
- Topologies with SU(3) breaking [Muller, Nierste, Schacht, 15']
- Final state interaction [Biswas, Sinha, Abbas, 15']

All are fitting by data of branching fractions

Measurements with higher precision are important to improve the understanding

Basic Picture: topological diagrams

- According to the weak flavor flows
- including all strong interaction effects, so all the corrections...
- Amplitudes
 <u>extracted from data</u>

- either in the SU(3) flavour symmetry limit, [Bhattacharya, Rosner, 08',10'; Cheng, Chiang,10']
- or beyond the SU(3) symmetry

[Muller, Nierste, Schacht, 15']

(a) T

(c) A

(d) E

9

Factorization-Assisted Topologicalamplitude approach (FAT)

Measurements of ΔA_{CP}

 $\Delta A_{CP}^{\mathrm{dir}} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$

Measurements	ΔΑ _{CP}	Publication	World Average	
2011LHCb (D*)	(-0.82±0.24)%	PRL108,111602	ICHEP2012:	
2012 CDF	(-0.62±0.23)%	PRL109,111801	(-0.74±0.15)% HFAG2012:	
2012 Belle	(-0.87±0.41)%	1212.1975	(-0.68±0.15)%	
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	HFAG2013: (-0.33±0.12)%	
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33		
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	HFAG2014: (-0.25±0.10)%	
2016LHCb (D*)	(-0.10±0.09)%	1602.03160	(-0.14±0.07)%	

11

Measurements of ΔA_{CP}

 $\Delta A_{CP}^{\rm dir} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$

Measurements	ΔΑ _{CP}	Publication	World Average	
2011LHCb (D*)	(-0.82±0.24)%	Dredicti	ion in 2012	
2012 CDF	(-0.62±0.23)%	[H.n.Li,C.D.Lü, FSY ,PRD1 ΔΑ _{CP} =(-0.06 ~ -0.19		
2012 Belle	(-0.87±0.41)%			
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	HFAG2013:	
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33	(-0.33±0.12)%	
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	HFAG2014: (-0.25±0.10)%	
2016LHCb (D*)	(-0.10±0.09)%	1602.03160	(-0.14±0.07)%	

12

New CP-Violation Effect in charm decays

[FSY, D.Wang, H.n.Li, arXiv:1707.09297]

CPV can occur in $D \rightarrow f K_{\rm S}$ (K_L)

 Interference between Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) amplitudes

$$|K_{S}^{0}\rangle = (1+\bar{\varepsilon})|K^{0}\rangle - (1-\bar{\varepsilon})|\overline{K}^{0}\rangle$$
$$|K_{L}^{0}\rangle = (1+\bar{\varepsilon})|K^{0}\rangle + (1-\bar{\varepsilon})|\overline{K}^{0}\rangle$$

$$A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right] / D(t)$$

Indirect CPV in kaon mixing $A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}_{0}^{0}}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right] / D(t)$ $A_{CP}^{\overline{K}_{0}^{0}}(t) = 2e^{-t/\tau_{S}} \left[\mathcal{R}e(\epsilon) - e^{\Delta\Gamma t/2} \left(\mathcal{R}e(\epsilon)\cos(\Delta m t) + \mathcal{I}m(\epsilon)\sin(\Delta m t)\right)\right] (10^{-3})$

Direct CPV in charm decays $A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^{0}}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right] / D(t)$ $A_{CP}^{dir}(t) = e^{-t/\tau_{S}} 2r_{f} \sin \delta_{f} \sin \phi = \mathcal{O}(\lambda^{6}) = (10^{-5})$

17

 $\begin{array}{l} \textbf{CPV in interference between} \\ \textbf{kaon mixing and charm decays} \\ A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^{0}}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t) \right] / D(t) \\ A_{CP}^{int}(t) = e^{-t/\tau_{S}} \underbrace{4r_{f}\cos\phi\sin\delta_{f} \left[-\mathcal{I}m(\epsilon) + e^{\Delta\Gamma t/2} \left(\mathcal{I}m(\epsilon)\cos(\Delta m t) - \mathcal{R}e(\epsilon)\sin(\Delta m t) \right) \right]} \end{array}$

[FSY, D.Wang, H.n.Li, arXiv:1707.09297]

 $\begin{array}{l} \textbf{CPV in interference between} \\ \textbf{kaon mixing and charm decays} \\ A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^{0}}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t) \right] / D(t) \\ A_{CP}^{int}(t) = e^{-t/\tau_{S}} \underbrace{ 4r_{f} \cos \phi \sin \delta_{f} \left[-\mathcal{I}m(\epsilon) \right] + e^{\Delta \Gamma t/2} \left(\mathcal{I}m(\epsilon) \cos(\Delta m t) - \mathcal{R}e(\epsilon) \sin(\Delta m t) \right) } \end{array}$

