

Test of lepton flavor universality in the semileptonic B decays at LHCb

Huang Wenqian (for the LHCb collaboration)

University of Chinese Academy of Sciences (UCAS)

Outline

1. Introduction.

2.
$$\mathcal{R}(D^*)$$
 with $\frac{\mathcal{B}(B^0 \to D^{*-}\tau^+ v_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\mu^+ v_{\mu})}, \tau^+ \to \mu^+ \overline{v}_{\tau} v_{\mu}$
3. $\mathcal{R}(J/\psi)$ with $\frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+ v_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi\mu^+ v_{\mu})}, \tau^+ \to \mu^+ \overline{v}_{\tau} v_{\mu}$
4. $\mathcal{R}(D^*)$ with $\frac{\mathcal{B}(B^0 \to D^{*-}\tau^+ v_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\mu^+ v_{\mu})}, \tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \overline{v}_{\tau}$

5. Prospect, Conclusion.

arXiv:1703.01766v3

Lepton flavor universality

- In SM, electroweak couplings to gauge bosons are trivially equal for leptons.
 - Amplitudes involving leptons differs from their masses and helicities.

$$\mathcal{H}_{eff} = \frac{4}{\sqrt{2}} V_{cb} \overline{c} \gamma_{\mu} P_L b \times G_F \sum_{l=e,\mu,\tau} (\overline{l} \gamma^{\mu} P_L v_l) + \text{h.c.}$$

- New physics may have increased coupling to heavier fermions.
 - Semileptonic decays $b \rightarrow c\tau v$ are sensitive to exotic particles.

LFU test on other systems

• Searches on lepton universality on different systems for years.

•
$$J/\psi \to ll, \tau \to l\nu\overline{\nu}, \pi \to l\nu, K \to \pi l\nu, \dots$$

- More tests involve the 1st and 2nd quark and lepton generations.
 - $m > m(\tau)$ to allow taunic decay: Z^0, W^{\pm}, H^0, b .

In order to test lepton universality in Z decays quantitatively, the ratios of the leptonic partial widths or equivalently the ratios of the leptonic branching fractions are calculated. The results are:

$$\frac{\Gamma_{\mu\mu}}{\Gamma_{ee}} = \frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} = 1.0009 \pm 0.0028,$$
(7.4)
$$\frac{\Gamma_{\tau\tau}}{B(Z \to \tau^+ \tau^-)} = 1.0019 \pm 0.0032$$
(7.5)

$$\frac{\alpha}{\Gamma_{ee}} = \frac{10019 \pm 0.0032}{B(Z \to e^+e^-)} = 1.0019 \pm 0.0032$$
(7.5)

with a correlation of +0.63. In both cases, good agreement with lepton universality is observed. Assuming lepton universality, τ mass effects are expected to decrease $\Gamma_{\tau\tau}$ and $B(Z \rightarrow \tau^+ \tau^-)$ as quoted here by 0.23% relative to the light lepton species e and μ .

PR 427(2006)257-454

LFU test on W bosons

W Leptonic Branching Ratios

LFU test on on-shell W bosons:

$$\frac{\mathcal{B}(W \to \mu \overline{\nu}_{\mu})}{\mathcal{B}(W \to e \overline{\nu}_{e})} = 0.993 \pm 0.019$$

$$\frac{\mathcal{B}(W \to e \overline{\nu}_{e})}{\mathcal{B}(W \to e \overline{\nu}_{e})} = 1.063 \pm 0.027$$

$$\frac{\mathcal{B}(W \to e \overline{\nu}_{e})}{\mathcal{B}(W \to \mu \overline{\nu}_{\mu})} = 1.070 \pm 0.026$$

$$2\sigma$$

Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

LFU test on B mesons

Exp.	Channel	au reconstruction	Deviation from SM
BaBar 2012	$\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}l\bar{\nu}_{l})$	$ au o l u ar{ u}$	$+3.4\sigma$
Belle 2015	$\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{(*)}l\bar{\nu}_{l})$	$ au o l u ar{ u}$	$+1.8\sigma$
LHCb 2015	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$	$\tau ightarrow \mu \nu \bar{\nu}$	$+2.1\sigma$
Belle 2016	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B} \left(\bar{B}^0 \to D^{*+} l^- \bar{\nu}_l \right)$	$ au o l u ar{ u}$	$+1.6\sigma$
Belle 2017.5	$\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}) / \mathcal{B} (\bar{B} \to D^* l^- \bar{\nu}_l)$	$ au^- o \pi^- u_ au, ho^- u_ au$	<1 <i>o</i>
LHCb 2017.8	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$	$\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu$	$+1.0\sigma$ 6

