$D^0-\overline{D^0}$ Mixing and CP Violation Measurement at Belle

Longke Ll^1 (李龙科)

lilongke@ihep.ac.cn

¹Institute of High Energy Physics, CAS (IHEP)

Joint Workshop on Charm Hadron Decays at BESIII-Belle-LHCb 23 - 24 Sep 2017, Nankai University

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ④ □ ◆ ○ ◆ ○

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
Outline			

Introduction

- Belle detector at KEKB
- Available Charm Samples
- Status of experiments
- 2 $D^0 \overline{D^0}$ mixing and *CP* violation
 - Formalism and experiment remarks
 - Decays to CP eigenstates
 - Hadronic Wrong-Sign decay
 - time-dependent Dalitz analyses
- 3 Time-integrated CP asymmetry
 - A_{CP} measurements in D decays
 - T-odd asymmetry measurements
- 4 Summary

三日 のへの

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated <i>CP</i> asymmetry	Summary
Outline			

Introduction

- Belle detector at KEKB
- Available Charm Samples
- Status of experiments
- 2 $D^0 \overline{D^0}$ mixing and *CP* violation
 - Formalism and experiment remarks
 - Decays to CP eigenstates
 - Hadronic Wrong-Sign decay
 - time-dependent Dalitz analyses
- Time-integrated CP asymmetry
 - A_{CP} measurements in D decays
 - T-odd asymmetry measurements
- 4 Summary

ELE DQQ

Introduction	D° - D° mixing and CP violation	Time-integrated CP asymmetry	Summary
0000	0000000000	00	
Belle detector at KEKB			
Belle experiment	at KEKB		

✓ KEK: 高エネルギー加速器研究機構 @ 筑波市 ✓ B factory: $\sqrt{s} = 10.58 GeV$: Y(45) → BB ✓ highest peak lumin. $\mathcal{L} = 2.1 \times 10^{34} cm^{-2}s^{-1}$ ✓ Belle Collab.: 536 colleag. 91 institut., 20 countries/regions ✓ China(5): IHEP, USTC, PKU, BUAA, Fudan.

dE/dx (CDC)

Barrel ACC

Endcap ACC

TOF (only Barre

A dE/dX ~ 5 %

n = 1.010 ~ 1.028

Δ T ~ 100 ps (r = 125cm)

n = 1.030

ntroduction	$D^0 - \overline{D}^0$ mixing and CP violation	Time-integrated CP asymmetry	y Summary
000			
vailable Charm Samples			
Available Charm	Samples from Charm	factories. B-factories.	hadron colliders

Experiment	Machine	C.M	Lumin.	N(<i>D</i>)	efficiency	advantage/disadvantage
CLEO	CESR (e^+e^-)	3.77 GeV	$0.8~{\rm fb}^{-1}$	$2.9 imes 10^{6}$ $2.3 imes 10^{6} (D^{\pm})$		 extremely clean enviroment pure D-beam, almost no bkg
		4.17 GeV	$0.6 \ {\rm fb}^{-1}$	$0.6 imes 10^6$	~10.30%	© quantum coherence
ρεςπ	BEPC-II (e ⁺ e ⁻)	3.77 GeV	$2.92~{\rm fb}^{-1}$	$10.5 imes 10^{6} \ 8.4 imes 10^{6} \ (D^{\pm})$	/ 10-30 //	😊 no CM boost, no T-dep analyses
		4.18 GeV	3 fb ⁻¹	$3 imes 10^6$		
				*	***	
\mathcal{B}	KEKB (e ⁺ e ⁻)	10.58 GeV	$1 \ ab^{-1}$	1.3×10^9		 clear event environment high trigger efficiency
BELE					~5-10%	high-efficiency detection of neutrals
	PEP-II (e ⁺ e ⁻)	10.58 GeV	$0.5 \ ab^{-1}$	$6.5 imes10^8$	0 10/0	 many high-statistics control samples time-dependent analysis
2	. ,			**	**	© smaller cross-section than pp colliders
	Tevatron (<i>p</i> p̄)	1.96 TeV	$9.6~{\rm fb}^{-1}$	1.3×10^{11}		© large production cross-section
					<0.5%	Iarge boost: excellent time resolution
LHCD	LHC (<i>pp</i>)	7 FeV 8 TeV	1.0 fb ⁻¹ 2.0 fb ⁻¹	5.0×10^{12}		 dedicated trigger required hard to do neutrals and neutrinos
				***	*	

here we used $\sigma(D^0 \bar{D}^0 @3.77 \text{ GeV})=3.61 \text{ nb}, \sigma(D^+D^-@3.77 \text{ GeV})=2.88 \text{ nb}, \sigma(D^*D_S @4.17 \text{ GeV})=0.967 \text{ nb}, \sigma(c\bar{c}@10.58 \text{ GeV})=1.3 \text{ nb}, \sigma(D^0 @LHCb)=1.661 \text{ nb}.$ This table mainly refers to IJMP **A 29** (2014) 24, 14300518 and G. Casarosa's report at SLAC experimental seminar 2016.

