强子与重味物理理论与实验联合研讨会

Hadronic B decays and CPV

Ying Li

Yantai University

Lanzhou University
－Why study hadronic B decays
－CP Violation
－2－body B decays
－3－body B decays
－Summary

Why study B decays

Baryon Asymmetry in the Universe：

A violation of the CP symmetry－which causes matter and anti－matter to evolve differently with time－seems to be necessary to explain the existence of matter in the Universe．
CP violation has so far only been found in hadron decays，which are experimentally investigated at LHCb and NA62（CERN），SuperBelle（Japan），．．．

Indirect Search for BSM Physics：

To find hints for Physics beyond the Standard Model we can either use brute force
（ $=$ higher energies）or more subtle strategies like high precision measurements．
New contributions to an observable f are identified via：

$$
f^{\mathrm{SM}}+f^{\mathrm{NP}}=f^{\mathrm{Exp}}
$$

Understanding OCD：

Hadron decays are strongly affected by OCD（strong interactions）effects，which tend to overshadow the interesting fundamental decay dynamics．Theory tools like effective theories，Heavy Quark Expansion，HOET，SCET ，．．．enable a control over QCD－effects and they are used in other fields like Collider Physics，Higgs Physics， DM searches．．．

Standard Model parameters：

Hadron decays depend strongly on Standard Model parameters like quark masses and CKM couplings（which are the only known source of CP violation in the SM）．A precise knowledge of these parameters is needed for all branches of particle physics．

CP Violation and CKM

Mass Eigenstates \neq Weak Eigenstates \Rightarrow Quark Mixing

$$
\mathrm{V}_{\mathrm{CKM}}=\left[\begin{array}{c|c|c}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right]
$$

CKM Matrix

Complex matrix described by 4 independent real parameters

Wolfenstein parametrization：

$$
\mathrm{V}_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & \mathrm{~A} \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & \mathrm{~A} \lambda^{2} \\
\mathrm{~A} \lambda^{3}(1-\rho(\mathrm{i} \eta) & -\mathrm{A} \lambda^{2} & 1
\end{array}\right) \text { phase }
$$

CP Violation：

$$
\mathrm{J} \approx \mathrm{~A}^{2} \lambda^{6} \eta
$$

$$
\begin{aligned}
& J=\operatorname{Im}\left(V_{i k} V_{j \mathrm{k}}^{*} V_{j \ell} V_{\mathrm{i} \ell}^{*}\right) \neq 0 \\
& \quad \eta=0 \Rightarrow \text { no CPV from SM }
\end{aligned}
$$

CP Violation and CKM

CP Violation and CKM

Direction CP Violation

$$
\operatorname{Amp}(\bar{P} \rightarrow \bar{f})
$$

$A_{C P}^{\dot{d i}}=\frac{\Gamma(\bar{B} \rightarrow \bar{f})-\Gamma(B \rightarrow f)}{\Gamma(\bar{B} \rightarrow \bar{f})+\Gamma(B \rightarrow f)}=\frac{2 r \sin \Delta \phi \sin \Delta \delta}{1+r^{2}+2 r \cos \Delta \phi \cos \Delta \delta}$

CP Violation in Oscillation

$$
\frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}} .} \quad \mathcal{A}_{C P}=\frac{1-|p / q|^{4}}{1+|p / q|^{4}}
$$

