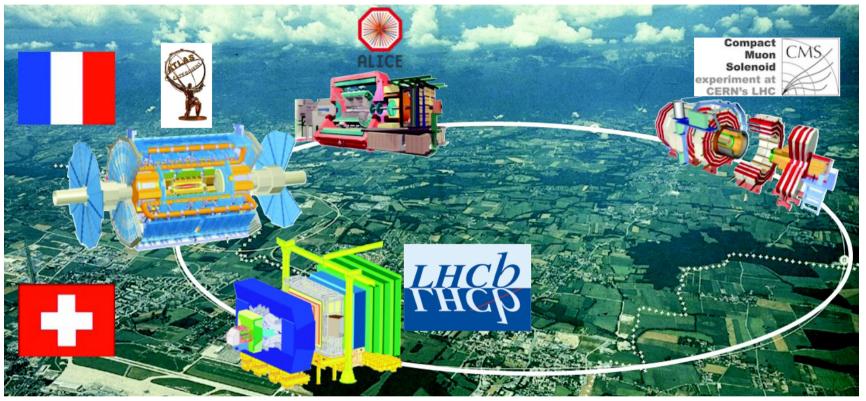


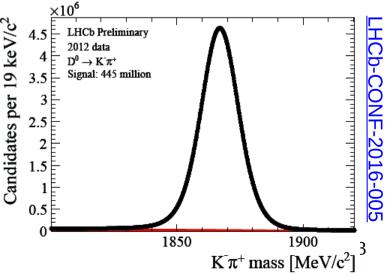
Charm (Semi-)leptonic Decays at LHCb

Liang Sun (for the LHCb collaboration) Wuhan University

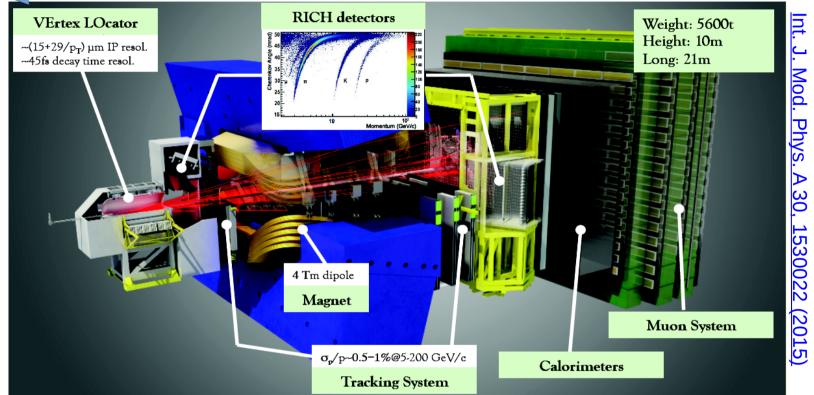
2017/09/24, Nankai


Outline

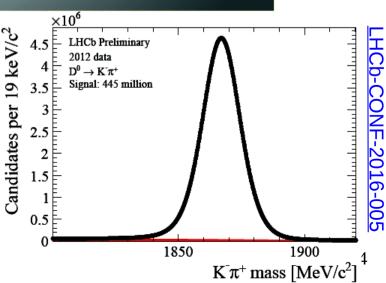
- Recent LHCb results on charm rare decays
 - $D^0 \rightarrow K^+K^- (\pi^+\pi^-) \mu^+\mu^-$
 - $D^{_0} \rightarrow K^{_{-}}\pi^{_{+}} \mu^{_{+}}\mu^{_{-}}$ in ρ/ω region of dimuon mass


-
$$D^0 \rightarrow \mu^+\mu^-$$
, $D_{(s)}^+ \rightarrow \pi^+\mu^+\mu^-/D_{(s)}^+ \rightarrow \pi^-\mu^+\mu^+$

- $D^0 \rightarrow e^+ \mu^-$
- Charm semileptonic decays: prospects
- Summary


LHCb experiment

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- All the results presented today are based on (a subset of) 3fb⁻¹ Run1 data of LHCb collected within 2011-2012
- 1.15 billion charm hadron decays reconstructed in Run1

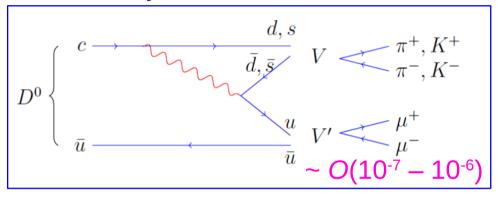


LHCb experiment

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- All the results presented today are based on (a subset of) 3fb⁻¹ Run1 data of LHCb collected within 2011-2012
- 1.15 billion charm hadron decays reconstructed in Run1

Superb!