Image: A matrix

EL OQO

< □ > < 同 > < 回 > < 回 >

三日 りへで

1.2 1.4 1.6

-20

-40

-60

0.6 0.8

1σ 2σ 3σ

4σ

5 0

x (%)

12

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0.4 0.2

-0.2

-0.4

la/pl

E SQC

4/19

< □ > < 同 > < 回 > < 回 >

۲

0.000 0.005 0.010

-0.005

 a_{CP}^{ind}

-0.005

-0.010

-0.015

-0.015-0.010

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

• No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%

• • • • • • • • • •

∃ ► < ∃</p>

ELE DQC

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

- No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%
- No clear evidence of direct CPV \leftarrow no CPV at C.L=9.3%

< <p>I > < <p>I

ELE DQC

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

- No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%
- No clear evidence of direct CPV \Leftarrow no CPV at C.L=9.3%

 D^0 - D^0 mixing observation in more channels, and CPV searches are two of most important physical goals for Charm WG at our Belle/Belle II experiment.

Image: A matrix

EL OQO

duction D ⁰ ● O(-D ⁰ mixing and CP vi	olation		Time-integr	ated CP as	ymmetry	
atus of $D^0-\overline{D^0}$ m	nixing and (CPV [m	ainly ref. ch	arm physics	at HFLA	/]	
Decay Туре	Final State		ý	<i>Hicp</i>		CLEO	<mark>₿€</mark> SII
DCS 2-body(WS)	$K^+\pi^-$	*	☆	★ ^(a)	*	√	
DCS 3-body(WS)	$K^+\pi^-\pi^0$	0 ^(c)	☆			✓ A _{CP}	0 _δ
CP-eigenstate	(even) h^+h^-	☆	☆	$A_{CP}^{(b)}$	✓ A _{CP}	 Image: A second s	
er eigenstate	(odd) $K_S^0 \phi$	√					
Self-coni 3-body	$K_S^0 \pi^+ \pi^-$	√	✓	\checkmark	✓ A _{CP}	✓	°δ
decay	$K_S^0K^+K^-$	0	\checkmark	0			°δ
uccuy	$K_{S}^{0}\pi^{0}\pi^{0}$					🗸 Dalitz	°у _{СР}
Self-conj. SCS	$\pi^{+}\pi^{-}\pi^{0}$	✓ A _{CP}	✓ mixing Acp	✓ A _{CP}			°δ
3-body decay	$K^+K^-\pi^0$		✓ A _{CP}				°δ
SCS 3-body	$K_S^0 K^{\pm} \pi^{\mp}$			✓ A _{CP}		Vδ	°δ
Semileptonic decay	$K^+\ell^-\nu_\ell$	√	✓			√	
	$K^{+}\pi^{-}\pi^{+}\pi^{-}$	✓ R _{WS}	✓	*			ο _δ RS
Multi-body(n≥4)	$\pi^+\pi^-\pi^+\pi^-$	◦ _{ACP}		$\checkmark^{(d)}_{A_{CP}}$			
	$K^+K^-\pi^+\pi^-$	°A _T	✓ A _T	$\checkmark^{(e)}_{A_{CP}}$		✓ A _{CP}	0
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	✓ A _T					
$\psi(3770) ightarrow D^0 \overline{D^0}$	via correlations					√ δKπ	VCP

In $D^0 \cdot \overline{D^0}$ mixing measurements: \bigstar for observation (> 5 σ); \bigstar for evidence (> 3 σ); \checkmark for measurement published; \circ for analysis on going. A_T stands for measuring *CP* asymmetry using T-odd correlations.

(a) LHCb gave the measurement of charm mixing and CP violation in $D^0 \rightarrow K^{\pm} h^{\mp}$ decay in PRD 95, 052004 (2017).

(b) LHCb gave the measurements of CP violation in $D^0 \rightarrow h^- h^+$ decay in PRL 112, 041801 (2014) and PRL 118, 261803 (2017).

(c) Belle measured WS-to-RS ratio R_{WS} and A_{CP} in $D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^0$ in PRL **95**, 231801 (2005).

(d) LHCb also searched for CP violation in phase space of $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decays in PLB **769**(2017) 345.

(e) LHCb also searched for CP violation using T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays in JHEP 10(2014)005

Introduction	$D^0 - \overline{D}^0$ mixing and CP violation	Time-integrated CP asymmetry	Summary
0000	0000000000	00	
Outline			

Introduction

- Belle detector at KEKB
- Available Charm Samples
- Status of experiments

2 $D^0 - \overline{D^0}$ mixing and *CP* violation

- Formalism and experiment remarks
- Decays to CP eigenstates
- Hadronic Wrong-Sign decay
- time-dependent Dalitz analyses
- Time-integrated CP asymmetry
 - A_{CP} measurements in D decays
 - T-odd asymmetry measurements

4 Summary

EL OQO

Introduction	$D^0 - \overline{D}^0$ mixing and CP violation	Time-integrated CP asymmetry	Summary
	•••••		
Formalism and experiment rema	ırks		
Formalism of D^0	$D^{-}\overline{D^{0}}$ mixing		

• Open-flavor neutral meson transforms to its anti-meson and vice versa:

