

Hadron spectroscopy @ LHCb

清华大学高能物理研究中心 高原宁

第一届强子与重味物理理论实验联合研讨会 3.31-4.1 兰州大学

Outline

- Introduction to spectroscopy studies at LHCb
- Charmed mesons + baryons

* Doubly charmed baryons -> Yuehong 's talk

- Search for B_c^*
- Tetraquark states
- Pentaquark states
- Future prospects

* LHCb prospects \rightarrow Wenbin's talk

LHCb Detector

LHCb, Int. J. Mod. Phys. A30 (2015) 1530022

Forward spectrometer running in pp collider

Excellent vertex and IP, decay time resolution: • $\sigma(IP) \approx 20 \ \mu m$ for high- p_T tracks

• $\sigma(\tau) \approx 45$ fs for $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$ decays Very good momentum resolution:

- $\delta p/p \approx 0.5\% 1\%$ for $p \in (0,200)$ GeV
- $\sigma(m_B) \approx 24$ MeV for two-body decays

• $\mathbf{2} < \eta < \mathbf{5}$ range: $\sim 25\%$ of $bar{b}$ pairs inside LHCb acceptance

Hadron and Muon identification

- $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
- $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1 3\%$ Data good for analyses
- > 99%

LHCb Trigger in RUN II

TURBO stream introduced in 2015

- 5 kHz of 12 kHz go to TURBO
- Only trigger information saved
 → smaller event, faster analysis
- Used for high yield exclusive trigger lines: J/ψ , D^0 , D^+ , ...

LHCb 2015 Trigger Diagram 40 MHz bunch crossing rate L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz μ/μμ h± e/y Software High Level Trigger Partial event reconstruction, select displaced tracks/vertices and dimuons Buffer events to disk, perform online detector calibration and alignment Full offline-like event selection, mixture of inclusive and exclusive triggers 12.5 kHz (0.6 GB/s) to storage

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Physics program at LHCb

- Not only precision measurements in b, c sectors
 - CKM and CP-violation parameters
 - rare decays
 - testing lepton universality
 - ...
- But also a general purpose detector
 - electroweak measurements: $\sin \theta_W$, W/Z, top quark, ...
 - spectroscopy, exotic hadrons
 - soft QCD
 - heavy ions

Experiment strategies

- Advantage: high production rates
- Challenge: reconstruct an unstable particle from O(10²) tracks

 $\sqrt{\text{tracking}}$ \rightarrow excellent mass resolution $\sqrt{particle identification}$ \rightarrow no. of combinations reduced $\sqrt{Vertexing}$ \rightarrow weakly decayed particles \rightarrow particles from b/c decays

Study of charmonia as an example

Charmed mesons + baryons

- $D_{sI}^{(**)}$ excited strange-charm mesons
- $D_I^{0(**)}$ excited charm mesons \rightarrow backup slides
- Excited charmed baryons Λ_c^* and Ω_c^*

• Strange-charm states studied widely to test QCD models

```
D_{sI}^{*}(3040)
D_{sI}^{*}(2860)
D_{s1}^{*}(2700)
D_{s2}^{*}(2573)
D_{s1}(2536)
D_{s1}(2460)
D_{s0}^{*}(2317)
D_{s}^{*}
           States observed from B-factories and other experiments
               D_{s}^{*}, D_{s0}^{*}(2317) below DK threshold
D_{s}
               States with unnatural spin-parity (J^p = 0^-, 1^+, 2^-, ...)
           _
```

2018/3/31

- Strange-charm states studied widely to test QCD models
 - Inclusive $pp \rightarrow (D^+K^0, D^0K^+) + X$ JHEP 10 (2012) 151 $D_{s2}^*(2573), D_{s1}^*(2700), D_{sJ}^*(2860)$

 $D_{sI}^{*}(3040)$

- Strange-charm states studied widely to test QCD models
 - Inclusive $pp \rightarrow (D^+K^0, D^0K^+) + X$ LHCb-PAPER-2012-016 $D_{s2}^*(2573), D_{s1}^*(2700), D_{sJ}^*(2860)$ JHEP 10 (2012) 151