Semileptonic B decay in LHCb: Difficulties LHCb2015 Muonic decay: $\overline{B}^0 \to D^{*+}\tau^- \overline{v}_{\tau}, \tau^- \to \mu^- v_{\tau} \overline{v}_{\mu}$ LHCb2017 Muonic decay: $B_c^+ \to J/\psi \tau^+ \overline{v}_{\tau}, \tau^+ \to \mu^+ \overline{v}_{\tau} v_{\mu}$ LHCb2017 Hadronic decay: $\overline{B}^0 \to D^{*+}\tau^- \overline{v}_{\tau}, \tau^- \to \pi^- \pi^+ \pi^- v_{\tau}$

Difficulties:

- No center mass constrain, no tag side, neutrinos.
 - Partial rec. mass peak washed out.
- Main background: partial reconstructed B decays.
 - $B \rightarrow D^{**} l v$ as D^* side background.
 - $B \to D^* D_{(s)}^{(\pm 0^*)}$ as τ side background.

Keys: LHCb detector

- Exellent vertexing and tracking
 - Prime vertex & secondary vertex separation
 - decay time, length, angle...
- High efficiency for muon, D trigger.

Analysis methods for LFU test

Solution:

• Precise secondary vertex reconstruction and correction.

- Soft π for D*, $\pi^-\pi^+\pi^-$ for τ decay vertex.

• B flight direction \rightarrow approximation to rest frame kinematics.

$$\frac{(p_B)_z}{m_B} \simeq \frac{(p_{visible})_z}{m_{visible}} \rightarrow |p_B| = (p_B)_z \sqrt{1 + \tan^2 \alpha}$$

- Isolation method for reconstructed candidates.
 - Signal hadrons are isolated, BGs' are not.

$R(D^*)$ with tau leptonic decay

Phys. Rev. Lett. 115, 111803 (2015)

$R(D^*)$ with tau leptonic decay

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}, \begin{cases} \tau^- \to \mu^- \nu_{\tau} \overline{\nu}_{\mu} \\ D^{*+} \to D^0 \pi^+ \\ D^0 \to K^- \pi^+ \end{cases}$$

- Theoretically clean due to cancellation of form factor uncertainties.
- Large, well measured BF
 - $\mathcal{B}(\tau^+ \to \mu^+ \bar{\nu}_\tau \nu_\mu) = (17.41 \pm 0.04)\%$
- Three dimensional template fit: in B rest frame
 - Muon energy. E_{μ}^{*}
 - Missing mass square. $m_{miss}^2 = (p_B^{\mu} - p_{D^*}^{\mu} - p_l^{\mu})^2$
 - Transferred 4-momentum square. $q^2 = (p_B^{\mu} - p_{D^*}^{\mu})^2$

Phys. Rev. Lett. 115, 111803 (2015)

$R(D^*)$ with tau leptonic decay

Leptonic $R(D^*)$ 3D fit result: small q^2

Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

Leptonic $R(D^*)$ 3D fit result: large q^2

Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

$R(D^*)$ - leptonic tau result

- Using LHC 3.0fb⁻¹ data in 2011 & 2012 @ 7TeV & 8TeV
- $\mathcal{R}(D^*) = 0.336 \pm 0.027 (\text{stat}) \pm 0.030 (\text{syst}), 2.1 \sigma$ larger than prediction.

$R(J/\psi)$ with tau leptonic decay

LHCb-PAPER-2017-035, submitted to PRL.

$R(J/\psi)$ with tau leptonic decay

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}, \begin{cases} \tau^+ \to \mu^+\overline{\nu}_{\tau}\nu_{\mu} \\ J/\psi \to \mu\mu \end{cases}$$

- Same methods as $R(D^*)$
- Bc decay time $\tau(B_c) < \tau(B_{u,d,s})$

Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

$R(J/\psi)$ with tau leptonic decay

- Using LHC 3.0fb⁻¹ data in 2011 & 2012 @ 7TeV & 8TeV.
- Evidence for $B_c^+ \to J/\psi \tau^+ v_\tau$ at a significance of 3σ .
- $\mathcal{R}(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst}),$

 2σ higher than prediction under SM framework: 0.25~0.28.