 $K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq \text{mass}$ eigenstate $|D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}\rangle$

$$|D_{1,2}\rangle \equiv p|D^0
angle \pm q|\overline{D^0}
angle$$
 (CPT: p²+q²=1)

• Mixing parameters definition:

$$\mathbf{x} \equiv rac{M_1 - M_2}{\Gamma}, \quad \mathbf{y} \equiv rac{\Gamma_1 - \Gamma_2}{2\Gamma}, \quad \Gamma \equiv rac{\Gamma_1 + \Gamma_2}{2}$$

- under phase convention $CP|D^0\rangle = |\overline{D^0}\rangle, \ CP|\overline{D^0}\rangle = |D^0\rangle,$
- with CP conservation ($q = p = 1/\sqrt{2}$): $|D_{1,2}\rangle = |D_{+,-}\rangle$ (CP eigenstates)

- Unique: only the up-type meson for mixing
- Standard Model predicts: $\sim \mathcal{O}(1\%)$

(2) long distance ($\sim 1\%$)

 Precise measurement of x, y: effectively limit New Physics(NP) modes;

▶ ▲ 분 ▶ 분 범 · · · ○ ○ ○

6/19

• search for NP, eg: $|x| \gg |y|$

Introduction	D^0 - D^0 mixing and CP violation	Time-integrated CP asymmetry	Summary
	000000000		
Formalism and experiment	remarks		
Formalism of	CP violation		

CPV: Charged-conjugated-Parity combined symmetry Violation

$$\mathcal{A}_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = \mathbf{a}_{d}^{f} + \mathbf{a}_{m}^{f} + \mathbf{a}_{i}^{f}$$

- Standard Model supplies only a CPV source: the phase in CKM matrix
- \bullet in charm sector, it's predicted at $\sim \mathcal{O}(10^{-3})$
- \bullet under current experiment sensitivity \sim 1%, to observe CPV \rightarrow NP

Introduction	D^0 - D^0 mixing and CP violation	Time-integrated CP asymmetry	Summary
	000000000		
Formalism and experim	ent remarks		
Formalism f	or time evolution		

• Time evolution of $D^0 - \overline{D}^0$ system: $i \frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix}$

diagonal: $D \rightarrow D$,non-diagonal: $D \rightarrow D$.

- time evolution related to (x,y) and (q/p)
 $$\begin{split} &|D^{0}(t)\rangle = g_{+}(t)|D^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{D^{0}}\rangle \\ &|\overline{D^{0}}(t)\rangle = \frac{p}{q}g_{-}(t)|D^{0}\rangle + g_{+}(t)|\overline{D^{0}}\rangle \\ &g_{+}(t) = e^{(-iM - \frac{1}{2}\Gamma)t}\cosh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right) \\ &g_{-}(t) = e^{(-iM - \frac{1}{2}\Gamma)t}\sinh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right) \end{split}$$
- Probability that the flavor is/is not changed at time t with a pure flavor state $|D^0\rangle$ $|\langle D^0|D^0(t)\rangle|^2 = \frac{1}{2}e^{-\Gamma t}\left(\cosh(y\Gamma t) + \cos(x\Gamma t)\right)$ $|\langle D^0|\overline{D^0}(t)\rangle|^2 = \frac{1}{2}|\frac{q}{p}|^2e^{-\Gamma t}\left(\cosh(y\Gamma t) - \cos(x\Gamma t)\right)$

y effects lifetime in amplitude; x: brings a sine oscillating.

• $D^0 - \overline{D^0}$ mixing measurement is most difficult.

EL OQO

Introduction	D^0 - D^0 mixing and CP violation	Time-integrated CP asymmetry	Summary
	000000000		
Formalism and experiment remar	ks		
General experime	ent remarks at Belle		

- tag flavor of D^0 using charge of π_s from $D^*: D^{*\pm} \to D^0 \pi_s^+ / \overline{D}^0 \pi_s^-$ with $D \to f$.
- veto signals from B decays: $p^*(D^*) > 2.5/3.1 \text{ GeV}/c$ for Y(4S/5S).
- D^0 lifetime: $t_{D^0} = \frac{m_{D^0}}{c_{D^0}} (\overrightarrow{r_{dec}} \overrightarrow{r_{prod}}) \cdot \frac{\overrightarrow{p}}{p};$
- lifetime error σ_t by error matrix of production vertex, decay vertex and momentum.
- extract signal and BKG fraction by M-Q 2-dimensional fit:
 - M: invariant mass of reconstructed D^0 : $M = M_{D^0 \to f}$ Q: release energy of D^* decay: $Q = M_{D^*} M_{D^0} m_{\pi_s} / \Delta M = M_{D^*} M_{D^0}$

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	D^0 - D^0 mixing and CP violation	Time-integrated CP asymmetry	Summary
	000000000		
Decays to CP eigenstates			
mixing and CP	/ in <i>CP</i> -eigenstate deca	NS	

• Mixing and CPV: using CP eigenstates D^0 lifetime analysis relative to non-CP eigenstates:

$$y_{cp} = \frac{\tau_{K\pi}}{<\tau_{hh}>} - 1$$
 $A_{\Gamma} = \frac{\tau(\bar{D}^0 \rightarrow hh) - \tau(D^0 \rightarrow hh)}{\tau(\bar{D}^0 \rightarrow hh) + \tau(D^0 \rightarrow hh)}$ (here $h = K/\pi$)