PRL 113 (2014) 162001

- $\begin{array}{ll} D^*_{sJ}(\mathbf{2860}) & & \text{Dalitz plot analysis } B^0_s \to \overline{D}{}^0 K^- \pi^+ \text{ reveals} \\ D^*_{s1}(\mathbf{2700}) & & \text{two states } D^*_{s1}(\mathbf{2860}), D^*_{s3}(\mathbf{2860}) \end{array}$
- $D_{s2}^{*}(2573)$

 $D_{sI}^{*}(3040)$

- $D_{s1}(2536)$
- $D_{s1}(2460)$
- $D_{s0}^{*}(2317)$

D_s^*	States observed from B-factories and other experiments
D _s	- D_s^* , D_{s0}^* (2317) below <i>DK</i> threshold
	- States with unnatural spin-parity ($J^p = 0^-, 1^+, 2^-,$)

PRD 90 (2014) 072003

Dalitz plot analysis $B_s ightarrow \overline{D}{}^0 K^- \pi^+$

• ~11K signal events with purity 87%

PRL 113 (2014) 162001

PRD 90 (2014) 072003

- Strange-charm states studied widely to test QCD models
 - Inclusive $pp \rightarrow (D^+K^0, D^0K^+) + X$ JHEP 10 (2012) 151 $D_{s2}^*(2573), D_{s1}^*(2700), D_{sJ}^*(2860)$
 - $D_{sJ}^{*}(2860)$ Dalitz plot analysis $B_{s}^{0} \to \overline{D}^{0}K^{-}\pi^{+}$ reveals $D_{s1}^{*}(2700)$ two states $D_{s1}^{*}(2860), D_{s3}^{*}(2860)$ PRL 113 (2014) 162001 PRD 90 (2014) 072003

 $D_{s2}^{*}(2573)$

 $D_{s1}(2536)$

 $D_{sI}^{*}(3040)$

- Inclusive $pp \rightarrow (D^{*+}K^0, D^{*0}K^+) + X$

 D_s^* States observed from B-factories and other experiments D_s $- D_s^*, D_{s0}^* (2317)$ below DK threshold- States with unnatural spin-parity ($J^p = 0^-, 1^+, 2^-, ...$)

Inclusive analysis $pp \rightarrow (D^{*+}K^0, D^{*0}K^+) + X$

- Resonant contribution seen due to $D_{s2}^*(2536), D_{s2}^*(2573), D_{s1}^*(2700)$ and $D_{s3}^*(2860)$, weak evidence of $D_{sI}^*(3040)$ JHEP 02 (2016) 133
- Angular distribution reflects the spin-parity assignment
 - $\sin^2 \theta_H$

Natural Spin-Parity

 $1 + h\cos^2\theta_H$

Unnatural Spin-Parity

Possible assignment of $D_{sI}^{(**)}$ states

• Recent theory predictions

S. Godfrey, I. T. Jardine, PRD 89 (2014) 072043

- Two states observed by LHCb could fit into the 1D states
- At least three more states expected up to 3 GeV/c²

Status

B.Chen, K.-W. Wei and A. Zhang, EPJA 51 (2015) 82

- experimental observations / nonrelativistic *heavy quark-light diquark* model

states seen with confirmed properties Λ_c (2765) or Σ_c threshold structure near 2840 MeV Λ_c (2940) D^*N molecule?

• $\mathcal{B}(\Lambda_b \to D^0 p \pi^-)$ measured with 1fb⁻¹ PRD 89 (2014) 032001 Amplitude analysis with 3 fb-1 JHEP 05 (2017) 030

Amplitude analysis $\Lambda_{ m b} ightarrow D^0 p \pi^-$

LHCb-PAPER-2016-061 JHEP 05 (2017) 030

• Clean sample with ~11K signal events

fit in different phase space regions to reduce complexities

	Phase space region					
Yield	Full	1	2	3	4	
$\Lambda_b^0 \to D^0 p \pi^-$	11212 ± 126	2250 ± 61	1674 ± 46	3141 ± 63	4750 ± 79	
Combinatorial	14024 ± 224	4924 ± 132	968 ± 78	2095 ± 96	4188 ± 127	
Partially rec.	4106 ± 167	1344 ± 96	321 ± 64	691 ± 75	1204 ± 96	
Signal in box	10 233	2061	1500	2803	4261	
Background in box	1616	598	89	192	427	