Mixing CP Violation

$$
\begin{aligned}
& \frac{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)-\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow \bar{f}\right)}{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)+\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow \bar{f}\right)}=\left[\frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos \left(\Delta M_{q} t\right)+\mathcal{A}_{\mathrm{CP}}^{\text {mix }} \sin \left(\Delta M_{q} t\right)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)-\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{q} t / 2\right)}\right] \\
& \mathcal{A}_{\mathrm{CP}}^{\text {dir }}=\frac{1-\left|\xi_{f}^{(q)}\right|^{2}}{1+\left|\xi_{f}^{(q)}\right|^{2}}=\underbrace{\frac{\left|A\left(B_{q}^{0} \rightarrow f\right)\right|^{2}-\left|A\left(\overline{B_{q}^{0}} \rightarrow \bar{f}\right)\right|^{2}}{\left|A\left(B_{q}^{0} \rightarrow f\right)\right|^{2}+\left|A\left(\overline{B_{q}^{0}} \rightarrow \bar{f}\right)\right|^{2}}}_{\text {"direct" CP violation }} \\
& \mathcal{A}_{\mathrm{CP}}^{\text {mix }}=\frac{2 \operatorname{lm} \xi_{f}^{(q)}}{1+\left|\xi_{f}^{(q)}\right|^{2}} \Rightarrow \text { "mixing-induced" CP violation }^{1+\left|\xi_{f}^{(q)}\right|^{2}} \Rightarrow \operatorname{A}_{\Delta \Gamma} \\
& \mathcal{A}_{\Delta \mathrm{L}}=\frac{2 \operatorname{Re} \xi_{f}^{(q)}}{}
\end{aligned}
$$

$$
\xi_{f}^{(q)} \sim e^{-i \phi q}\left[\frac{A\left(\overline{B_{q}^{0}} \rightarrow f\right)}{A\left(B_{q}^{0} \rightarrow f\right)}\right]
$$

$$
\left(\begin{array}{c}
\overline{B_{q}^{0}} \\
\\
\\
B_{q}^{0}
\end{array} f_{f}\right.
$$

$$
\phi_{q} \stackrel{\mathrm{SM}}{=} 2 \arg \left(V_{t q}^{*} V_{t b}\right)=\left\{\begin{array}{ccc}
+2 \beta & (q=d) & \vec{b}{ }^{t} \\
-2 \delta \gamma\left(=-2 \lambda^{2} \eta\right) & (q=s) & { }_{q}{ }^{W} W^{t}{ }^{t} \\
-1
\end{array}\right.
$$

Hierarchy of Scales

$$
\underbrace{\Lambda_{\mathrm{NP}} \sim 10^{(0 \ldots ?)} \mathrm{TeV} \gg \Lambda_{\mathrm{EW}} \sim 10^{-1} \mathrm{TeV}}_{\text {(very) short distances }} \ggg \underbrace{\Lambda_{\mathrm{QCD}} \sim 10^{-4} \mathrm{TeV}}_{\text {long distances }}
$$

－Powerful theoretical concepts／techniques：

$$
\rightarrow \text { "Effective Field Theories" }
$$

－Heavy degrees of freedom（NP particles，top，Z, W ）are＂integrated out＂from appearing explicitly：\rightarrow short－distance loop functions．
－Calculation of perturbative QCD corrections．
－Renormalization group allows the summation of large $\log \left(\mu_{\mathrm{SD}} / \mu_{\mathrm{LD}}\right)$ ．
－Applied to the SM and various NP scenarios，such as the following：
－MSSM，UED，WED，LH，LHT，Z^{\prime} models，．．．

Low－energy Effective Hamiltonian

－Separation of short－distance from long－distance contributions（OPE）：

$$
\left\langle\bar{f} \mid \mathcal{H}_{\text {eff }} \bar{B}\right\rangle=\frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{j} \lambda_{\mathrm{CKM}}^{j} \sum_{k} C_{k}(\mu)\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle
$$

［ G_{F} ：Fermi＇s constant，$\lambda_{\mathrm{CKM}}^{j}$ ：CKM factors，μ ：renormalization scale］
－Short－distance physics：［Buras et al．；Martinelli et al．（＇90s）；．．．］
\rightarrow Wilson coefficients $C_{k}(\mu) \rightarrow$ perturbative quantities \rightarrow known！

－Long－distance physics：
\rightarrow matrix elements $\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle \rightarrow$ non－perturbative \rightarrow＂unknown＂！？

Theoretical Framework of Hadronic B decays

$$
\left|A_{j}\right| e^{i \delta_{j}} \propto \sum_{k} \underbrace{C_{k}(\mu)}_{\text {pert. QCD }} \times\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle
$$

