Charm Rare Decay at Belle

Wencheng Yan (On behalf of the Belle Collaboration) Beihang University

OUTLINE

Introduction

Introduction

Experimental requirements

Statistics: very large samples

Excellent detector performance:

- Excellent vertex resolution
- Very high reconstruction efficiencies for charged particles and photons
- Very good momentum resolution over the whole kinematic range
- Precise measurements of photon energy and direction
- Highly efficient particle ID system to separate π/K and e/μ over the

full kinematic range

• Cover the (almost) full solid angle

Available samples

2017/9/23

Radiative Charm Decay $D^0 \rightarrow V\gamma$

➢ Include long-range contribution (~10⁻⁵) and short-range contribution (10⁻²)

Vector Meson Dominance (VMD): make rough estimates of the rates

PDG:
$$B(D^0 \rightarrow \phi \rho^0) = (0.93 \pm 0.12) \times 10^{-3}$$

 $B(D^0 \rightarrow \phi \omega) < 2.1 \times 10^{-3}$ @90% C.L.
The coupling of the photon to a vector: ~1%

Expected rates of longrange : $\sim 10^{-5}$

> In 1998, CLEO set the upper limit on $B(D^0 \to \phi \gamma, \omega \gamma, \overline{K}^{0*} \gamma, \rho^0 \gamma)$ to be 1.9 × 10⁻⁴,2.4 × 10⁻⁴,7.6 × 10⁻⁴,2.4 × 10⁻⁴. [PRD 58, 092001(1998)]

2017/9/23

Radiative Charm Decay $D^0 \rightarrow \phi \gamma$

> In 2004, Belle gave the first observation of $D^0 \rightarrow \gamma \phi$ with a significance of 5.4 σ based on 78.1 fb⁻¹ data [O. Tajima *et al.* PRL 92,101803 (2004)]

• Tagged
$$D^{*+} o D^0 \pi_s^+$$

•
$$E_{\gamma} > 450 \,\mathrm{MeV}, P^*(D^*) > 2.9 \,\mathrm{GeV/c}$$

$$igoplus$$
 Main bkg. $D^0 o \phi \pi^0$ and $\phi \eta$

Normalized to $D^0 \rightarrow K^+ K^-$

$B(D^0 \to \phi \gamma) = [2.60^{+0.70}_{-0.61}(\text{stat})^{+0.15}_{-0.17}(\text{syst})] \times 10^{-5}$

> In 2008, BABAR improved the precision of $D^0 \rightarrow \gamma \phi$ based on 387. 1fb⁻¹ data [B. Aubert *et al.* PRD 78 071101(2008)]

 $B(D^0 \to \phi \gamma) = [2.78 \pm 0.30(\text{stat}) \pm 0.27(\text{syst})] \times 10^{-5}$

2017/9/23

Radiative Charm Decay $D^0 \rightarrow \phi \gamma$

> In 2017, Belle measure the $D^0 \rightarrow \phi \gamma$ based on 943 fb⁻¹ data of $\Upsilon(nS)$ [T. Nanut *et al.* PRL 118, 051801(2017)]

> Simultaneously fit D^0 candidate and the cosine of the helicity angle θ_H

 $B(D^0 \to \phi \gamma) = [2.76 \pm 0.19(\text{stat}) \pm 0.10(\text{syst})] \times 10^{-5}$

Consistent with the world average value, and agree with the latest theoretical calculations

2017/9/23

Radiative Charm Decay $D^0 \rightarrow \rho^0 \gamma$

> In 2017, Belle firstly observed $D^0 \rightarrow \rho^0 \gamma$ with a significance of 5. 5 σ based on a data sample of 943 fb⁻¹ [T. Nanut *et al.* PRL 118, 051801(2017)]

 $B(D^0 \rightarrow \rho^0 \gamma) = [1.77 \pm 0.30(\text{stat}) \pm 0.07(\text{syst})] \times 10^{-5}$

 \succ The value is considerably larger than theoretical expectations ($\sim 10^{-6}$)