Y. Gao, Hadron Spectroscopy at LHCb

Amplitude analysis $\Lambda_{\rm b} ightarrow D^0 p \pi^-$

LHCb-PAPER-2016-061 JHEP 05 (2017) 030

• $\Lambda_c(2880)$ $J^P = \frac{5^+}{2}$ confirmed

$$\begin{split} m(\Lambda_c(2880)^+) &= 2881.75 \pm 0.29(\text{stat}) \pm 0.07(\text{syst})^{+0.14}_{-0.20}(\text{model}) \,\text{MeV},\\ \Gamma(\Lambda_c(2880)^+) &= 5.43^{+0.77}_{-0.71}(\text{stat}) \pm 0.29(\text{syst})^{+0.75}_{-0.00}(\text{model}) \,\text{MeV}. \end{split}$$

• $\Lambda_c(2860)$ $J^P = \frac{3^+}{2}$ confirmed

 $m(\Lambda_c(2860)^+) = 2856.1^{+2.0}_{-1.7}(\text{stat}) \pm 0.5(\text{syst})^{+1.1}_{-5.6}(\text{model}) \text{ MeV},$ $\Gamma(\Lambda_c(2860)^+) = 67.6^{+10.1}_{-8.1}(\text{stat}) \pm 1.4(\text{syst})^{+5.9}_{-20.0}(\text{model}) \text{ MeV}.$ $\begin{array}{c|c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$

LHCb

• $\Lambda_{c}(2940)$ $J^{P} = \frac{3}{2}^{-}$ favored, $(\frac{3}{2}^{+}, \frac{5}{2}^{-}, \frac{5}{2}^{+} \sim 3\sigma)$ $m(\Lambda_{c}(2940)^{+}) = 2944.8^{+3.5}_{-2.5}(\text{stat}) \pm 0.4(\text{syst})^{+0.1}_{-4.6}(\text{model}) \text{ MeV}$ $\Gamma(\Lambda_{c}(2940)^{+}) = 27.7^{+8.2}_{-6.0}(\text{stat}) \pm 0.9(\text{syst})^{+5.2}_{-10.4}(\text{model}) \text{ MeV}.$

Observation of exited Ω_c states

PRL 118 (2017) 182001

- Excited Λ_c^+ , Σ_c , Ξ_c states have been reported but no excited Ω_c^0 states were observed before LHCb
- 3 fb⁻¹ Run I + 0.3 fb⁻¹ Run II pp collisions data
- Decay: $\Omega_c^{**0} o \Xi_c^+ K^-$, $\Xi_c^+ o p K^- \pi^+$

Observation of exited Ω_c states

PRL 118 (2017) 182001

• 5 narrow states & evidence for 6th broader state at high mass

Observation of exited Ω_c states

PRL 118 (2017) 182001

 Matching between observed peaks and predictions requires spinparity information: studied with three-body decays or in decays of heavier baryons

Y. Gao, Hadron Spectroscopy at LHCb

 $B_{c}^{(*)}(2S) \rightarrow B_{c}^{(*)}\pi^{+}\pi^{-}$

LHCb-PAPER-2017-042 JHEP 01 (2018) 138

Y. Gao, Hadron Spectroscopy at Lhuu

LHCb-PAPER-2017-042 JHEP 01 (2018) 138

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$

$$= \frac{N_{B_c^{(*)}(2S)^+}}{N_{B_c^+}} \cdot \frac{\varepsilon_{B_c^+}}{\varepsilon_{B_c^{(*)}(2S)^+}},$$

$$\frac{\sqrt{s} = 7 \text{ TeV}}{\sqrt{s} = 8 \text{ TeV}}$$

$$\frac{\sqrt{s} = 7 \text{ TeV}}{(0.15 \pm 0.06 \text{ (stat)})/\varepsilon_8}$$

$$\frac{\sqrt{s} = (0.04, 0.09)}{(1.15 \pm 0.04, 0.09)}$$

 ϵ_7, ϵ_8 : relative efficiencies of reconstructing $B_c^{(*)}(2S)^+$ wrt B_c^+

- ATLAS did not publish $\varepsilon_7, \varepsilon_8$
- More studies needed to resolve the large tension between ATLAS and LHCb.

