半轻粲味介子衰变
 王 伟

上海交通大学

2017年9月24日 南开大学
BESIII－BELLE－LHCb粲强子物理联合研讨会

BESIII

LHCb

2. Semi-leptonic decays

Key point is to calculate form factors
First try in the light-front quark model
Wei Wang, Fu-Sheng Yu, Zhen-Xing Zhao

From Prof. Lu's slides 2016年4月21－23日，中国武汉

LHCb

Weak Decays of Doubly Heavy Baryon : $\equiv^{0}{ }_{b c} \rightarrow \mathrm{pK}^{-}$and $\Xi^{+}{ }_{\mathrm{cc}} \rightarrow \Sigma_{+++} \mathrm{K}^{-}$ R.H. Li, C.D.Lu, W.Wang, F.S.Yu, Z.T. Zou

Weak Decays of Doubly Heavy Baryon :
the sequel
> Spectroscopy
$>$ decay constant
$>$ lifetime
$>S U(3)$ Analysis
$>1 / 2 \rightarrow 1 / 2$ case
$>$ FCNC channels
> $1 / 2 \rightarrow 3 / 2$ case
$>$ Light quark decay

Observation of the doubly charmed baryon $\boldsymbol{\Xi}_{c c}^{++}$

LHCb collaboration ${ }^{\dagger}$

Phys.Rev.Lett.
119, 112001 (2017)

Abstract

A highly significant structure is observed in the $\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$mass spectrum, where the Λ_{c}^{+}baryon is reconstructed in the decay mode $p K^{-} \pi^{+}$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon $\Xi_{c c}^{++}$. The mass, measured relative to that of the Λ_{c}^{+}baryon, is found to be 3621.40 ± 0.72 (stat) ± 0.27 (syst) $\pm 0.14\left(\Lambda_{c}^{+}\right) \mathrm{MeV} / c^{2}$, where the last uncertainty is due to the limited knowledge of the Λ_{c}^{+}mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of $1.7 \mathrm{fb}^{-1}$, and confirmed in an additional sample of data collected at 8 TeV .

shanghal jlao tong uning

Weak Decays of Doubly Heavy Baryon: $\Xi^{0}{ }_{\mathrm{bc}} \rightarrow \mathrm{pK}$ - and $\Xi^{+}{ }_{\mathrm{cc}} \rightarrow \Sigma_{++\mathrm{c}} \mathrm{K}^{-}$
R.H. Li, C.D.Lu, W.Wang, F.S.Yu, Z.T. Zou

Weak Decays of Doubly Heavy Baryons: the $1 / 2 \rightarrow 1 / 2$ case
Weak Decays of Doubly Heavy Baryons: the SU(3) Analysis

Weak Decays of Doubly Heavy Baryons: decay constant

Weak Decays of Doubly Heavy Baryons: lifetime
Weak Decays of Doubly Heavy Baryons: the FCNC channels
Weak Decays of Doubly Heavy Baryons: the $1 / 2 \rightarrow 3 / 2$ case

Quark-diquark picture
1707,02834,W.Wang, F.S.Yu, Z.X. Zhao

形状因子的计算

$$
\begin{aligned}
&\left\langle B^{\prime}\left(P^{\prime}, S_{z}^{\prime}\right)\right|(V-A)_{\mu}\left|B\left(P, S_{z}\right)\right\rangle= \int\left\{d^{3} p_{2}\right\} \frac{\phi^{\prime *}\left(x^{\prime}, k_{1}^{\prime}\right) \phi\left(x, k_{\perp}\right)}{\left.\sqrt{p_{1}^{+} p_{1}^{+}\left(p_{1} \cdot \bar{P}+m_{1} M_{0}\right)\left(p_{1}^{\prime} \cdot \bar{P}^{\prime}+m_{1}^{\prime} M_{0}^{\prime}\right.}\right)} \\
& \times \bar{u}\left(\bar{P}^{\prime}, S_{z}^{\prime}\right) \bar{\Gamma}^{\prime}\left(\varphi_{1}^{\prime}+m_{1}^{\prime}\right) \gamma_{\mu}\left(1-\gamma_{5}\right)\left(\phi_{1}+m_{1}\right) \Gamma u\left(\bar{P}, S_{z}\right) \\
& 1
\end{aligned}
$$