Overview of charm rare decays

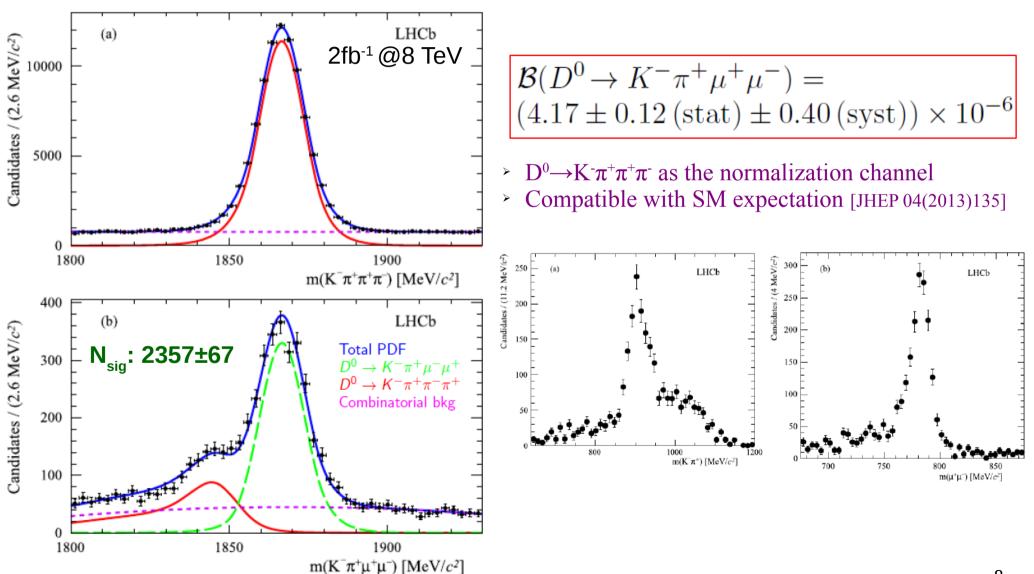

$D^{0} \rightarrow \mu^{+}e^{-}$ $D^{0} \rightarrow pe^{-}$ $D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$		hanging D ⁰ Currents	$D_{(s)}^{+} \to \pi^{+}l^{+}l^{-}$ $D_{(s)}^{+} \to K^{+}l^{+}l^{-}$ $\to K^{-}\pi^{+}l^{+}l^{-}$ $D^{0} \to K^{*0}l^{+}l^{-}$ $\bigvee e(t)$	$D^{0} \rightarrow \pi^{-}\pi^{+}$ $D^{0} \rightarrow \rho V$ $D^{0} \rightarrow K^{+}K$ $D^{0} \rightarrow \phi V$ $Ctor Meson D$	$ \begin{array}{ll} D^{0} \rightarrow K^{*0} \gamma \\ T(\rightarrow ll) & D^{0} \rightarrow (\phi, \rho, \omega) \gamma \\ TV(\rightarrow ll) & D_{s}^{+} \rightarrow \pi^{+} \phi(\rightarrow ll) \\ (\rightarrow ll) & \text{ominance} \end{array} $
LFV, LNV,	BNV	FCNC		VMD	Radiative
0 $D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$	10 ⁻¹⁵	$D^0 \rightarrow \mu\mu$ $D^0 \rightarrow ee$	$D^{0} \rightarrow \pi^{-} \pi^{+} l^{+} l^{-}$ $D^{0} \rightarrow \rho \ l^{+} l^{-}$	$10^{-8} 10^{-7} 10^{-7}$ $D^{0} \rightarrow K^{+} \pi^{-} V (\rightarrow ll)$ $D^{0} \rightarrow \overline{K}^{*0} V (\rightarrow ll)$	$D^{+} \to \pi^{+} \phi(\to ll)$ $D^{0} \to K^{-} \pi^{+} V(\to ll)$
$D^0 \rightarrow X^{}l^+l^+$		D	$b^0 \rightarrow K^+ K^- l^+ l^-$ $D^0 \rightarrow \phi \ l^+ l^-$	$D^0 \rightarrow \gamma \gamma$	$D^0 \to K^{*0}V(\to ll)$ [PRD 66 (2002) 014009]

- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10⁻⁹
 - Only possible at the loop level
 - More suppressed than B decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D \to Xℓ+ℓ- are dominated by resonant long-distance VMD contributions

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays

SD contributions, good for NP probes $D^{0} \begin{cases} c & \gamma^{*}, Z^{0} & \mu^{+} \\ \bar{u} & \bar{u} & V & h^{+} \\ \bar{u} & \bar{u} & V & h^{-} \\ D^{0} \begin{cases} c & \mu^{+} \\ \bar{u} & \bar{u} & V & h^{+} \\ \bar{u} & \bar{u} & V & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & V & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & V & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & V & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} & \bar{u} \\ \bar{u}$

LD contributions, hard to predict theoretically

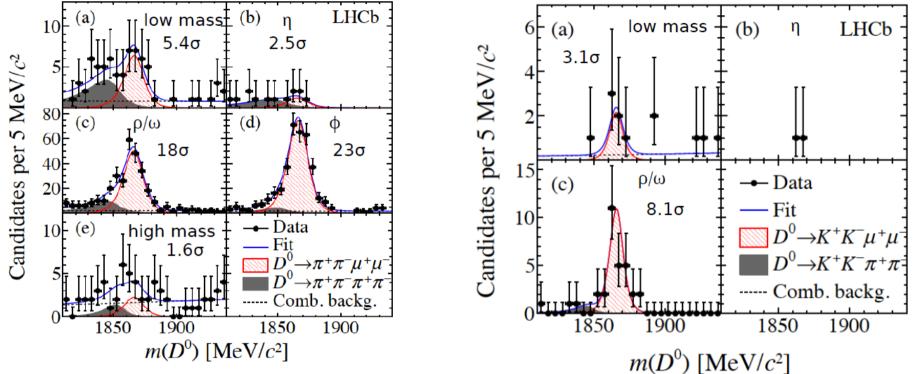


- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10⁻⁹
 - Only possible at the loop level
 - More suppressed than B decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D $\rightarrow X\ell^+\ell^-$ are dominated by resonant long-distance VMD contributions

$D^0 \rightarrow K^-\pi^+\mu^-\mu^+$ BF in ρ^0/ω region of dimuon mass

- Not related to the FCNCs, still this decay mode provides an excellent normalization for all the other 4 body modes
- Analysis overview (2012 data, 2fb⁻¹):
 - Dimuon mass in the ρ % region: [675, 875] MeV
 - $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ as the normalization channel, also the major background source
 - Careful estimation of peaking backgrounds due to misID or $\pi^+ \to \mu^+ \nu_\mu$

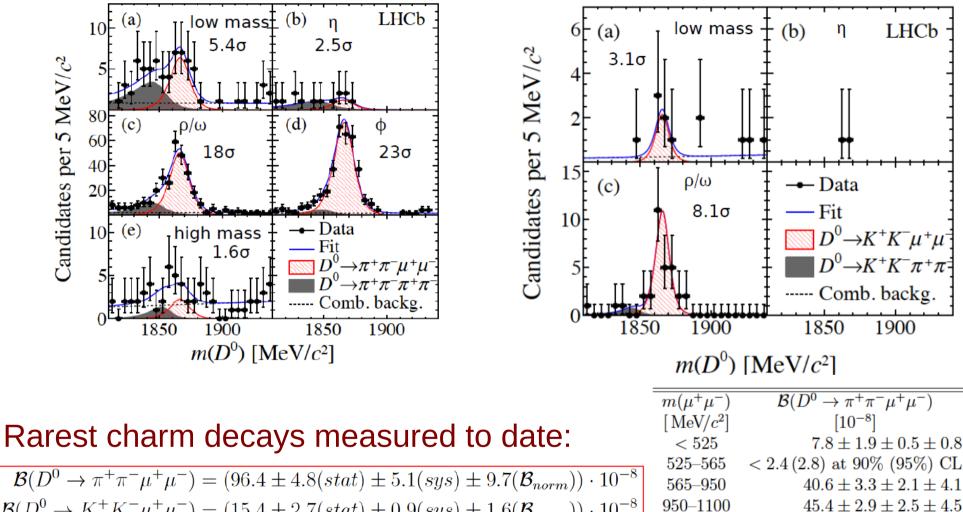
$D^0 \rightarrow K^-\pi^+ \rho^0 / \omega (\rightarrow \mu^-\mu^+)$: First observation