Tetraquark States

- $X(3872) \rightarrow$ backup slides
- $Z(4430) \rightarrow$ backup slides
- $X \rightarrow J/\psi \phi$
- X(5568)?

$X \to J/\psi \phi$

• Narrow structure in $J/\psi\phi$ discovered by CDF, confirmed by D0 and CMS. No evidence by BaBar/Belle/LHCb(0.37 fb⁻¹)

Exotic states in $B^+ o J/\psi \phi K^+$

• LHCb perform full 6D amplitude analysis

LHCb-PAPER-2016-018 PRL 118 (2017)022003 LHCb-PAPER-2016-019 PRD 95 (2017) 012002

• 4 peaks are observed with X(4140) wider than CDF/DO/CMS

State	Signif	J^{PC}	M [MeV]	$\Gamma [MeV]$	
X(4140)	8.4σ	1^{++}	$4160 \pm 4^{+5}_{-3}$	$83 \pm 21^{+21}_{-14}$	Significant larger at LHCb
X(4274)	5.8σ	1^{++}	$4273 \pm 8^{+17}_{-4}$	$56 \pm 11^{+8}_{-11}$	$\Gamma^{CDF/D0/CMS} = 15.7 \pm 6.2 MeV$
X(4500)	6.1σ	0^{++}	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$I_{avg} = 13.7 \pm 0.3$ WeV
X(4700)	5.6σ	0^{++}	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	

Tetraquark searches in $B_s \pi^\pm$

- D0 announced a new state $X(5568)^\pm
 ightarrow B_s \pi^\pm$ prl 117 (2016) 022003
- significance of 5.1 σ
- mass and width

$$m = 5567.8 \pm 2.9 \text{ (stat)} {}^{+0.9}_{-1.9} \text{ (syst)} \text{ MeV}/c^2$$

$$\Gamma = 21.9 \pm 6.4 \text{ (stat)} {}^{+5.0}_{-2.5} \text{ (syst)} \text{ MeV}/c^2$$

- high production rate

Tetraquark searches in $B_s\pi^\pm$

LHCb-PAPER-2016-029 PRL 117 (2016) 152003

• Very large and clean **B**_s sample at LHCb

Add a pion, no peak observed at 5568 MeV

Tetraquark searches in $B_s\pi^\pm$

LHCb-PAPER-2016-029 PRL 117 (2016) 152003

• Upper limits

 $\rho_X^{\text{LHCb}} \equiv \frac{\sigma(pp \to X + \text{anything}) \times \mathcal{B}(X \to B_s^0 \pi^{\pm})}{\sigma(pp \to B_s^0 + \text{anything})} \bigg|_{\text{LHCb Acc.}}$ $= \frac{N(X)}{N(B_s^0)} \times \frac{1}{\epsilon^{\text{rel}}(X)} \qquad \epsilon^{\text{rel}}(X) = \epsilon(X)/\epsilon(B_s^0)$