双粲重子的半轻衰变

channels	Γ / GeV	\mathcal{B}	Γ_{L} / Γ_{T}
$\Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} l^{+} \nu_{l}$	1.08×10^{-14}	4.93×10^{-3}	8.50
$\Xi_{c c}^{++} \rightarrow \Sigma_{c}^{+} l^{+} \nu_{l}$	9.88×10^{-15}	4.50×10^{-3}	1.27
$\Xi_{c c}^{++} \rightarrow \Xi_{c}^{+} l^{+} \nu_{l}$	1.18×10^{-13}	5.39×10^{-2}	9.98
$\Xi_{c c}^{++} \rightarrow \Xi_{c}^{\prime+} l^{+} \nu_{l}$	1.32×10^{-13}	6.01×10^{-2}	1.41
$\Xi_{c c}^{+} \rightarrow \Sigma_{c}^{0} l^{+} \nu_{l}$	1.97×10^{-14}	2.99×10^{-3}	1.27
$\Xi_{c c}^{+} \rightarrow \Xi_{c}^{0} l^{+} \nu_{l}$	1.17×10^{-13}	1.77×10^{-2}	9.98
$\Xi_{c c}^{+} \rightarrow \Xi_{c}^{\prime} l^{+} \nu_{l}$	1.31×10^{-13}	1.99×10^{-2}	1.42
$\Omega_{c c}^{+} \rightarrow \Xi_{c}^{0} l^{+} \nu_{l}$	5.42×10^{-15}	2.22×10^{-3}	9.14
$\Omega_{c c}^{+} \rightarrow \Xi_{c}^{\prime 0} l^{+} \nu_{l}$	6.07×10^{-15}	2.49×10^{-3}	1.34
$\Omega_{c c}^{+} \rightarrow \Omega_{c}^{0} l^{+} \nu_{l}$	1.62×10^{-13}	6.65×10^{-2}	1.46

D^{+}DECAY MODES

$$
\begin{aligned}
& \bar{K}^{0} e^{+} \nu_{e} \\
& \bar{K}^{0} \mu^{+} \nu_{\mu}
\end{aligned}
$$

（T）
color－favored tree

（E）
W－exchange

（C）
color－suppressed tree

（B）
Bow tie

（C＇）
color－commensurate

（P）
penquin

Weak Decays of Doubly Heavy Baryons：the SU（3）Analysis
W．Wang，J．Xu，Z．P．Xing， 1707.06570

SU(3)分析

$>$ Decays into a charmed baryon and a light meson
> Decays into a light octet baryon and a charmed meson
$>$ Decays into a light decuplet baryon and a charmed meson

SU（3）分析

宽度关系：

$$
\begin{array}{rlrl}
\Gamma\left(\Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} \pi^{+}\right)=\Gamma\left(\Xi_{c c}^{++} \rightarrow \Xi_{c}^{+} K^{+}\right), & \Gamma\left(\Xi_{c c}^{++} \rightarrow \Sigma_{c}^{++} \pi^{0}\right) & =\frac{1}{3} \Gamma\left(\Xi_{c c}^{++} \rightarrow \Sigma_{c}^{++} \eta\right) \\
\Gamma\left(\Xi_{c c}^{+} \rightarrow \Xi_{c}^{+} K^{0}\right)=\Gamma\left(\Omega_{c c}^{+} \rightarrow \Lambda_{c}^{+} \bar{K}^{0}\right), & \Gamma\left(\Xi_{c c}^{++} \rightarrow \Sigma_{c}^{+} \pi^{+}\right) & =\Gamma\left(\Xi_{c c}^{++} \rightarrow \Xi_{c}^{\prime+} K^{+}\right) \\
\Gamma\left(\Omega_{c c}^{+} \rightarrow \Xi_{c}^{0} \pi^{+}\right)=\Gamma\left(\Xi_{c c}^{+} \rightarrow \Xi_{c}^{0} K^{+}\right) . & \Gamma\left(\Xi_{c c}^{+} \rightarrow \Sigma_{c}^{++} \pi^{-}\right) & =\Gamma\left(\Omega_{c c}^{+} \rightarrow \Sigma_{c}^{++} K^{-}\right) \\
\Gamma\left(\Xi_{c c}^{+} \rightarrow \Sigma_{c}^{0} \pi^{+}\right) & =\Gamma\left(\Omega_{c c}^{+} \rightarrow \Omega_{c}^{0} K^{+}\right) \\
\Gamma\left(\Xi_{c c}^{+} \rightarrow \Xi_{c}^{\prime+} K^{0}\right) & =\Gamma\left(\Omega_{c c}^{+} \rightarrow \Sigma_{c}^{+} \bar{K}^{0}\right) \\
\Gamma\left(\Omega_{c c}^{+} \rightarrow \Xi_{c}^{\prime 0} \pi^{+}\right) & =\Gamma\left(\Xi_{c c}^{+} \rightarrow \Xi_{c}^{00} K^{+}\right)
\end{array}
$$