• Belle: the first evidence (540 fb $^{-1}$): $y_{CP} = (+1.31 \pm 0.32 \pm 0.25)\%$ [PRL 98, 211801 (2007)]

- y_{CP} in $D^0 \rightarrow K_5^0 \phi$ at Belle with untagged D^0 sample: 72K(ON)+62K(OFF) signals $y_{CP} = \frac{1}{f_{ON} - f_{OFF}} \left(\frac{\tau_{OFF} - \tau_{ON}}{\tau_{OFF} + \tau_{ON}} \right) = (+0.11 \pm 0.61 \pm 0.52)\%$ [PRD 80.052006 (2009)]
- y_{CP} in $D^0 o \pi^0 \phi$ (~40K tagged signals) (wait for somebody to study at Belle)

Introduction

 $D^0 - \overline{D}^0$ mixing and *CP* violation

Time-integrated CP asymmetry

Summary

Hadronic Wrong-Sign decay

Hadronic WS decay $D^0 o K^+ \pi^-$

first evidence for $D^0 - \overline{D^0}$ mixing

[B. Aubert et al. PRL 98, 211802 (2007)]

 fitting D⁰ proper time distribution of WS sample (384 fb⁻¹)

$$\frac{T_{WS}(t)}{e^{-\Gamma t}} \propto R_D + \sqrt{R_D} y' \Gamma t + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

- fit results:
 - $\begin{array}{l} R_D = & (0.303 \pm 0.016(\text{stat}) \pm 0.010(\text{syst}))\% \\ x'^2 = & (-0.22 \pm 0.30(\text{stat}) \pm 0.21(\text{syst})) \times 10^{-3} \\ y' = & (9.7 \pm 4.4(\text{stat}) \pm 3.1(\text{syst})) \times 10^{-3} \\ & (x'^2, \ y') \ \text{with correlation } -0.95 \end{array}$

first observation in e^+e^- collisions [B.R. Ko *et al.* PRL **112**, 111801 (2014)]

• fitting time-dependent ratio of WS-to-RS decay (976 fb⁻¹)

$$R_{WS}(t) = \frac{\Gamma_{WS}(t)}{\Gamma_{RS}(t)} \approx R_D + \sqrt{R_D} y' \Gamma t + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

• fit results:

$$\begin{array}{l} R_D = (0.353 \pm 0.013(\text{stat}+\text{syst}))\% \\ x'^2 = (0.09 \pm 0.22(\text{stat}+\text{syst})) \times 10^{-3} \\ y' = (4.6 \pm 3.4(\text{stat}+\text{syst})) \times 10^{-3} \\ (x'^2, \ y') \ \text{with correlation -0.948} \end{array}$$

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
	0000000000		
Hadronic Wrong-Sign decay			
prospect at Bell	e II for $D^0 o K^+ \pi^-$		

Belle II detector

 \checkmark 4-layer SVD + 2-layer PXD

 \checkmark smaller innermost layer radius

✓ larger outmost layer radius

 \checkmark squeezed beams at IP

- time resolution = 140 fs: $2 \times$ better than BaBar (270 fs)
- ▶ time error σ_t : factor 3 improvement; and RMS(σ_t): reduced by a factor 2.
 - $Res = Gauss(\mu, k\sigma_t)$, so reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics
- Belle II sensitivity estimation based on ToyMC
 - Smear decay time with Gauss (σ =140 fs) for 1000 experiments
 - Obtain sensitivities by RMS of residuals distribution of parameters

Pa	arameter	Belle		Belle II	
		976 /fb	5 /ab	20 /ab	50 /ab
no	$\sigma(x'^2)(10^{-5})$	22	7.5	3.7	2.3
CPV	$\sigma(y')$ (%)	0.34	0.11	0.056	0.035
	$\sigma(x')(\%)$		0.37	0.23	0.15
CPV-	$\sigma(y')$ (%)		0.26	0.17	0.10
allowed	$\sigma(q/p)$		0.197	0.089	0.051
	$\sigma(\phi)(^{o})$		15.5	9.2	5.7

one order of magnitude better than Belle

Longke Li (李龙科), IHEP

 $D^0 - \overline{D}^0$ Mixing and CP Violation Measurement at Belle Sep. 23 at Nankai Univ.