		$B_s^0 \rightarrow D_s^- \pi^+$	$B_s^0 \to J/\psi \phi$	Sum
$N(B_s^0)$	$B_s^0 p_{\rm T} > 5 {\rm GeV}/c \ (10^3)$	66.3 ± 0.3	46.3 ± 0.2	112.6 ± 0.4
$N(B_s^0)$	$B_s^0 \ p_{\rm T} > 10 {\rm GeV}/c \ (10^3)$	30.1 ± 0.2	14.1 ± 0.1	44.2 ± 0.2
$\overline{N(X)}$	$B_s^0 p_{\mathrm{T}} > 5 \mathrm{GeV}/c$	23 ± 55	-15 ± 37	8 ± 66
N(X)	$B_s^0 \ p_{\mathrm{T}} > 10 \mathrm{GeV}/c$	70 ± 48	11 ± 30	81 ± 57
$\epsilon^{\mathrm{rel}}(X)$	$B_s^0 p_{ m T} > 5 { m GeV}/c$	0.141 ± 0.002	0.102 ± 0.001	
$\epsilon^{\mathrm{rel}}(X)$	$B_s^0 \ p_{\mathrm{T}} > 10 \mathrm{GeV}/c$	0.239 ± 0.003	0.230 ± 0.003	

$$\begin{split} \rho_X^{\rm LHCb}(B_s^0 \ p_{\rm T} > \ 5 \ {\rm GeV}/c) &< 0.009 \ (0.010) \ @ \ 90 \ (95) \ \% \ {\rm CL} \ , \\ \rho_X^{\rm LHCb}(B_s^0 \ p_{\rm T} > 10 \ {\rm GeV}/c) &< 0.016 \ (0.018) \ @ \ 90 \ (95) \ \% \ {\rm CL} \ . \end{split}$$

Y. Gao, Hadron Spectroscopy at LHCb

Tetraquark searches in $B_s\pi$

LHCb-PAPER-2016-029 PRL 117 (2016) 152003

- Use similar selection criteria as $B_c \rightarrow B_s \pi$, consistent result
- Similar selection on $B^0\pi$

Pentaquark States

- Observation of $P_c(4450)$ and $P_c(4380)$
- Model independent confirmation
- P_c 's in $\Lambda_b^0 \to J/\psi p\pi^-$
- Observation of $\Lambda_b^0 o \chi_{c1,2} p K^-$
- Observation of $\Xi_b^- \to J/\psi \Lambda K^-$
- Search for weakly decayed pentaquarks

Observation of pentaquark states

LHCb, PRL 115(2015) 072001

• Two pentaquark states observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Discovery of pentaquark states

• Amplitude analysis reveals the properties

LHCb, PRL 115(2015) 072001

lab frame

• Confirmed by a model independent analysis

LHCb-PAPER-2016-009 PRL 117 (2016) 082002

 Production & decay
 LHCb-PAPER-2015-032 Chin. Phys. C 40 (2016) 011001

> $\mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (2.56 \pm 0.22 \pm 1.28 \stackrel{+0.46}{_{-0.36}}) \times 10^{-5}$ $\mathcal{B}(\Lambda_b^0 \to P_c^+(4450)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (1.25 \pm 0.15 \pm 0.33 \stackrel{+0.22}{_{-0.18}}) \times 10^{-5}$

Λ^* 's in $\Lambda_b^0 \to J/\psi p K^-$

- 2 models for $\Lambda^* \to pK^-$ contributions based on PDG
 - *Extended model* allows all LS couplings of each resonance, and include poorly motivated states \rightarrow 146 parameters
 - *Reduced model* uses only well motivated states \rightarrow 64 parameters
 - Other possibilities checked, including isospin violating decays of Σ^{*0} 's, adding two new Λ^* states with free mass & width, non-resonance contributions, ..., would not change the conclusion

→ Confirm that conventional pK^- contributions cannot describe the data, with minimal assumptions on their spin, and no assumptions on their number, shapes, masses, widths, and interference patterns.

Model independent analysis

• Can P_c 's be explained by the reflections of $\Lambda^{*'s}$?