Global fit in future？

双重重子寿命

literature	$\Xi_{c c}^{++}$	$\Xi_{c c}^{+}$	$\Omega_{c c}^{+}$
Karliner，Rosner， 2014	185	53	
Kiselev，Likhoded， 1998	430 ± 100	110 ± 10	
Kiselev， Likhoded，2002	460 ± 50	160 ± 50	270 ± 60
Guberina，Melic， Stefancic，1998	1550	220	250
Chang，Li，Li， Wang，2007	670	250	210
	$\tau\left(\Xi_{c c}^{++}\right) \gg \tau\left(\Xi_{c c}^{+}\right) \sim \tau\left(\Omega_{c c}\right)$		

D－mesons

	$D^{0}=(\bar{u} c)$	$D^{+}=(\bar{d} c)$	$D_{s}^{+}=(\bar{s} c)$
Mass（GeV）	$1.86491(17)$	$1.8695(4)$	$1.9690(14)$
Lifetime（ps）	$0.4101(15)$	$1.040(7)$	$0.500(7)$
$\tau(X) / \tau\left(D^{0}\right)$	1	2.536 ± 0.017	1.219 ± 0.017

$$
\begin{aligned}
& {\frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}}^{\mathrm{HQE} 2013}=2.2 \pm 0.4^{\text {(hadronic) }_{-0.07}^{+0.03(\text { scale })}} \\
& \frac{\tau\left(D_{s}^{+}\right)}{\tau\left(D^{0}\right)}
\end{aligned}
$$

A．Lenz，T．Rauh， 1305.3588

双重重子寿命的计算

－算符展开

$$
\hat{T}=\mathrm{T}\left[i H_{e f f}(x), H_{e f f}(0)\right]
$$

$$
\Gamma\left(H_{Q} \rightarrow X\right)=\frac{1}{2 m_{H_{Q}}} \operatorname{Im} \int d^{4} x\left\langle H_{Q}\right| \hat{T}\left|H_{Q}\right\rangle=\frac{1}{2 m_{H_{Q}}}\left\langle H_{Q}\right| \hat{\Gamma}\left|H_{Q}\right\rangle,
$$

$$
\Gamma_{c}=\frac{G_{F}^{2} m_{c}^{5}}{192 \pi^{3}}\left|V_{c s}\right|^{2} c_{3, c}
$$

半轻D介子衰变

$$
>\mathrm{D}->\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{lv}
$$

＞Why $\mathrm{D}->\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{Iv}$ ？
＞Theoretical Analysis

D－＞PI v \＆D－＞VI v

－Hadronic current $\left(q^{2}=\left(p_{\ell}+p_{\bar{\nu}_{\ell}}\right)^{2}\right)$ in case of D decays to pseudoscalar meson

$$
\left\langle P\left(p_{f}\right)\right| V^{\mu}\left|D\left(p_{i}\right)\right\rangle=
$$

$$
f_{+}\left(q^{2}\right)\left(\left(p_{i}+p_{f}\right)^{\mu}-\frac{m_{D}^{2}-m_{P}^{2}}{q^{2}}\left(p_{i}-p_{f}\right)^{\mu}\right)+f_{0}\left(q^{2}\right) \frac{m_{D}^{2}-m_{P}^{2}}{q^{2}}\left(p_{i}-p_{f}\right)^{\mu}
$$

－$f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ are form factors
－neglecting the lepton mass only one form factor contributes