$D^0 \rightarrow K^+K^-/\pi^+\pi^- \mu^+\mu^-$ decays

- Previous LHCb search for the decay $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ published in 2013 with 1 fb⁻¹ data [PLB 728 (2014) 234-243]
 - Best upper limits at the time
- Overview of this analysis (2012 data, 2fb-1):
 - $D^0 \rightarrow K^-\pi^+ \rho^0/\omega(\rightarrow \mu^-\mu^+)$ as the perfect normalization channel
 - Binned measurement in m(µµ) to separate resonant and nonresonant contributions
 - Signal extraction in signal and normalization mode by a fit to D⁰ mass

$$BF(D^{0} \to hh\mu\mu) = BF(D^{0} \to K\pi\mu\mu) \cdot \frac{N_{D^{0} \to hh\mu\mu}}{N_{D^{0} \to K\pi\mu\mu}} \cdot \frac{\epsilon_{D^{0} \to K\pi\mu\mu}}{\epsilon_{D^{0} \to hh\mu\mu}}$$

arXiv:1707.08377


First observation of $D^0 \rightarrow K^+K^-/\pi^+\pi^- \mu^+\mu^-$

Dimuon-mass region	low mass	η	$ ho^0/\omega$	ϕ	high mass
$m(\mu^+\mu^-)$ [MeV/ c^2]	< 525	525 - 565	565 - 950	950 - 1100	> 1100
$N^{\rm sig}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-)$	27 ± 6	5 ± 3	208 ± 17	312 ± 20	9 ± 6
Signal significance	5.4σ	2.5σ	18σ	23σ	1.6σ
$R^{\epsilon}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-)$	0.73 ± 0.04	0.84 ± 0.07	1.08 ± 0.05	1.45 ± 007	1.5 ± 0.1
$N^{\rm sig}(D^0 \to K^+ K^- \mu^+ \mu^-)$	5 ± 3	_	29 ± 5	_	_
Signal significance	3.1σ	—	8.1σ	—	—
$R^{\epsilon}(D^0 \to K^+ K^- \mu^+ \mu^-)$	0.49 ± 0.03	0.53 ± 0.04	0.55 ± 0.03	_	—

arXiv:1707.08377

First observation of $D^0 \rightarrow K^+K^-/\pi^+\pi^- \mu^+\mu^-$

> 1100

 $m(\mu^+\mu^-)$ $[MeV/c^2]$

< 525

525 - 565

> 565

< 2.8 (3.3) at 90% (95%) CL

< 0.7 (0.8) at 90% (95%) CL

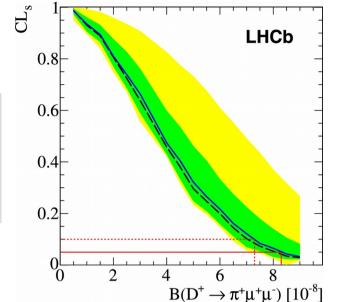
 $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-)$

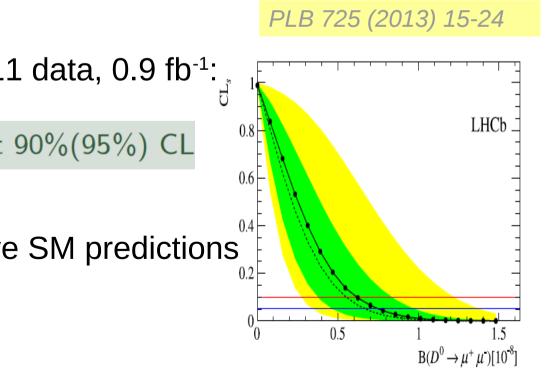
 $2.6 \pm 1.2 \pm 0.2 \pm 0.3$

 $12.0 \pm 2.3 \pm 0.1 \pm 0.1$

 $[10^{-8}]$

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (96.4 \pm 4.8(stat) \pm 5.1(sys) \pm 9.7(\mathcal{B}_{norm})) \cdot 10^{-8}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (15.4 \pm 2.7(stat) \pm 0.9(sys) \pm 1.6(\mathcal{B}_{norm})) \cdot 10^{-8}$