Resonances in this channel only? m_I^2 LHCb m_{Kp} Λ_b^0 m_{Kp}^2 $m_{J/\psi K}$ $m_{J/\psi p}$ m_{Kp}^{5} Events/ 0.02 GeV² LHCb $\cos\theta_{\Lambda^*}$ I/ψ $egin{aligned} \left(m_{J/\psi p}^2\,,m_{K p}^2
ight)
ightarrow \ \left(m_{K p}\,,cos heta_{\Lambda^*}
ight) \end{aligned}$ -0.2 -04 m_{Kp}^2

2.4 m_{ko} [GeV]

Model independent analysis

LHCb-PAPER-2016-009 PRL 117 (2016) 082002

• The distribution of $\cos heta_{\Lambda^*}$ as a function of m_{Kp} can be decomposed as

$$\frac{dN}{d\cos\theta_{\Lambda^*}}(m_{Kp}) = \sum_{l=0}^{L} \langle P_l^U \rangle(m_{Kp}) P_l(\cos\theta_{\Lambda^*})$$

$$\langle P_l^U \rangle(m_{Kp}) = \int_{-1}^{1} d\cos\theta_{\Lambda^*} \frac{P_l(\cos\theta_{\Lambda^*})}{d\cos\theta_{\Lambda^*}} \frac{dN}{d\cos\theta_{\Lambda^*}}(m_{Kp})$$

Legendre fun. Eff. Corrected data
• Generally $l_{\max} \to \infty$
$$m_{Kp}^2$$

• Resonances from $J/\psi p$, $J/\psi K$ may have contributions to higher orders

Model independent analysis

LHCb-PAPER-2016-009 PRL 117 (2016) 082002

Legendre moments from simulation & data

shaded region corresponding to l_{\max} cutoff

Model independent analysis

LHCb-PAPER-2016-009 PRL 117 (2016) 082002

- Construct *Hypothesis* from measured Legendre moments
 - H_0 : $\Lambda^*
 ightarrow pK^-$ only, $l \leq l_{\max}$
 - H_1 : allow contributions from high order moments up to 31

Study of $\Lambda_b^0 \to J/\psi p\pi^-$

LHCb-PAPER-2016-015 PRL 117(2016) 082003

- Cabbibo suppressed mode with less statistics
- Exotic Z contributions in $J/\psi\pi$
- Fit with 2 pentaquarks + $Z_c(4200)$ favored by 3σ compared to no exotic contributions

Observation of $\Lambda_b^0 \rightarrow \chi_{c1,2} p K^-$

- Pc(4450) close to $\chi_{c1}p$ threshold, triangle singularity?
- Study with radiative $\chi_{cJ} o J/\psi\gamma$ decays

Mass constraint on χ_{c1} to improve resolution, forces χ_{c2} to lower mass

First observation of this mode, $5 \text{ MeV}/c^2$ 180full amplitude analysis foreseen LHCb 160 \mathbf{a} 140 with RUNII data added in $\sum_{a} \Lambda_b^0 \to \chi_{c1} p K$ $M_b^0 \to \chi_{c2} p K$ 120 E Events / (100 $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p K^-)} = 0.242 \pm 0.014 \pm 0.013 \pm 0.009$ 80 60 $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(\Lambda_b^0 \to \underline{J/\psi} p K^-)} = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$ 4020 $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)} = 1.02 \pm 0.10 \pm 0.02 \pm 0.05$ 0 5450 5550 5600 5500 5700 5650 $m(\chi_{c1} p \bar{K})$ [MeV/ c^2] Belle, PRD 78 (2008) 072004 Suppressed in $B \rightarrow \chi_{cl} K$ decays BaBar, PRL 102 (2009) 132001 LHCb, NPB 874 (2013) 663

LHCb-PAPER-2017-011,

Guo et al., PR D92(2015) 071502

PRL 119 (2017) 062001

Observation of $\Xi_b^- \to J/\psi \Lambda K^-$

LHCb-PAPER-2016-053 PLB 772 (2017) 265

- Look for $uds\overline{c}c$ pentaquark in this mode
- First observation with RUNI data
- ~300 candidates seen

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi\Lambda K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda)} = (4.19 \pm 0.29 \pm 0.15) \times 10^{-2}$$

$$m(\Xi_b^-) - m(\Lambda_b) = 177.08 \pm 0.47 \pm 0.16 \,\mathrm{MeV}/c^2$$

(one of the two world best measurements)

 Full amplitude analysis foreseen with RUNII data added in Wu et al., PRL 105 (2010) 232001 Chen et al., PRC 93 (2016) 065203