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}}\left|V_{c q}\right|^{2}\left|p_{P}\left(q^{2}\right)\right|^{3} f_{+}^{P}\left(q^{2}\right)
$$

见刘朝峰报告
－Extract CKM matrix elements and test of LQCD calculations

$\mathrm{D}->\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{lv}$

$\bar{K}^{0} e^{+} \nu_{e}$
$\bar{K}^{0} \mu^{+} \nu_{\mu}$
$K^{-} \pi^{+} e^{+} \nu_{e}$
$\bar{K}^{*}(892)^{0} e^{+} \nu_{e}, \bar{K}^{*}(892)^{0} \rightarrow$
$K^{-} \pi^{+}$
$\left(K^{-} \pi^{+}\right) S_{- \text {wave }} e^{+} \nu_{e}$
$K^{*}(1410)^{0} e^{+} \nu_{e}$,
$\overline{K^{*}}(1410)^{0} \rightarrow K^{-} \pi^{+}$
$\bar{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}$,
$\overline{K_{2}^{*}}(1430)^{0} \rightarrow K^{-} \pi^{+}$
$K^{-} \pi^{+} e^{+} \nu_{e}$ nonresonant
$K^{-} \pi^{+} \mu^{+} \nu_{\mu}$
$\bar{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$,
$\bar{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+}$
$K^{-} \pi^{+} \mu^{+} \nu_{\mu}$ nonresonant
$K^{-} \pi^{+} \pi^{0} \mu^{+} \nu_{\mu}$
$\pi^{0} e^{+} \nu_{e}$
$\eta e^{+} \nu_{e}$
$\rho^{0} e^{+} \nu_{e}$
$\rho^{0} \mu^{+} \nu_{\mu}$
$\omega e^{+} \nu_{e}$
$\eta^{\prime}(958) e^{+} \nu_{e}$
$\phi e^{+} \nu_{e}$

（ 8．90 ± 0.15 ）\％		869
（ $9.3 \pm 0.7) \%$		865
（ 3．91土 0．11）\％		864
（ 3．68土 0．10）\％		722
$(2.26 \pm 0.11) \times 10^{-3}$		－
$<6 \times 10^{-3}$	CL＝90\％	－
$<5 \times 10^{-4}$	CL＝90\％	－
$<7 \times 10^{-3}$	CL＝90\％	864
（ 3.9 ± 0.4 ）\％		851
（ 3．52土 0．10）\％		717
$(2.1 \pm 0.5) \times 10^{-3}$		851
$<1.6 \times 10^{-3}$	CL＝90\％	825
$(4.05 \pm 0.18) \times 10^{-3}$		930
$(1.14 \pm 0.10) \times 10^{-3}$		855
$(2.18-0.17) \times 10^{-3}$		774
$(2.4 \pm 0.4) \times 10^{-3}$		770
$(1.69 \pm 0.11) \times 10^{-3}$		771
$(2.2 \pm 0.5) \times 10^{-4}$		689
$<1.3 \times 10^{-5}$	CL＝90\％	657

$$
\begin{aligned}
H= & \text { D.P.P. } \lambda_{p}+D . \lambda_{p} \times \operatorname{Tr}[P . P] \\
& \mathrm{c}->\mathrm{d}: 16 \\
\mathrm{c}->\mathrm{S}: & 14
\end{aligned}
$$

Scalar Mesons: Two nonets

标量粒子：四夸克vs分子态

如何区分两，四夸克态？

Scalar Mesons: Two nonets

$$
\begin{aligned}
&\left|f_{0}(600)\right\rangle= \frac{1}{\sqrt{2}}(|\bar{u} u\rangle+|\bar{d} d\rangle) \equiv|\bar{n} n\rangle, \\
&\left|f_{0}(980)\right\rangle=|\bar{s} s\rangle, \quad\left|a_{0}^{0}(980)\right\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle-|\bar{d} d\rangle), \\
&\left|a_{0}^{-}(980)\right\rangle=|\bar{u} d\rangle, \quad\left|a_{0}^{+}(980)\right\rangle=|\bar{d} u\rangle . \\
&\left|f_{0}\right\rangle=|\bar{s} s\rangle \cos \theta+|\bar{n} n\rangle \sin \theta, \\
&|\sigma\rangle=-|\bar{s} s\rangle \sin \theta+|\bar{n} n\rangle \cos \theta .
\end{aligned}
$$