Time-dependent CPV

 $D^+ \rightarrow \pi^+ K_S^0$ $A_{\rm CP}(t)$ 0.005 $\tau_{\rm S}$ 5 4 3 0.005 new CPV -0.010 total -0.015 $A_{\rm CP}^{\rm tot}$ ----- $A_{\rm CP}^{\overline{K}^0}$ A_{CP}^{dir} ----- A^{int}

[FSY, D.Wang, H.n.Li, arXiv:1707.09297]

CF mode	Yield	SCS mode	Yield
$D^+ \rightarrow K_S \pi^+$	4.8×10 ⁶	$D^0 \rightarrow K^+ K^-$	7.7×10 ⁶
$D_s^+ \rightarrow K_S K^+$	1.5×10 ⁶	$D^0 \rightarrow \pi^+\pi^-$	2.5×10 ⁶
[1406.2624] 21		[1602.03160]	

Sensitivity of Acp at Belle II

-	mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}	BR(%)
202	$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03	0.4%
000	$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	±0.05	0.14%
	$D^0 o \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08	
	$D^0 o K^0_s \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	± 0.03	
	$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	
	$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09	
	$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13	
	$D^0 o K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	
	$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	±0.33	
-	$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04	
	$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	
	$D^+ o \eta^\prime \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	
CF	$D^+ ightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	(±0.03)	1.5%
	$D^+ ightarrow K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05	
-	$D^+_{s} ightarrow K^0_{s} \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29	
CF	$D_s^+ \to K_s^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	±0.05	1.5%

O(10⁻⁴)

Time-Integrated CPV total new CPV effect

[FSY, D.Wang, H.n.Li, arXiv:1707.09297]

A_{CP}(t=0) : Smoking gun for new physics

5

τs

- A_{CP}^{tot} ----- $A_{CP}^{\overline{K}^0}$ ----- A_{CP}^{dir} ----- A_{CP}^{dir}

-0.015

Measurements on time evolution

 $A_{CP}(t=0) = A_{CP}^{dir}$ = $O(10^{-5})$

If non-vanishing in the forthcoming exps, signal of new physics!

 $A(D \to fK_S^0) = A_{CF} + A_{DCS}(1 + r_{NP}e^{i\phi_{NP}}e^{i\delta_{NP}})$

$$A_{\rm SM}^{dir} = \mathcal{O}(10^{-5})$$

Even if $r_{NP} = 0.001 \sim 0.01$, the direct CPV of $A_{CP}^{NP}/A_{CP}^{SM} = \mathcal{O}(10)$

Promising for NP! A_{SM} are tree-level

Precisions at LHCb upgrade and Belle II is $\mathcal{O}(0.1 \times 10^{-3})$

Ambiguities in penguins

$$\Delta A_{CP}(K^+K^-, \pi^+\pi^-)$$

range from 10⁻⁵ to 10⁻² in literature

- @m_c~1.5GeV, perturbation
 theories do not work
- Penguin neglected in Br's

ΔAcp(KK,ππ)_{exp} <~ $\mathcal{O}(10^{-3})$

uncertainties of Br's ~ $\mathcal{O}(\%)$

[many papers...]

Even if CPV observed, it cannot tell SM or NP

Experimental data of branching fractions **Theoretical understanding** of decay amplitudes Find new CPV effects and predictions **Measurements?**

Charmed baryon physics was a desert

During last decades, no data and no theories

Now we see some plants by BESIII, Belle and LHCb

See Z.W.Yang's, P.R.Li's and X.Y.Zhou's talks

More discoveries are expected

Weak Decays of E_{cc}

See Prof. Lü's talk

Theoretical Framework

- 1. Short-distance contributions
 - under factorization hypothesis
- 2. Long-distance contributions
 - final-state interacting (FSI) effects, rescattering

[**FSY**, Jiang, Li, Lü, Wang, Zhao, arXiv:1703.09086]

Relative Branching Fractions with long-distance contributions

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	_
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
Largest	pD^{*+}	0.04	
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{ au}/0.3) imes 0.22$	
	$\Sigma_{c}^{++}(2455)K^{-}$	$(\mathcal{R}_{ au}/0.3) imes 0.008$	
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$	
	ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$	
	pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.002$	_

Uncertainties of the relative branching fractions induced by the parameter of η are less than 10%

LHCb observed Xi_cc^++

[LHCb, 1707.01621]

Understanding of long-distance contributions **Predictions** on charmed baryon decays LHCb successfully discovered Xi_cc^++ **Understanding is correct.** To study singly charmed baryons and tetraquarks...