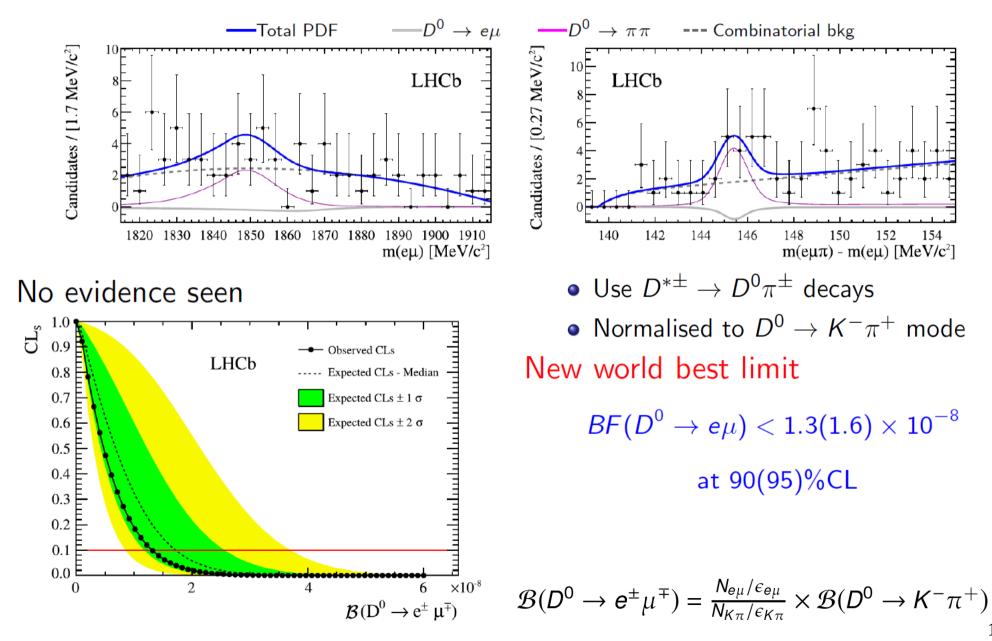

11


PLB 724 (2013) 558-567

LHCb upper limits based on 2011 data, 1 fb⁻¹:

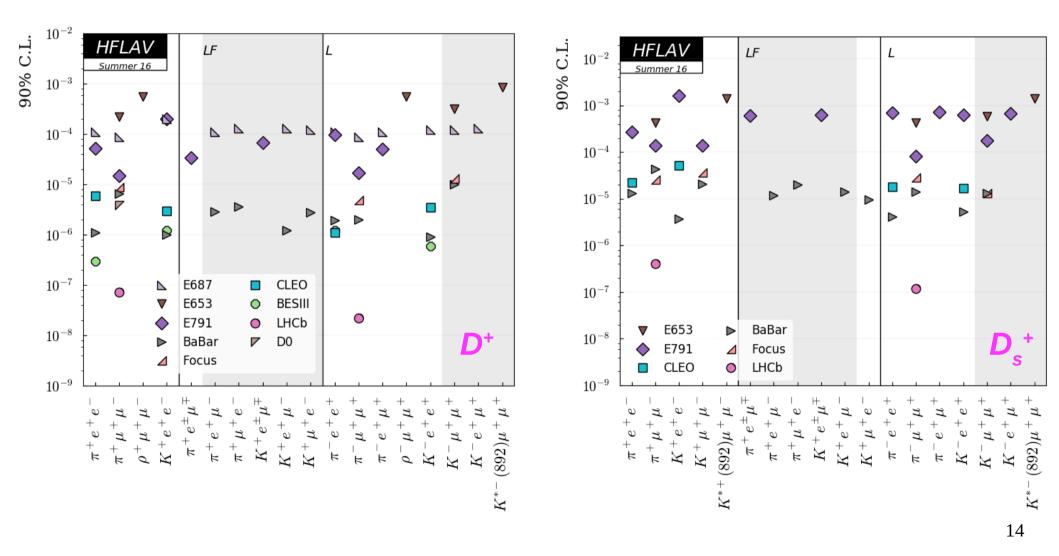
$$\begin{split} &\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-) < 7.3(8.3) \cdot 10^{-8} \text{ at } 90\% (95\%) \text{ CL} \\ &\mathcal{B}(D_s^+ \to \pi^+ \mu^+ \mu^-) < 4.1(4.8) \cdot 10^{-7} \text{ at } 90\% (95\%) \text{ CL} \\ &\mathcal{B}(D^+ \to \pi^- \mu^+ \mu^+) < 2.2(2.5) \cdot 10^{-8} \text{ at } 90\% (95\%) \text{ CL} \\ &\mathcal{B}(D_s^+ \to \pi^- \mu^+ \mu^+) < 1.2(1.4) \cdot 10^{-7} \text{ at } 90\% (95\%) \text{ CL} \end{split}$$