Searches for weakly decaying b-flavored pentaquarks

LHCb-PAPER-2017-043 arXiv:1712.08086

- Skyrme model prediction on pentaquark state: the heavier the constitute quarks, the more tightly bound the pentaquark state PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362
- Search for masses below strong decay threshold

Prospect: RUNI+RUNII

- Data samples
 - 1 fb⁻¹ (7 TeV)+ 2 fb⁻¹ (8 TeV)
 - ~6 fb⁻¹ at 13 TeV with $\sigma_{b\overline{b}} (13 \text{TeV}) / \sigma_{b\overline{b}} (7 \text{TeV}) \approx 2$
- A far from completed list benifited from full RUNI+RUNII data
 - search for excited B_c states
 - precise $m_{X(3872)}-m_{\psi(2S)}$, new decay modes
 - properties of \mathcal{Z}_{cc}^{++} : lifetime, production cross-sections,

new decay modes, ...

- searches for $\Xi_{cc}^+, \Omega_{cc}^+, \Xi_{bc}^+, \Xi_{bc}^0$...

....

- J^P of $P_c(4380) \& P_c(4450)$, new decay modes
- amplitude analysis $\Lambda_b^0 \rightarrow \chi_{c1,2} p K^-$, cusp?
- amplitude analysis $\Xi_b^- \rightarrow J/\psi \Lambda K^-$, new pentaquarks?

Spectroscopy with the upgraded LHCb

• LHCb will be upgraded in 2019, software trigger with 40MHz

- Allow PID at the trigger level great increase (~2x) of trigger efficiency on full hadronic final states
- A new computing approach to data-analysis is needed

Summary

- LHCb has made important contributions to the knowledge of hadron spectroscopy
 - Observation/study of excited B(D) mesons & b(c) baryons
 - Observation/study of exotic states
 - Discovery of doubly charmed baryons

- Stay tuned with new results from RUNI+RUNII
- Spectroscopy at the upgraded LHCb is challenging and promising

. . .

Backup slides

- Similar for $D_I^{0(**)}$ spectroscopy
- Recent theory predictions

S. Godfrey, K. Moats, PRD 93 (2016) 034035

Inclusive studies

 e^+e^- , $pp \rightarrow D^{(*)}^+\pi^-X$

BaBar, PRD 82(2011) 111101

LHCb-PAPER-2013-026 JHEP 09 (2013) 145

LHCb-PAPER-2014-070

LHCb-PAPER-2015-017

PRD 92 (2015) 032002

PRD 92 (2015) 012012

Dalitz plot analyses

 $B^0 o \overline{D}{}^0 \pi^+ \pi^-$

 $B^0 o \overline{D}{}^0 K^+ \pi^-$

• New states

some have unknown J^P

Dalitz plot analysis $B^- o D^+ \pi^- \pi^-$

~28000 events with 1% background

LHCb-PAPER-2016-026 PRD 94 (2016) 072001

References: $\Omega^{(**)}$ mass

D. Ebert, R. N. Faustov, and V. O. Galkin, *Masses of excited heavy baryons in the relativistic quark-diquark picture*, Phys. Lett. **B659** (2008) 612, arXiv:0705.2957.

W. Roberts and M. Pervin, *Heavy baryons in a quark model*, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

H. Garcilazo, J. Vijande, and A. Valcarce, *Faddeev study of heavy-baryon spectroscopy*, J. Phys. **G34** (2007) 961, arXiv:hep-ph/0703257.

S. Migura, D. Merten, B. Metsch, and H.-R. Petry, *Charmed baryons in a relativistic quark model*, Eur. Phys. J. A28 (2006) 41, arXiv:hep-ph/0602153.

D. Ebert, R. N. Faustov, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. **D84** (2011) 014025, arXiv:1105.0583.

A. Valcarce, H. Garcilazo, and J. Vijande, *Towards an understanding of heavy baryon spectroscopy*, Eur. Phys. J. A37 (2008) 217, arXiv:0807.2973.