Lu, WW, PRD82, 034016 (201

$$
\hat{\mathcal{A}} \equiv \mathcal{A}\left(D^{+} \rightarrow a_{0}^{0} \mathrm{l}^{+} \nu\right) .
$$

$$
\begin{aligned}
\mathcal{A}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right) & =-\sin \theta \hat{\mathcal{A}}, \\
\mathcal{A}\left(D^{+} \rightarrow \sigma l^{+} \nu\right) & =-\cos \theta \hat{\mathcal{A}},
\end{aligned}
$$

$$
\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)=\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)
$$

Scalar Mesons: Two nonets

$$
\begin{aligned}
|\sigma\rangle & =\bar{u} u \bar{d} d, \quad\left|f_{0}\right\rangle=|\bar{n} n \bar{s} s\rangle, \\
\left|a_{0}^{0}\right\rangle & =\frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d) \bar{s} s, \\
\left|a_{0}^{+}\right\rangle & =|\bar{d} u \bar{s} s\rangle, \quad\left|a_{0}^{-}\right\rangle=|\bar{u} d \bar{d} s\rangle . \\
\left|\kappa^{+}\right\rangle & =|\bar{s} u \bar{d} d\rangle, \quad\left|\kappa^{0}\right\rangle=|\bar{s} d \bar{u} u\rangle, \\
\left|\bar{\kappa}^{0}\right\rangle & =|\bar{d} s \bar{u} u\rangle, \quad\left|\kappa^{-}\right\rangle=|\bar{u} s \bar{d} d\rangle .
\end{aligned}
$$

$$
\left|f_{0}\right\rangle=|\bar{n} n \bar{s} s\rangle \cos \phi+|\bar{u} u \bar{d} d\rangle \sin \phi
$$

$$
|\sigma\rangle=-|\bar{n} n \bar{s} s\rangle \sin \phi+|\bar{u} u \bar{d} d\rangle \cos \phi,
$$

$$
\hat{\mathcal{A}} \equiv \mathcal{A}\left(D^{+} \rightarrow a_{0}^{0} \partial^{+} \nu\right) .
$$

$$
\begin{aligned}
\mathcal{A}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right) & =-(\cos \phi+\sqrt{2} \sin \phi) \hat{\mathcal{A}}, \\
\mathcal{A}\left(D^{+} \rightarrow \sigma l^{+} \nu\right) & =(\sin \phi-\sqrt{2} \cos \phi) \hat{\mathcal{A}},
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)=\frac{1}{2}\left[\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)\right] . \\
R= & \frac{\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)}{\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)}=\left\{\begin{array}{l}
1 \text { two quark } \\
3 \text { tetra-quark }
\end{array}\right.
\end{aligned}
$$

分子态：Scalar form factors in χ PT

分子态： $\mathrm{D} \rightarrow \pi^{+} \pi^{-} \mathrm{ev}$

Red：P－wave
Blue：S－wave
Black：Total

Y．J．Shi，WW，S．Zhao 1701.07571

如何区分标量粒子态： $\mathrm{D} \rightarrow \pi^{+} \pi^{-} \mathrm{ev}$

分子态模型：
Red：P－wave Blue：S－wave Black：Total

The S－wave branching fraction for $2 m_{\pi}<m_{\pi \pi}<1.0 \mathrm{GeV}$ is given as

$$
\begin{aligned}
& \mathcal{B}\left(D^{-} \rightarrow\left(\pi^{+} \pi^{-}\right)_{S} e^{-} \bar{\nu}\right)=(6.99 \pm 2.46) \times 10^{-4}, \\
& \mathcal{B}\left(D^{-} \rightarrow\left(\pi^{+} \pi^{-}\right)_{S} \mu^{-} \bar{\nu}\right)=(7.20 \pm 2.52) \times 10^{-4} .
\end{aligned}
$$

Y．J．Shi，WW，S．Zhao 1701．07571

$$
R=\frac{\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)}{\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)}=\left\{\begin{array}{l}
1 \text { two quark } \\
3 \text { tetra-quark }
\end{array} .\right.
$$