－QCD factorization（QCDF）：

Beneke，Buchalla，Neubert \＆Sachrajda（99－01）；Beneke \＆Jäger（05）；．．．Bell，Bobeth，．．
－Perturbative Hard－Scattering（PQCD）Approach：
Li \＆Yu（＇95）；Cheng，Li \＆Yang（＇99）；Keum，Li \＆Sanda（＇00）；
－Soft Collinear Effective Theory（SCET）：
Bauer，Pirjol \＆Stewart（2001）；Bauer，Grinstein，Pirjol \＆Stewart（2003）；．．．
－QCD sum rules：
Khodjamirian（2001）；Khodjamirian，Mannel \＆Melic（2003）；．．．

$$
\Rightarrow \quad \text { Lots of (technical) progress, still a theoretical challenge }
$$

QCD Factorization

$\left\langle M_{1} M_{2}\right| \mathcal{O}|B\rangle=F^{B M_{1}} \int d u T^{\prime}(u) \phi_{M_{2}}(u)+\int d \omega d u d v T^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(u) \phi_{M_{2}}(v)$

\triangleright Vertex corrections：$T^{\prime}(u)=1+\mathcal{O}\left(\alpha_{s}\right)$
\triangleright Spectator scattering：$T^{\prime \prime}(\omega, u, v)=\mathcal{O}\left(\alpha_{s}\right) \quad$－（power suppressed if M_{1} is heavy）
\triangleright Strong phases are perturbative $\left[\mathcal{O}\left(\alpha_{s}\right)\right]$ or power suppressed $\left[\mathcal{O}\left(\Lambda / m_{b}\right)\right]$ ．

QCD Factorization

Two hard－scattering kernels for each operator insertion：T^{\prime}（vertex），$T^{\prime \prime}$（spectator）

$$
\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

and two classes of topological amplitudes：＂Tree＂，＂Penguin＂．

	T^{\prime} ，tree	T^{\prime} ，penguin	$T^{\prime \prime}$ ，tree	$T^{\prime \prime}$ ，penguin
LO： $\mathcal{O}(1)$				
NLO： $\mathcal{O}\left(\alpha_{s}\right)$ BBNS＇99－＇04				
NNLO： $\mathcal{O}\left(\alpha_{s}^{2}\right)$	Beneke，Huber，Li＇09	Kim，Yoon＇11，Bel！ Beneke，Huber，Li＇15	Beneke，Jager＇05 Kivel＇06，Pilipp＇07	Beneke，Jager＇06 Jain，Rothstein， Stewart＇07

QCD Factorization

Two hard－scattering kernels for each operator insertion：T^{\prime}（vertex），$T^{\prime \prime}$（spectator）

$$
\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

and two classes of topological amplitudes：＂Tree＂，＂Penguin＂．

	T^{\prime} ，tree	T^{\prime} ，penguin	$T^{\prime \prime}$ ，tree	$T^{\prime \prime}$ ，penguin
LO： $\mathcal{O}(1)$				
NLO： $\mathcal{O}\left(\alpha_{s}\right)$ BBNS＇99－＇04		Benelke，Rbhrer，Yarg， chens，pong Gheng，Yang，Chua ©heng，Yang	eng，	
NNLO： $\mathcal{O}\left(\alpha_{s}^{2}\right)$		Kim，Yoon＇11，Bell Beneke，Huber，Li＇15	Beneke，Jager＇05 Kivel＇06，Pilipp＇07	Beneke，Jager＇06 Jain，Rothstein， Stewart＇07