Z. Shah, K. Thakkar, A. K. Rai, and P. C. Vinodkumar, Mass spectra and Regge trajectories of Λ_c^+ , Σ_c^0 , Ξ_c^0 and Ω_c^0 baryons, Chin. Phys. **C40** (2016) 123102, arXiv:1609.08464.

J. Vijande, A. Valcarce, T. F. Carames, and H. Garcilazo, *Heavy hadron spectroscopy:* A quark model perspective, Int. J. Mod. Phys. **E22** (2013) 1330011, arXiv:1212.4383.

References: $\Omega_c^{(**)}$ masses (cont'd)

T. Yoshida *et al.*, Spectrum of heavy baryons in the quark model, Phys. Rev. **D92** (2015) 114029, arXiv:1510.01067.

H.-X. Chen *et al.*, *P-wave charmed baryons from QCD sum rules*, Phys. Rev. **D91** (2015) 054034, arXiv:1502.01103.

H.-X. Chen et al., *D*-wave charmed and bottomed baryons from QCD sum rules, Phys. Rev. **D94** (2016) 114016, arXiv:1611.02677.

G. Chiladze and A. F. Falk, *Phenomenology of new baryons with charm and strangeness*, Phys. Rev. **D56** (1997) R6738, arXiv:hep-ph/9707507.

M. Padmanath, R. G. Edwards, N. Mathur, and M. Peardon, *Excited-state* spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD, arXiv:1311.4806.

X(3872) quantum number determination

• Re-analysis using 3 fb^{-1} of data without L_{min} assumption

cos0.

LHCb-PAPER-2015-015

cosθ.

 $X(3872) \rightarrow J/\psi\gamma, \psi(2S)\gamma$

LHCb-PAPER-2014-008 NPB 886 (2014) 665

• An important ingredient to reveal the nature of X(3872)

$$\frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

$Z(4430)^{-}$

• Originally found by Belle in $B^0 o \psi(2S) \pi^- K^+$

Belle, PRL 100 (2008) 142001 Belle, PR D80 (2009) 031104 Belle, PR D88 (2013) 074026

• BaBar could not confirm BaBar, PR D79 (2009) 112001

Y. Gao, Hadron Spectroscopy at LHCb

$Z(4430)^{-}$

- LHCb full amplitude analysis using $3 \ fb^{-1}$

LHCb-PAPER-2014-014 PRL 112 (2014) 222002

- $m = 4475 \pm 7 {+ 15 \atop -25} \text{ MeV}/c^2$ $\Gamma = 172 \pm 13 {+ 37 \atop -34} \text{ MeV}/c^2.$
- $J^P = 1^+$ is confirmed
- Argand plot shows a clear

resonance feature

Amplitude analysis of $\Lambda_b^0 \to J/\psi p K$

LHCb, PRL 115(2015) 072001

→ Allows for $\Lambda^* \to pK^-$ resonances to interfere with pentaquark states $P_c^+ \to J/\psi p$

LAB frame

Amplitude analysis of $\Lambda_b^0 \to J/\psi p K$

LHCb, PRL 115(2015) 072001

• Two models to deal with $\Lambda^* o pK$ contributions

State	JP	M_0 (MeV)	Γ_0 (MeV)	Red.	Ext.
Λ(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
Λ(1520)	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
Λ(1600)	$1/2^{+}$	1600	150	3	4
Λ(1670)	$1/2^{-}$	1670	35	3	4
Λ(1690)	$3/2^{-}$	1690	60	5	6
Λ(1800)	$1/2^{-}$	1800	300	4	4
Λ(1810)	$1/2^{+}$	1810	150	3	4
Λ(1820)	$5/2^{+}$	1820	80	1	6
Λ(1830)	$5/2^{-}$	1830	95	1	6
Λ(1890)	$3/2^{+}$	1890	100	3	6
Λ(2100)	$7/2^{-}$	2100	200	1	6
Λ(2110)	$5/2^{+}$	2110	200	1	6
Λ(2350)	$9/2^{+}$	2350	150		6
Λ(2585)	?	≈ 2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed. Red.: Reduced model (fast). Ext.: Allows for more helicity (*LS*) couplings.