2017/9/23

Radiative Charm Decay $D^0 \rightarrow \overline{K}^{*0} \gamma$

In 2008, firstly observed by BABAR based on 387.1 fb⁻¹ data [B. Aubert et al. PRD 78 071101(2008)]

 $B(D^0 \rightarrow \overline{K}^{*0}\gamma) = [3.28 \pm 0.20(\text{stat}) \pm 0.27(\text{syst})] \times 10^{-4}$

- ➢ In 2017, Belle improved measurement of D⁰ → K̄^{*0}γ based on a data sample of 943 fb⁻¹ [T. Nanut *et al.* PRL 118, 051801(2017)]
- Tagged $D^{*+} \rightarrow D^0 \pi^+$
- $E_{\gamma} > 540 \text{MeV}, P^*(D^*) > 2.17 \text{GeV/c}$
- $E_9/E_{25} > 0.94$ to reject γ from π^0
- Main bkg. $D^0 \to K^{*0}\pi^0$ by ANN
- Charge-conjugate is included
- Normalized to $D^0 \to K^- \pi^+$

 $B(D^0 \to \overline{K}^{*0}\gamma) = [4.66 \pm 0.21(\text{stat}) \pm 0.21(\text{syst})] \times 10^{-4}$

2017/9/23

CP Violation in $D^0 \rightarrow V\gamma$

- CP violation in weak decays arises due to the irreducible phase in CKM matrix (< 10⁻³ for charm decay)
- ➢ Radiative charm decays $A_{CP}^{V\gamma} > 3\%$ ⇒ signal of NP [G. Isidori *et al.* PRL 109 171801(2012)]
- > In 2017, Belle report the first search for CP violation in decays $D^0 \rightarrow \rho^0 \gamma$, $\phi \gamma$, $K^{*0} \gamma$ [T. Nanut *et al.* PRL 118, 051801(2017)]

$$A_{\rm raw} = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}{}^0 \to \overline{f})}$$

$$A_{\rm raw} = A_{CP} + A_{FB} + A_{\varepsilon}^{\pm}$$

$$A_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + A_{CP}^{\text{norm}}$$

 $\begin{aligned} A_{CP}(D^0 \to \rho^0 \gamma) &= +0.056 \pm 0.152 \pm 0.006 \\ A_{CP}(D^0 \to \phi \gamma) &= -0.094 \pm 0.066 \pm 0.001 \\ A_{CP}(D^0 \to \overline{K}^{*0} \gamma) &= -0.003 \pm 0.020 \pm 0.000 \end{aligned}$

The results are consistent with no CP violation, be sensitive at the upcoming Belle II

Flavor-changing neutral current $D^0 \rightarrow \gamma \gamma$

- Flavor-changing neutral current (FCNC) processes are forbidden at tree level in SM, can occur at higher orders, and measured in K and B mesons
- Theory calculations based on VMD yield a decay branching fraction in the range (1.0 ~ 3.0) × 10⁻⁸

> In 2003, CLEO reported a first search for FCNC of $D^0 \rightarrow \gamma \gamma$ using 13.8 fb⁻¹ and set the upper limit to be $B(D^0 \rightarrow \gamma \gamma) < 2.9 \times 10^{-5}$ at 90% C.L.. [T. E. Coan *at al.* PRL 90, 101801(2003)]

> In 2012, BABAR improved the upper limit to be $B(D^0 \rightarrow \gamma \gamma) < 2.2 \times 10^{-6}$ at 90% C.L.. using 470.5 fb⁻¹ data [J. P. Lees *et al.* PRD 85, 091107(R)(2012)]

► Recently, BESIII also gave the upper limit of $B(D^0 \rightarrow \gamma \gamma) < 3.8 \times 10^{-6}$ at 90% C.L.. based on 2.92 fb⁻¹ [M. Ablikim *et al.* PRD 91, 112015(2015)]