• Improved by a factor of 50

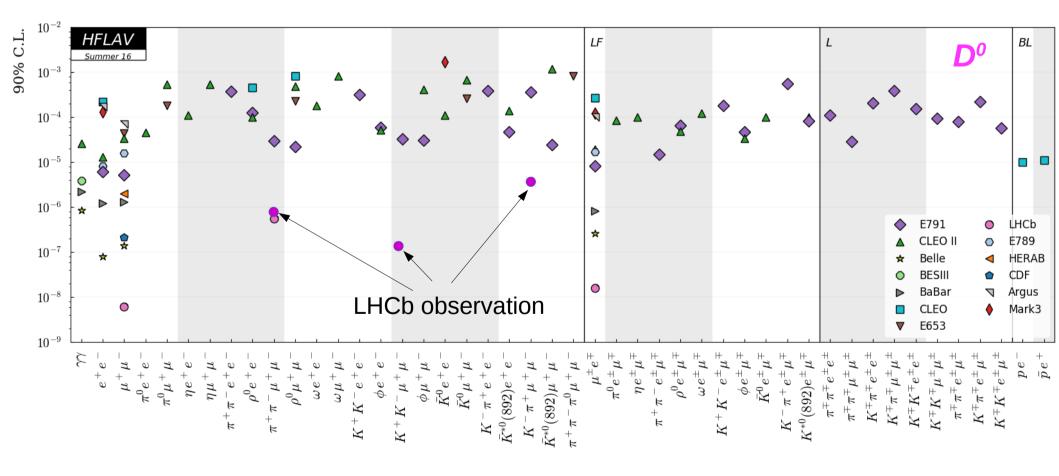

LHCb upper limits based on 2011 data, 0.9 fb⁻¹:

 ${\cal B}(D^0 o \mu^+ \mu^-) < 6.2 (7.6) \cdot 10^{-9}$ at 90%(95%) CL

- Improved by a factor of 20
- Two orders of magnitude above SM predictions


PLB 754 (2016) 167-175

Search for LFV decay $D^0 \rightarrow e^+\mu^-$


Overview of results on D rare decays

Almost every LHCb measurement is the world's best

Overview of results on D rare decays

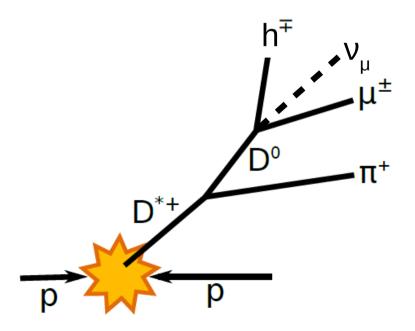
Almost every LHCb measurement is the world's best Also first observations!

Prospects on rare charm decays

• During Run2 and beyond, SM predictions can be reached for more dimuon modes

 $\sigma_{c\bar{c}}(14 \text{ TeV}) \approx 2\sigma_{c\bar{c}}(7 \text{ TeV})$ & assuming same efficiency and S/B ratio

Mode	8fb^{-1}	$50 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
$D^0 ightarrow \mu^+ \mu^-$	fewer 10^{-9}	few 10^{-10}	fewer 10^{-10}
$D^0 o e^+ \mu^-$	few 10^{-9}	fewer 10^{-9}	few 10^{-10}
$D^+ o \pi^+ \mu^+ \mu^-$	fewer 10^{-8}	few 10^{-9}	fewer 10^{-9}
$D^+_{s} o K^+ \mu^+ \mu^-$	fewer 10^{-7}	few 10^{-8}	fewer 10^{-8}
$D^0 o hh\mu^+\mu^-$	fewer 10^{-7}	few 10^{-8}	fewer 10^{-8}


Prospects on rare charm decays

- During Run2 and beyond, SM predictions can be reached for more dimuon modes
- Promising for first investigation of angular/CP asymmetries in $D^0 \rightarrow h^+h^-\mu^+\mu^-$ decays including Run2 data
 - Precision possibly at tens of percent level by end of 2017