$R(D^*)$ with tau hadronic decay

arXiv:1708.08856v1, submitted to PRL $R(D^*)$ with tau hadronic decay

- $B \rightarrow D^* 3\pi$ as normalization channel, rest with high precision.
- With a detached 3π vertex cut,
- $D3\pi$ restrained(10³ suppression),
- 35% signal efficiency,
- double charm remaining.

R(*D**) with tau hadronic decay double charm rejection

- $X_b \to D^{*-}D^0X : 0.2 \times \text{signal}$ $X_b \to D^{*-}D^+X : 1 \times \text{signal}$ $X_b \to D^{*-}D_s^+X : 10 \times \text{signal}$
- The BG leads to nice mass peak and not the signal
- Train a BDT with variables sensitive to
 - Additional neutral energy
 - Different resonant structure of 3π system.

Joint Workshop on Charm Hadron Decays @ BESIII, BELLE, LHCb

Hadronic $R(D^*)$ 3D fit result

$R(D^*)$ hadronic tau result

Using LHC 3.0fb⁻¹ data in 2011 & 2012 @ 7TeV & 8TeV.

2σ

0.5

EPCP 2017

 $P(\chi^2) = 71.6^{\circ}$

0.6

R(D)

0.3 F

0.25 F

0.2

2017/9/23

0.2

0.3

0.4

 $\frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ v_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \pi^- \pi^+ \pi^-)} = 1.93 \pm 0.13_{stat} \pm 0.17_{syst}$ $R(D^{*-}) = 0.285 \pm 0.019_{stat} \pm 0.025_{syst} \pm 0.13_{ext}, 1.0\sigma$ higher than prediction. World average $R(D^*)=0.304\pm0.015$, BaBar had, tag 3.4σ above prediction. $0.332 \pm 0.024 \pm 0.018$ Belle had. tag R(D) and $R(D^*)$ give 4.1 σ above $0.293 \pm 0.038 \pm 0.015$ Belle sl.tag prediction. $0.302 \pm 0.030 \pm 0.011$ Belle (hadronic tau) R(D*) $0.270 \pm 0.035 \pm 0.027$ 0.5 $\Delta \chi^2 = 1.0$ contours PRD92.072014(2015) LHCb LHCb, PRL115,111803(2015) SM Predictions $0.336 \pm 0.027 \pm 0.030$ Belle, PRD94,072007(2016) 0.45 R(D)=0.300(8) HPQCD (2015) Belle, PRL118,211801(2017) LHCb (hadronic tau) LHCb, FPCP2017 R(D)=0.299(11) FNAL/MILC (2015) Average R(D*)=0.252(3) S. Fajfer et al. (2012) 0.4 $0.285 \pm 0.019 \pm 0.029$ Average 0.35 F $0.304 \pm 0.013 \pm 0.007$

S. Fajfer et al. (2012)

0.2

0.3

 0.252 ± 0.003

HFLA

0.4 *) ²⁴

Prospect & cooperation

More precise branch ratio

• $D_s \rightarrow 3\pi X$ has large BR(~25%)

$$D_s \rightarrow (\eta / \eta' / \phi/\omega)(\pi/\rho)X$$

 $(K^0\eta\eta'\omega...)3\pi$

- We do not have precise BR for all of these.
- $D^+ \rightarrow K3\pi\pi^0$ is poorly known, the inclusive BR not measured.
- For all these D decays, contacts have been established with BESIII collaboration to measure these numbers.

Other LFU SL researches in LHCb

Conclusion

- Semileptonic B decays are good probe to new physics:
 High SM precision, high rate and high sensitivity
- Due to LHCb excellent vertex reconstruction capabilities, LFU test on $\mathcal{R}(D^*), \mathcal{R}(J/\psi)$, with τ leptonic and hadronic decay.
- World average exceed prediction by 3.4σ and 2σ deviation in $\mathcal{R}(D^*)$ and $\mathcal{R}(J/\psi)$.
- We need more knowledge on Ds, D⁰, D⁺ to $3\pi X$ decays, and LHCb run II data, to have more preciously measurement.

University of Chinese Academy of Sciences

Thank you !