Flavor-changing neutral current $D^0 \rightarrow \gamma \gamma$

- > In 2016, Belle reported a search for $D^0 \rightarrow \gamma \gamma$ based on a data sample of 832fb⁻¹ [N. K. Nisar *et al.* PRD 93, 051102(R) (2016)]
 - Tagged $D^{*+} \rightarrow D^0 \pi^+$
 - Normalized to $D^0 o K^0_S \pi^0$
 - Main bkg.:
 - Peaking: $D^0 o \pi^0 \pi^0$, $\eta \pi^0$, $\eta \eta$; $P(\pi^0) < 0.15$
 - QED: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^-\gamma$; N>4, T(ECL)<2 μs
 - Combinatorial: $E_{\gamma 2} > 900 \text{MeV}, P^*(D^*) > 2.9 \text{GeV/c}$
- > an unbinned extended maximum likelihood 2D fit to $M(\gamma\gamma)$ and $\Delta M. (\Delta M = M(D^*) - M(D^0))$

$$B(D^0
ightarrow \gamma \gamma) < 8.5 imes 10^{-7}$$
 at 90% C.L.

Flavor-changing neutral current $D^0 \rightarrow \gamma \gamma$

- \succ This is the most restrictive limit on $D^0 \rightarrow \gamma \gamma$ decay to date
- > Can be used to constrain NP parameter spaces
- This FCNC decay will be probed further at the next-generation Belle II

Flavor-changing neutral current $D^0 \rightarrow l^+ l^-$

- ➢ In SM, the FCNC decays of $D^0 → l^+ l^-$ are highly suppressed by GIM, $B ~ 10^{-13}$ included in long-range contributions
- The LFV decays are forbidden in the SM; in extensions of the SM, B ~ 10⁻¹⁴; all these below the current experimental sensitivity
- > In certain NP scenarios, FCNC decays can be enhanced by many orders. e.g. some models increase $B(D^0 \to \mu^+ \mu^-)$ to 10^{-8} and $B(D^0 \to e^+ e^-)$ to 10^{-12}
- Searching for the FCNC and LFV decays in the charm sector is a potential way to test the SM and explore NP
- In 2004, BABAR reported on a search for FCNC decays $D^0 → l^+l^-$ based on 122 fb⁻¹ data, set the upper limit on $B(D^0 → e^+e^-) < 1.2 \times 10^{-6}$, $B(D^0 → \mu^+\mu^-) < 1.3 \times 10^{-6}$, $B(D^0 → e^\pm\mu^\mp) < 8.1 \times 10^{-7}$ at 90% C.L. [B. Aubert et al. PRL 93 191801(2004)]

Flavor-changing neutral current $D^0 \rightarrow l^+ l^-$

- > In 2010, Belle reported a search for FCNC of $D^0 \rightarrow \mu^+\mu^-$, $D^0 \rightarrow e^+e^-$, and LFV $D^0 \rightarrow e^\pm\mu^\mp$ using 660fb⁻¹ data [M. Petric` et al. PRD 81, 091102(R)(2010)]
 - Tagged $D^{*+} o D^0 \pi^+$
 - $P^*(D^*) > 2.5 \text{GeV/c}$
 - Main bkg.
 - Source : semileptonic B decays (80%) and D⁰ decays (10%)
 - M distribution: smooth bkg and peaking bkg. from $D^0 o \pi^+\pi^-$
 - Normalized to $D^0 o \pi^+\pi^-$
 - To avoid biases, a blind analysis is used

 $B(D^{0} \to \mu^{+}\mu^{-}) < 1.4 \times 10^{-7}@90\%$ C. L. $B(D^{0} \to e^{+}e^{-}) < 7.9 \times 10^{-8}@90\%$ C. L. $B(D^{0} \to e^{\pm}\mu^{\mp}) < 2.6 \times 10^{-7}@90\%$ C. L.

 $B(D^0 o \mu^+ \mu^-) < 6.2 imes 10^{-9}@90\%$ C. L. < 7. 6 $imes 10^{-9}@95\%$ C. L. @LHCb [R. Aaij *et al.* PLB 725, 15(2013)]

D^0 decays to invisible final states

- > In SM, heavy (D or B) meson to $\nu\overline{\nu}$ is suppressed $\sim 10^{-30}$, beyond the reach of current experiments.
- Non-SM mechanisms (D decays to DM) enhance the order ~10⁻¹⁵
- Indirect detection of DM: One of the D or B mesons is fully reconstructed, and then energy-momentum conservation is used to search for the other D meson into invisible final states.
- Use the charm tagger method to select an inclusive D⁰ sample

$$e^+e^- \to c\bar{c} \to D_{tag}^{(*)} X_{frag} \overline{D}^* \bar{sig}$$
 with $\overline{D}_{sig}^{*-} \to \overline{D}_{sig}^0 \pi^-$

 $X_{\rm frag}$ fragmentation system with light unflavored mesons

Any clear signal would be an indication for new physics.