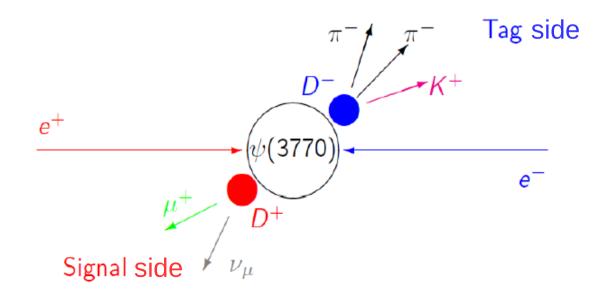
Mode	Run II 8 fb⁻¹	Upgrade 50 fb ⁻¹	
$D^+ \to \pi^+ \mu^+ \mu^-$	0.6%(30K events)	0.2% (300K events)	
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	3%(1500 events)	1%(15K events)	
$D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$	1%(10K events)	0.3%(100K events)	
$D^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$	40%(30 events)	12%(300 events)	
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	11%(150 events)	4%(1500 events)	

Predictions on asymmetries' sensitivity by assuming the same efficiency and signal-to-background ratio

Charm semileptonic decays at LHCb: the prospects

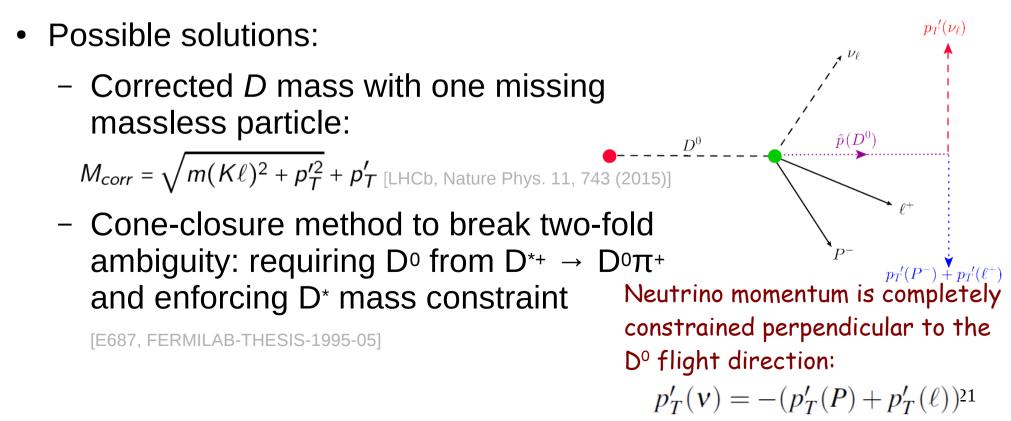
See A. Davis's CKM2016 talk

Why charm SL decays?


• Well-known form of D^o differential decay rate:

$$\begin{split} \frac{d\Gamma(D^0 \to P^-\ell^+ \nu_\ell)}{dq^2} &= |V_{cQ}|^2 \frac{G_F^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{D^0}^2} \\ &\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_{D^0} (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_{D^0}^2 - m_P^2)^2 |f_0(q^2)|^2 \right] \end{split}$$

- With q² dependent rates, we can measure
 - CKM factor |VcQ|, useful for testing unitarity of the CKM matrix, or
 - The form factor dependence $|f_+(q^2)|$ and $|f_0(q^2)|$, useful input to Lattice QCD calculations, or
 - Lepton universality


Challenge for LHCb: missing neutrinos

- Only partially reconstructed final state: $D^{_0} \rightarrow h^{_+}\mu^{_+}$
- For e+e- machines, neutrino info could be deduced from the beam energy and the other side of the event: the missing 4-momentum
- Not possible at a hadron collider!

Neutrino and q² reco: possible solutions

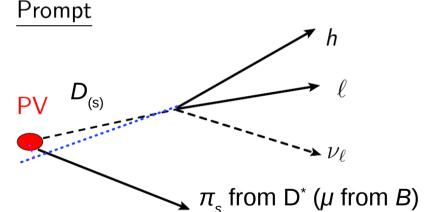
- Still, a number of proven experimental techniques are out there...
- Flight direction of the *D* can be used to constrain p_T '
- New problem: two-fold ambiguity for total neutrino momentum