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
	00000000000		
time-dependent Dalitz analyses			
Self-conjugated of	decay $D^0 o K^0_S \pi^+ \pi^-$	[T. Peng et al. PRD 89, 091103(R) (2014)]	

- TDDA in self-conjugated decays:
 - (1) direct measurement for x and y; (2) search for CPV: $q/p \neq 1$
- $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ with qusai-two-body decays with difference physics process: RS: $\mathcal{A}_f = \langle f | \mathcal{H} | D^0 \rangle$; $\frac{g}{\rho} \frac{\lambda_f}{A_f} = \left| \frac{\lambda_f}{1+\epsilon} e^{i(\delta+\phi)} \right|$; eg: $D^0 \rightarrow K^{*-}\pi^+$ etc. WS: $\mathcal{A}_{\bar{f}} = \langle \bar{f} | \mathcal{H} | D^0 \rangle$; $\frac{g}{\rho} \frac{\lambda_f}{A_f} = \left| \frac{\lambda_f}{1+\epsilon} e^{i(\delta-\phi)} \right|$; eg: $D^0 \rightarrow K^{*+}\pi^-$ etc. CP: $\mathcal{A}_+ = \langle + | \mathcal{H} | D^0 \rangle$ $\frac{g}{\rho} \frac{\lambda_+}{A_+} = \frac{1-\epsilon}{1+\epsilon} e^{+i\phi}$; eg: $D^0 \rightarrow K_S^0 f_0$ etc. CP: $\mathcal{A}_- = \langle - | \mathcal{H} | D^0 \rangle$ $\frac{g}{\rho} \frac{\lambda_-}{A_-} = -\frac{1-\epsilon}{1+\epsilon} e^{-i\phi} f$; eg: $D^0 \rightarrow K_S^0 \rho / K_S^0 \omega$ etc.
- DP Model with Isobar: 12 BW+K-matrix($\pi\pi$ S-wave)+LASS($K\pi$ S-wave)

∃ ► ∃ = < <</p>

Eit turne	Dara	Belle Fit result	Belle II	prospect	model-indept.	LHCb
т п туре	F di d.	921 fb ⁻¹	5 ab ⁻¹	50 ab ⁻¹	100 M signals	50 fb^{-1}
	×(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$	± 0.017	
NO CF V	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$	± 0.019	
indirect	×(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$		0.04
munect	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$		0.004
CDV	q/p	$0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$	$\pm 0.069 \pm 0.073$	$\pm 0.022\pm 0.069$		0.04
CPV	$\arg(q/p)(^{o})$	$-6\pm11\pm3^{+3}_{-4}$	$\pm 4.7 \pm 4.2$	$\pm 1.5 \pm 3.8$		3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	D^0 - D^0 mixing and CP violation	Time-integrated CP asymmetry	Summary
	000000000		
time-dependent Dalitz a	inalyses		
SCS non-sel	f-conjugated decay $D^0 ightarrow h$	$K^0_c K^\mp \pi^\pm$	

• decay rate of WS-like and RS-like:

- Comparing with WS decays $D^0 o K^+\pi^-$: $r_D^{K\pi} \ll 1$ Vs. $r_D^{K_D^0K\pi} \sim 1$
- $D^0 \rightarrow K_S^0 K \pi$: effectively sensitive to $y'(\text{large } R_D)$; higher purity (large r_D)
- CLEO gave in $D^0 o K^0_S K \pi$, $R_D = 0.73 \pm 0.09$ and $\delta_D = (8.2 \pm 15.2)^o$ [PRD 85, 092016(2012)]
- sensitivity estimation of mixing: $\sigma(y') = 0.55\%$ (80K signals) <code>[PLB 701(2011)353]</code>
- LHCb has performed Dalitz plot fit on these two decays. [PRD 93, 052018 (2016)]
- mixing and CPV measurement in these decays.....

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated <i>CP</i> asymmetry	Summary
Outline			

Introduction

- Belle detector at KEKB
- Available Charm Samples
- Status of experiments
- 2 $D^0 \overline{D^0}$ mixing and *CP* violation
 - Formalism and experiment remarks
 - Decays to CP eigenstates
 - Hadronic Wrong-Sign decay
 - time-dependent Dalitz analyses
- Time-integrated CP asymmetry
 - A_{CP} measurements in D decays
 - T-odd asymmetry measurements
- 4 Summary

EL OQO

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
		• •	
A_{CP} measurements in D decays			
Time-integrated	CP asymmetry in L	$\mathcal{P}^0 o K^0_S K^0_S$ [arXiv:1705.05966]	

• time-integrated CP asymmetry measurement based on the partial decay rates:

$$A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} = a_{d}^{f} + a_{m}^{f} + a_{inf}^{f}$$

01			(/1
Channel	L(/fb)	value(%)	References
$D^0 \rightarrow \pi^+ \pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	PoS ICHEP2012 (2013) 353
$D^0 \rightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	PoS ICHEP2012 (2013) 353
$D^0 \rightarrow \pi^0 \pi^0$	966	$-0.03\pm0.64\pm0.10$	PRL 112, 211601 (2014)
$D^0 \rightarrow K^0_5 K^0_5$	921	$-0.02 \pm 1.53 \pm 0.17$	arXiv:1705.05966
$D^0 \rightarrow K_s^0 \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	PRL 112, 211601 (2014)
$D^0 \rightarrow \tilde{K}_5^0 \eta$	791	$+0.54\pm 0.51\pm 0.16$	PRL 106, 211801 (2011)
$D^0 \rightarrow K_S^0 \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	PRL 106, 211801 (2011)
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 0.41 \pm 1.23$	PLB 662, 102 (2008)
$D^0 \rightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	PRL 95, 231801 (2005)
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	$+0.43 \pm 1.30$	PRL 95, 231801 (2005)
$D^+ \rightarrow \pi^0 \pi^+$	921	$+0.89 \pm 1.98 \pm 0.22$	Belle Preliminary
$D^+ \rightarrow \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	PRL 108, 071801 (2012)
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	PRL 107, 221801 (2011)
$D^+ \rightarrow \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	PRL 107, 221801 (2011)
$D^+ \rightarrow K_5^0 \pi^+$	977	$-0.363 \pm 0.094 \pm 0.067(3.2\sigma)$	PRL 109, 021601 (2012)
$D^+ \rightarrow K_S^0 K^+$	977	$-0.25\pm0.28\pm0.14$	JHEP 02 (2013) 098
$D_s^+ \rightarrow K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104, 181602 (2010)
$D_s^+ \rightarrow K_S^0 K^+$	673	$+0.12\pm0.36\pm0.22$	PRL 104, 181602 (2010)