2017/9/23

D^0 decays to invisible final states

- In 2017, Belle reported the first search for D⁰ decays to invisible final states based on a data sample of 924 fb⁻¹ [Y.-T. Lai *et al.* PRD 95 011102(R) (2017)]
 - *D*_{tag}: four type, 23 decay modes *D*^{*}_{tag}: five decay modes *X*_{frag}: $n\pi(K^+K^-)$ for $D^{(*)0,\pm}$, $n\pi\overline{p}$ for Λ^+_C , $n\pi(K^-/K^0_S)$ for $D^{(*)+}_S$ *D*^{*-}_{sig}: by $M^{rec}(D^{(*)}_{tag}X_{frag})$ in [1.86, 2.16] *P*^{*} ($D^{(*)}_{tag}X_{frag}\pi^-_s$) > 2.0GeV/c *M*^{rec}($D^{(*)}_{tag}X_{frag}$) imposed 1C fit

Inclusive D⁰ yield is extracted from 1D maximum likelihood fit, obtain 694667⁺¹⁴⁹⁴₋₁₅₆₃ inclusive D⁰ events

D^0 decays to invisible final states

- > Invisible D^0 decays are identified by requiring no remaining final-state particles with \overline{D}_{sig}^0
- \succ Residual energy in the ECL is also used, the sum of E against $D_{tag}^{(*)}X_{frag}\pi_s^-$
- \succ invisible D^0 is extracted by a 2D fit
- No significant signal yield is found
- ➢ Fitted signal yield of D^0 →invisible is -6. 3^{+22.5}_{-21.0}, consistent with zero.

 $B(D^0 \rightarrow \text{invisible}) < 9.4 \times 10^{-5} @90\%$ C. L.

Further improvement in this measurement may be possible in the near future Belle II.

2017/9/23

Summary (I)

> Firstly, we reviewed measurement of $D^0 - V\gamma$ at Belle

 $B(D^0 \to \phi \gamma) = [2.76 \pm 0.19(\text{stat}) \pm 0.10(\text{syst})] \times 10^{-5}$

 $B(D^0 \to \rho^0 \gamma) = [1.77 \pm 0.30(\text{stat}) \pm 0.07(\text{syst})] \times 10^{-5}$

 $B(D^0 \rightarrow \overline{K}^{*0}\gamma) = [4.66 \pm 0.21(\text{stat}) \pm 0.21(\text{syst})] \times 10^{-4}$

- > Secondly, we reviewed CP Violation in $D^0 \rightarrow V\gamma$ at Belle, the results are consistent with no CP violation
- ► Thirdly, we reviewed FCNC decays $D^0 \to \gamma \gamma$ and $D^0 \to l^+ l^-$ at Belle $B(D^0 \to \gamma \gamma) < 8.5 \times 10^{-7} @90\%$ C.L. $B(D^0 \to \mu^+ \mu^-) < 1.4 \times 10^{-7} @90\%$ C.L. $< 6.2 \times 10^{-9} @90\%$ C.L. $B(D^0 \to e^+ e^-) < 7.9 \times 10^{-8} @90\%$ C.L. $B(D^0 \to e^\pm \mu^\mp) < 2.6 \times 10^{-7} @90\%$ C.L.

> Finally, we reviewed D^0 invisible decay at Belle

 $B(D^0 \rightarrow \text{invisible}) < 9.4 \times 10^{-5} @90\%$ C. L.

2017/9/23

Summary (II)

Upper limits on the branching fractions of rare D^0 decays from <u>HFLAV</u>

2017/9/23

Thank you for your attention!