Experimental opportunities: one example

Measure

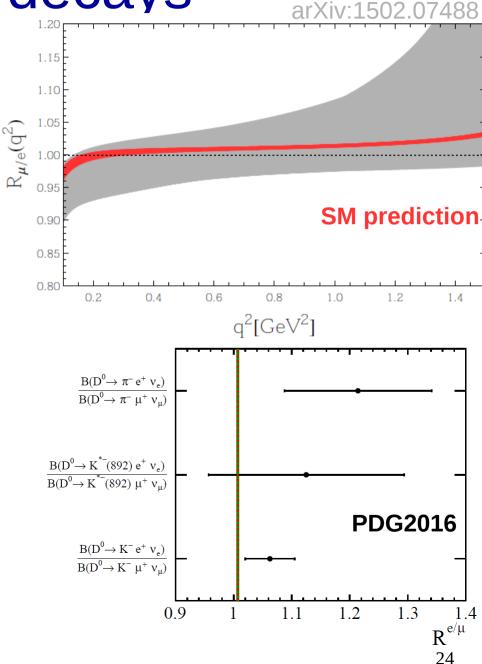
 $\frac{|V_{cs}|^2}{|V_{cd}|^2} \text{ using } \frac{\mathcal{B}(D \to K\mu\nu)}{\mathcal{B}(D \to \pi\mu\nu)} \quad \text{events in Run1}$

Expecting ~4 M $D \rightarrow K\mu\nu$ events in Run1


- Analogous to measurement of $|V_{ub}|$ from $\Lambda_b \rightarrow p\mu\nu$ (Nature Physics 10 (2015) 1038)
- Experimental advantages:
 - Use $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow$ gives access to Δm for background rejection, q^2 constraint
 - μ, π_s detection efficiencies cancel in ratio
 - K, π detection efficiencies known well from CP measurements
 - μ easily detectable
 - Use M_{corr} to reduce multibody/neutral backgrounds
- The hard parts
 - Trigger on the inclusive D event → possible biases vs q² depending on data-taking conditions
 - MC statistics will be a limiting factor
 - $f_+^K(q^2), f_+^\pi(q^2)$ knowledge will play a large role in the extraction

Estimation on the relative systematic uncertainty: **0.2%** Comparable to the world average!

SL opportunities @ LHCb


$$\begin{array}{c|c} \frac{D^{0}}{D^{0}} \rightarrow \pi \mu \nu & (\mathcal{B} = 0.238 \pm 0.024\%) \\ D^{0} \rightarrow K \mu \nu & (\mathcal{B} = 3.3 \pm 0.13\%) \\ D^{0} \rightarrow K^{*}(892)^{-} \mu \nu & (\mathcal{B} = 1.92 \pm 0.25\%) \end{array} \begin{array}{c|c} \frac{D^{+}}{D^{+}} \rightarrow K \pi \mu \nu & (\mathcal{B} = 3.9 \pm 0.4\%) \\ D^{+} \rightarrow K^{0} \mu \nu & (\mathcal{B} = 9.3 \pm 0.7\%) \\ D^{+} \rightarrow K^{*0} \mu \nu & (\mathcal{B} = 5.3 \pm 0.15\%) \\ D^{+} \rightarrow \eta \mu \nu & (\mathcal{B} = \sim 1\%) \end{array} \begin{array}{c|c} \frac{D_{s}}{D_{s}^{+}} \rightarrow \phi \mu \nu & (\mathcal{B} = \sim 2\%) \\ D_{s}^{+} \rightarrow K^{0} \mu \nu & (\mathcal{B} = \sim 0.3\%) \\ D_{s}^{+} \rightarrow \eta \mu \nu & (\mathcal{B} = \sim 1\%) \end{array}$$

- Items in red are unlikely
- $D_{(s)}$ from D^{*} or B are possible
- A control channel is needed for each decay
- Λ_c will be more challenging due to its short lifetime ~0.5 τ (D°)

LU in SL D decays

- Lepton universality a hot topic recently
- The decay ratio of $D \to K \mu \nu$ to $D \to K e \nu$ could differ significantly from unity in the presence of NP
- Current PDG values for BFs of muon modes are rather inaccurate and hint µ/e ratios possibly below 1
- D → Kev is hard, but not impossible @ LHCb

Summary

- LHCb is more than a B factory, with a lot of charm opportunities
- Huge statistics is a blessing for rare charm decays
- First observations on a number of dimuon charm decays
- World's best upper limits on dimuon and LFV charm decays
- Ongoing work on charm SL decays
- More to come for LHCb in Run2 & upgrade, including NP searches in rare charm decays