• A_{CP} at Belle [Vs. Belle II precision $\sim \mathcal{O}(0.01\%)$]

三日 りへで

17/19

ъ

• eg: $D^0 \to K_S^0 K_S^0(\text{sig})$, respect to $D^0 \to K_S^0 \pi^0(\text{resp})$, measure A_{CP} and branching fraction

• most precise measurement on both A_{CP} : consistent with SM expectation; and $BR = (1.32 \pm 0.02 \pm 0.04 \pm 0.04) \times 10^{-4}$: consistent with PDG $(1.8 \pm 0.4) \times 10^{-4}$, but 2.3σ away from BESIII $(1.67 \pm 0.11 \pm 0.11) \times 10^{-4}$ [PLB 765(2017)231]

Longke Li (李龙科), IHEP

AM (GeV/c

JI NOC

Longke Li (李龙科), IHEP

Sep. 23 at Nankai Univ.

	Summary
Outline	

Introduction

- Belle detector at KEKB
- Available Charm Samples
- Status of experiments
- 2 $D^0 \overline{D^0}$ mixing and *CP* violation
 - Formalism and experiment remarks
 - Decays to CP eigenstates
 - Hadronic Wrong-Sign decay
 - time-dependent Dalitz analyses
- Time-integrated CP asymmetry
 - A_{CP} measurements in D decays
 - T-odd asymmetry measurements

4 Summary

EL OQO

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated <i>CP</i> asymmetry	Summary
Summary			

- Many measurements of $D^0 \overline{D^0}$ mixing and *CP* violation at Belle has been performed, in different physical process or different technique.
 - only one channel gives the observation of $D^0-\overline{D^0}$ mixing: $D^0 \to K^+\pi^-$ (in e^+e^- Collider)
 - lots of measurements are under the limit of statistics.
 - in some channels, stat. error comparable with syst. error model-independent method has prospect.
 - no hints for indirect CPV in charm
- Time-integrated *CP* asymmetries have been studies with many channels, but no significant signal for direct *CP* violation in charm.
- For more information on prospect at Belle II, please keep mind of talk by Prof. Chengping SHEN tomorrow.

> E = OQA

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
Summary			

- Many measurements of $D^0 \overline{D^0}$ mixing and *CP* violation at Belle has been performed, in different physical process or different technique.
 - only one channel gives the observation of D^{0} - $\overline{D^{0}}$ mixing: $D^{0} \to K^{+}\pi^{-}$ (in $e^{+}e^{-}$ Collider)
 - lots of measurements are under the limit of statistics.
 - in some channels, stat. error comparable with syst. error model-independent method has prospect.
 - no hints for indirect CPV in charm
- Time-integrated *CP* asymmetries have been studies with many channels, but no significant signal for direct *CP* violation in charm.
- For more information on prospect at Belle II, please keep mind of talk by Prof. Chengping SHEN tomorrow.

Introduction	D ⁰ -D ⁰ mixing and CP violation	Time-integrated CP asymmetry	Summary
Summary			

- Many measurements of $D^0 \overline{D^0}$ mixing and *CP* violation at Belle has been performed, in different physical process or different technique.
 - only one channel gives the observation of $D^0-\overline{D^0}$ mixing: $D^0 \to K^+\pi^-$ (in e^+e^- Collider)
 - lots of measurements are under the limit of statistics.
 - in some channels, stat. error comparable with syst. error model-independent method has prospect.
 - no hints for indirect CPV in charm
- Time-integrated *CP* asymmetries have been studies with many channels, but no significant signal for direct *CP* violation in charm.
- For more information on prospect at Belle II, please keep mind of talk by Prof. Chengping SHEN tomorrow.

3 1 1 N Q A

Thank you for your attention.

谢谢!

Longke LI (李龙科) E-mail: lilongke@ihep.ac.cn Room A519, Main Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing City, 100049, P. R. China Tel: (+86)-159-5693-4447

JI NOR

A_{CP}in charm decays into neutral kaons [ref. Fu-Sheng Yu et al., arXiv:1707.09297]

• A new *CP* violation effect in charm decays into neutral kaons, e.g. $D^+ \rightarrow K_S^0 \pi^0$ with evidence for *CP* violation: $A_{CP} = (-0.363 \pm 0.094 \pm 0.067)\%$

= 900

Dalitz plot(DP) analysis with Isobar model

 DP of 3-body decay described by Isobar model: Phys. Rev. 123, 333 (1961)

$$\mathcal{M}(m_{ab}^2, m_{bc}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{ab}^2, m_{bc}^2) + a_{NR} e^{i\phi_{NR}}$$

here $a_r(\phi_r)$ is magnitude (phase) of resonance r .