角分布与散射相移

$$
\begin{aligned}
d^{5} \Gamma= & \frac{G_{F}^{2}\left\|V_{c s}\right\|^{2}}{(4 \pi)^{6} m_{D}^{3}} X \beta I\left(m^{2}, q^{2}, \theta_{K}, \theta_{e}, \chi\right) \\
& \times d m^{2} d q^{2} d \cos \left(\theta_{K}\right) d \cos \left(\theta_{e}\right) d \chi
\end{aligned}
$$

C．L．Y．Lee，M．Lu，and M．B．Wise，Phys．Rev．D 46， 5040 （1992）．

角分布与散射相移

$$
\begin{align*}
& \frac{d^{3} \Gamma}{d q^{2} d m_{K \pi}^{2} d \cos \theta_{K}}=\frac{1}{8}\left\{\left(4+2 \hat{m}_{l}^{2}\right)\left|A_{0}^{0}\right|^{2}+6 \hat{m}_{l}^{2}\left|A_{t}^{0}\right|^{2}\right. \\
&+\sqrt{3}\left(8+4 \hat{m}_{l}^{2}\right) \cos \theta_{K} \operatorname{Re}\left[A_{0}^{0} A_{0}^{1 *}\right]+12 \sqrt{3} \hat{m}_{l}^{2} \cos \theta_{K} \operatorname{Re}\left[A_{t}^{0} A_{t}^{1 *}\right] \\
&+\left(12+6 \hat{m}_{l}^{2}\right)\left|A_{0}^{1}\right|^{2} \cos ^{2} \theta_{K}+18 \hat{m}_{l}^{2} \cos ^{2} \theta_{K}\left|A_{t}^{1}\right|^{2} \\
&\left.+\left(6+3 \hat{m}_{l}^{2}\right) \sin ^{2} \theta_{K}\left(\left|A_{\perp}^{1}\right|^{2}+\left|A_{\|}^{1}\right|^{2}\right)\right\} \tag{4.23}
\end{align*}
$$

$$
\begin{aligned}
A_{F B}^{K} & \equiv\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta_{K} \frac{d^{3} \Gamma}{d q^{2} d m_{K \pi}^{2} d \cos \theta_{K}} \\
& =\frac{\sqrt{3}}{2}\left(2+\hat{m}_{l}^{2}\right) \operatorname{Re}\left[A_{0}^{0} A_{0}^{1 *}\right]+\frac{3 \sqrt{3}}{2} \hat{m}_{l}^{2} \operatorname{Re}\left[A_{t}^{0} A_{t}^{1 *}\right] .
\end{aligned}
$$

角分布与散射相移

FIG． 2 （color online）．（a）Comparison between the S－wave phase measured in various experiments analyzing the $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$ channel（E791［6］，FOCUS［7，8］，and CLEO［9］）and a fit to LASS data（continuous line）．The dashed line corresponds to the extrapolation of the fitted curve．Phase measurements from D^{+}decays are shifted to be equal to zero at $m_{K \pi}=0.67 \mathrm{GeV} / c^{2}$ ．（b）The S－wave amplitude magnitude measured in various experiments is compared with the elastic expression．Normalization is arbitrary between the various distributions．

BaBar：Phys．Rev．D83（2011） 072001

角分布与散射相移

Points with error bars by BESIII the solid line corresponds to LASS parameterization

角分布与散射相移

BESIII，1512．08627

Points with error bars by BESIII
the solid line corresponds to LASS parameterization

Chiral PT：
Doring，Meissner， WW，1307．0947
1∇

50：1

Expected data set increase and～increase in inst．Luminosity

$$
\frac{50}{1}=\frac{\text { LHCb Upgrade }}{\text { LHCb today }}=\frac{\text { Belle II }}{\text { BaBar }+ \text { Belle }}=\frac{\text { BaBar }+ \text { Belle }}{\text { CLEO }}=\frac{?}{\text { BESIII }}
$$

the energy increase from $\mathbf{7 / 8} \mathbf{~ T e V}$ to $\mathbf{1 3} \mathbf{~ T e V}$ at the $\mathbf{L H C}$

Summary

口双粲重子
＞双粲重子弱衰变：续集
－D $->P_{1} P_{2}$ IV
＞检验标量粒子内部结构
$>$ 测量散射相移
$>$ 手征有效理论 + QCD微扰理论

谢谢大家！

请批评指正！