Search for tetraquarks via weak decays

$bs\bar{u}\bar{d}$: A Promising Detectable Tetraquark

Fu-Sheng Yu

Sep 8, 2017 - 5 pages

e-Print: arXiv:1709.02571 [hep-ph] | PDF

What are the Exotic Hadrons?

Blind

What is a smoking gun of tetra- or penta-quark?

If observe weak decays, signal tetraquarks

[bs][ud] Tetraquarks

Lowest-lying state, 0+

1.Higher threshold, BKis 270MeV over $B_s\pi$

2.If X(5568) exists, in SU(3) symmetry *bs*-tetraquark is below threshold, and weakly decay.

3.If above threshold, *Kaon* suppresses background. better than $B_s\pi$

$[\overline{b}\overline{s}][ud]$ Tetraquarks

Lowest-lying state, 0+

 $\rightarrow B^+ K^+ \pi^-$ 5912 ΒΚπ Strong decay $\rightarrow B^{0}K^{+}$ 5773 BK Weak decay $\rightarrow J/\Psi K^+ K^+ \pi^ X(5568): [\overline{bd}][su] \text{ or } [\overline{bu}][sd]$ $B_s\pi$ 5506

@ LHCb

1. Large production

2. If below threshold, easy to measure:

τ~τ_B in heavy
 quark symmetry

• J/Ψ involving.

3. If above threshold, *Kaon* reduce bkg. better than $B_s\pi$

Production @ LHCb

 $3 \times 10^{5} \text{ (ields of } B^{-} \rightarrow J/\Psi K^{-} @ 3 \text{ (b}^{-1} \quad [LHCb, arXiv:1612.06116]$ $B^{+} : B^{0} : B_{s}^{0} : \Lambda_{b} = 1 : 1 : \lambda : \frac{\lambda}{2} \qquad \lambda \sim 0.2 - 0.3$ [Y.Jin, S.Y.Li, S.Q.Li, PRD16']• Production Ratio $\frac{P_{T_{bs}^{-}}}{P_{B^{-}}} = \lambda \times \frac{\lambda}{2} \times \frac{\lambda}{2} \sim (0.2 - 0.7)\% = O(10^{-3})$

• Decaying branching fractions:

 $\operatorname{Br}(T_{bs} \to J/\Psi K^+ K^+ \pi^-) \sim \operatorname{Br}(b \to s J/\Psi) \sim \operatorname{Br}(B^+ \to J/\Psi K^+)$

Expected to have hundreds of signal yields

If exists below threshold, it must be discovered @ LHCb RUN II

$[bs][\overline{u}\overline{d}]$ Tetraquarks

Lowest-lying state, 0+

Model-II: simple quark model = $m_b^b + m_s^b + 2m_q^b + a_{bs}/(m_b^b m_s^b) - 3a/(m_q^b)^2 + B(bs)$

Model-I: diquark-antidiquark

$$H = m_{[bs]} + m_{[ud]} + \sum_{i < j} 2\kappa_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)$$

$[bs][\overline{u}\overline{d}]$ Tetraquarks

Lowest-lying state, 0+

$[bs][\overline{u}\overline{d}]$ Tetraquarks

Lowest-lying state, 0+

If nothing observed below threshold, constrain the lower mass of the ground state of tetraquarks

$[cs][\overline{u}\overline{d}]$ Tetraquarks

С

S

U

d

[cs][ūd] Tetraquarks

Lowest-lying state, 0+

$[cs][\overline{u}\overline{d}]$ Tetraquarks

• Largest production with four flavors.

 $[bs][\overline{u}\overline{d}]$ and $[cs][\overline{u}\overline{d}]$ Tetraquarks are the most promising stable open heavy flavor tetraquark states accessible in experiments

Summary

- * Charm physics is becoming more charming
- Charm physics requires collaborations between theorists and experimentalists.
 - In theory, non-pert para's to be obtained by data
 - In experiment, any effort is helpful
- * To search for new physics
 - New CPV is found in charm decays into neutral K.
 - Direct CPV is promising to search for new physics
- * To search for exotic states
 - Weak decays is a new tool for searches and constraints
 - **csūd** tetraquark is to be measured

谢谢大家!

祝身体健康! 顺心快乐!

祝国庆中秋快乐!