\triangleright *T*_{*r*}: resonance lineship

usually use relativistic Breit-Wigner with mass dept. width For wide width or special resonances: mass-threshold: Flatté model, eg: $f_0(980)(KK) / a_0(980)(KK/\eta'\pi)$ $\pi\pi$ S-wave overlapping res.: K-matrix model EPJ A16 (2003) 229-258 $\pi\pi$ P-wave: ρ with Gounaris-Sakurai (GS) model PRL 24.24(1968)

 $K\pi$ S-wave: $K_0^*(1430)$ with LASS model EPJ C74 (2014): 3026

\triangleright W_r angular distribution:

(1)Helicity form [PRD 78, 052001 (2008)]

(2)Zemach covariant tensor form [PR 133, B1201 (1964), PR 140, B109 (1965)]

• \mathcal{A}_r : dynamics of $D \rightarrow (r \rightarrow ab)c$ PRD 63, 092001 (2001)

$$\mathcal{A}_{r}(m_{ab}^{2}, m_{bc}^{2}) = F_{D} \times F_{r} \times T_{r} \times W_{r}$$

・ロト・荷 ト・ミト・ミト 三日 ろくや

$$\begin{split} F_{J=0} &= 1 \\ F_{J=1} &= \frac{\sqrt{1+z_{o}}}{\sqrt{1+z_{o}}} \\ F_{J=2} &= \frac{\sqrt{(z_{o}-3)^{2}+9z_{o}}}{\sqrt{(z_{o}-3)^{2}+9z_{o}}} \\ F_{J=3} &= \frac{\sqrt{z_{o}}(z_{o}-15)^{2}+9(2z_{o}-5)}{\sqrt{z_{o}}(z_{o}-5)^{2}+15z_{o}}(2z_{o}-5)} \\ F_{J=4} &= \frac{\sqrt{(z_{o}^{2}-45z_{o}+105)^{2}+15z_{o}}(2z_{o}-21)^{2}}{\sqrt{(z_{o}^{2}-45z_{o}+105)^{2}+15z_{o}}(2z_{o}-21)^{2}} \\ \text{here } z = (R \cdot q)^{2}, R \text{ is the radius of } D \text{ or res. } r \end{split}$$

Dalitz amplitude analysis

- Dalitz plot(DP) fit
 - p.d.f of signal DP:
 - (1) efficiency plane ϵ correction
 - (2) considering mass resolution Res(m)
 - (3) normalization

$$\mathbf{p}_{\rm sig}(m_{12,i}^2,m_{23,i}^2) = \frac{|\mathcal{M}(m_{12,i}^2,m_{23,i}^2)|^2 \otimes_{\mathbf{m}} {\rm Res}(\mathbf{m}) \cdot \epsilon(m_{12,i}^2,m_{23,i}^2)}{\iint_{DP} dm_{12}^2 dm_{23}^2 |\mathcal{M}(m_{12}^2,m_{23}^2)|^2 \otimes_{\mathbf{m}} {\rm Res}(\mathbf{m}) \cdot \epsilon(m_{12}^2,m_{23}^2)}$$

• fit method: unbinned maximum likelihood (UML)

$$\begin{split} &2 \ln \mathcal{L} = 2\sum_{i=1}^{n} \ln \left[f_{sig}^i \rho_{\text{Sig}}(m_{12,i}^2, m_{23,i}^2) + \sum_{k = bg} f_{k}^j \rho_{\text{X}}(m_{12,i}^2, m_{23,i}^2) \right] \\ &\text{signal-to-bkg } f^i \text{ determined by kinematic variable fit result, like M-Q} \end{split}$$

- time-dependent Dalitz plot(TDDP) fit
 - p.d.f of signal TDDP with considering time resolution : $R_{sig}(t)$

$$\mathbf{p}_{\text{sig}}(m_{12,i}^2, m_{23,i}^2, t_i, \sigma_t^i) = \frac{\int dt' \mathcal{R}_{\text{sig}}(t_i - t', \sigma_t^i) |\mathcal{M}_f(m_{12,i}^2, m_{23,i}^2, t')|^2 \cdot \epsilon(m_{12,i}^2, m_{23,i}^2)}{\int dt \iint_{DP} dm_{12}^2 dm_{23}^2 \left| \mathcal{M}_f(m_{12}^2, m_{23,i}^2, t) \right|^2 \epsilon(m_{12}^2, m_{23}^2)}$$

• fit method: unbinned maximum likelihood (UML) $2 \ln \mathcal{L} = 2 \sum_{i=1}^{n} \{ \ln(r_{sig}^{i} \rho_{sig}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}, \sigma_{t}^{i}; \mathbf{x}, \mathbf{y}) \rho_{sig}^{nc}(\sigma_{t}^{i}) + \sum_{x = bg} f_{x}^{i} \rho_{x}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}) \rho_{x}^{nc}(\sigma_{t}^{i})) \}$ here $p_{x}^{nc}(\sigma_{t}^{i})$ is global function for time error, independent on others.

EL OQO

Time-dependent amplitude of D^0 3-body hadronic decays

Right-Sign(RS) abd Wrong-Sign(WS) decays

$$D^{CF} = \frac{D^{CF}}{D^{O}} \frac{|\mathcal{M}_{f}(RS, t)|^{2}}{\sum_{D^{O}} \mathcal{M}^{CS}} = e^{-\Gamma t} |\mathcal{A}_{f}^{CF}|^{2} \\ \mathcal{M}_{f_{i}(RS, t)}|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}^{CF}|^{2} \\ \mathcal{M}_{f_{i}(RS, t)}|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}^{CS}|^{2} + x \cos \delta + y \sin \delta; \ y'' = y \cos \delta - x \sin \delta \\ \mathcal{M}_{f_{i}(RS, t)}|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}^{CS}|^{2} + \frac{x^{2}}{n} \ln |\mathcal{A}_{f}^{CS}\mathcal{A}_{f}^{CT}| + \frac{x^{2}}{4q} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}_{f}^{CF}|^{2} \\ \mathcal{M}_{f_{i}(RS, t)}|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}^{CS}|^{2} - (\frac{y^{2}}{n} \operatorname{Re}[\mathcal{A}_{f}^{CS}\mathcal{A}_{f}^{CT}] + \frac{x^{2}}{n} \ln |\mathcal{A}_{f}^{CS}\mathcal{A}_{f}^{CT}|^{2} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}_{f}^{CF}|^{2} \\ \mathcal{M}_{f_{i}(RS, t)}|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}^{CS}|^{2} |\mathcal{A}_{f}^{CF}|^{2} + \frac{x^{2}}{n} \ln |\mathcal{A}_{f}^{CS}\mathcal{A}_{f}^{CT}|^{2} |\mathcal{A}_{f}^{CF}|^{2} |\mathcal{A}$$

• Self-conjugated CF/SCS decays

$$\begin{split} \text{RS:} \ \mathcal{A}_f &= \langle f | \mathcal{H} | D^0 \rangle; \ \text{WS:} \ \mathcal{A}_f &= \langle \tilde{f} | \mathcal{H} | D^0 \rangle; \ \text{CP:} \ \mathcal{A}_{\pm} &= \langle \pm | \mathcal{H} | D^0 \rangle \\ D^0 : \ m_+^2 &= m_{K_2^0 h^+}^2, \ m_-^2 &= m_{K_2^0 h^-} \\ | \mathcal{M}_f |^2 &= \left\{ | \mathcal{A}_1 |^2 e^{-\gamma \Gamma t} + | \mathcal{A}_2 |^2 e^{\gamma \Gamma t} + 2 \operatorname{Re} [\mathcal{A}_1 \mathcal{A}_2^t] \cos(\varkappa \Gamma t) + 2 \operatorname{Im} [\mathcal{A}_1 \mathcal{A}_2^t] \sin(\varkappa \Gamma t) \right\} e^{-\Gamma t} \\ | \bar{\mathcal{M}}_f |^2 &= \left\{ | \mathcal{A}_1 |^2 e^{-\gamma \Gamma t} + | \bar{\mathcal{A}}_2 |^2 e^{\gamma \Gamma t} + 2 \operatorname{Re} [\mathcal{A}_1 \mathcal{A}_2^t] \cos(\varkappa \Gamma t) + 2 \operatorname{Im} [\bar{\mathcal{A}}_1 \mathcal{A}_2^t] \sin(\varkappa \Gamma t) \right\} e^{-\Gamma t} \end{split}$$

• SCS non-self-conjugated decays

 $\begin{aligned} & (\text{very difficult! No one experiment gives time-dept. amplitude analysis to date.)} \\ & A = \langle K_S^0 K^- \pi^+ | \mathcal{H} | D^0 \rangle = \langle K_S^0 K^+ \pi^- | \mathcal{H} | D^0 \rangle; B = \langle K_S^0 K^+ \pi^- | \mathcal{H} | D^0 \rangle = \langle K_S^0 K^- \pi^+ | \mathcal{H} | D^0 \rangle \\ & | \mathcal{M}(RS,t) |^2 = e^{-\Gamma t} \Big\{ | A |^2 + \frac{k^2 + k^2}{4} r_B^2 | B |^2 (\Gamma t)^2 + r_D (y' \operatorname{Re} [AB^*] + x' \operatorname{Im} [AB^*]) \Gamma t \Big\} \\ & | \mathcal{M}(WS,t) |^2 = e^{-\Gamma t} \Big\{ r_B^2 | B |^2 \frac{k^2 + k^2}{4} | A |^2 (\Gamma t)^2 + r_D (y' \operatorname{Re} [BA^*] + x' \operatorname{Im} [BA^*]) \Gamma t \Big\} \end{aligned}$

ELE DQQ

Longke Li (李龙科), IHEP