QCD Factorization

$$
\begin{aligned}
T \equiv a_{1}(\pi \pi)= & 1.009+[0.023+0.010 i]_{\mathrm{NLO}}+[0.026+0.028 i]_{\mathrm{NNLO}} \\
& -\left[\frac{r_{\mathrm{sp}}}{0.485}\right]\left\{[0.015]_{\mathrm{LOsp}}+[0.037+0.029 i]_{\mathrm{NLOsp}}+[0.009]_{\mathrm{tw} 3}\right\} \\
= & \left.1.00+0.01 i \rightarrow 0.93-0.02 i \quad \text { (if } 2 \times r_{\text {sp }}\right) \\
C \equiv a_{2}(\pi \pi)= & 0.220-[0.179+0.077 i]_{\mathrm{NLO}}-[0.031+0.050 i]_{\mathrm{NNLO}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.485}\right]\left\{[0.123]_{\mathrm{LOsp}}+[0.053+0.054 i]_{\mathrm{NLOsp}}+[0.072]_{\mathrm{tw} 3}\right\} \\
= & 0.26-0.07 i \rightarrow 0.51-0.02 i \quad\left(\text { if } 2 \times r_{\text {sp }}\right)
\end{aligned}
$$

	Theory I	Theory II	Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	$5.43{ }_{-0.06}^{+0.06 ~}{ }_{-0.84}^{+1.45} \quad(\star)$	$5.82{ }_{-0.06}^{+0.07}+1.42$（ ${ }_{\text {－}}$（	$5.59{ }_{-0.40}^{+0.41}$
$\bar{B}_{d}^{0} \rightarrow \pi^{+} \pi^{-}$	$7.37{ }_{-0.69}^{+0.86{ }_{-0.97}^{+1.22}}$（ \star ）	$5.70{ }_{-0.55}^{+0.70}{ }_{-0.97}^{+1.16}$（ $*$ ）	5.16 ± 0.22
$\bar{B}_{d}^{0} \rightarrow \pi^{0} \pi^{0}$	$0.33{ }_{-0.08}^{+0.11}{ }_{-0.17}^{+0.42}$	$0.63{ }_{-0.10}^{+0.12}{ }_{-0.42}^{+0.64}$	1.55 ± 0.19
		BELLE CKM 14：	0.90 ± 0.16

QCD Factorization

$$
\begin{aligned}
a_{4}^{u}(\pi \bar{K}) / 10^{-2}= & -2.87-[0.09+0.09 i]_{\mathrm{v}_{1}}+[0.49-1.32 i]_{\mathrm{P}_{1}}-[0.32+0.71 i]_{\mathrm{P}_{2}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.434}\right]\left\{[0.13]_{\mathrm{LO}}+[0.14+0.12 i]_{\mathrm{HV}}-[0.01-0.05 i]_{\mathrm{HP}}+[0.07]_{\mathrm{tw} 3}\right\} \\
= & \left(-2.46_{-0.24}^{+0.49}\right)+\left(-1.94_{-0.20}^{+0.32}\right) i \\
a_{4}^{c}(\pi \bar{K}) / 10^{-2}= & -2.87-[0.09+0.09 i]_{\mathrm{v}_{1}}+[0.05-0.62 i]_{\mathrm{P}_{1}}-[0.77+0.50 i]_{\mathrm{P}_{2}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.434}\right]\left\{[0.13]_{\mathrm{LO}}+[0.14+0.12 i]_{\mathrm{HV}}+[0.01+0.03 i]_{\mathrm{HP}}+[0.07]_{\mathrm{tw} 3}\right\} \\
= & \left(-3.34_{-0.27}^{+0.43}\right)+\left(-1.05_{-0.36}^{+0.45}\right) i
\end{aligned}
$$

f	NLO	NNLO	NNLO＋LD	Exp
$\pi^{-} \bar{K}^{0}$	$0.71{ }_{-0.14}^{+0.13}{ }_{-0.19}^{+0.21}$	$0.77{ }_{-0.15}^{+0.14}+0.22$	$0.10_{-0.02}^{+0.02+1.24}$	-1.7 ± 1.6
$\pi^{0} K^{-}$	$9.42{ }_{-1.76-1.88}^{+1.77}$	$10.18_{-1.90}^{+1.91}+2.03$	$-1.17_{-0.22}^{+0.22}+20.60$	4.0 ± 2.1
$\pi^{+} K^{-}$	$7.25{ }_{-1.36-2.58}^{+1.36}$	$8.08{ }_{-1.51}^{+1.52+2.65}$	$-3.23_{-0.61}^{+0.61+3.36}$	-8.2 ± 0.6
$\pi^{0} \bar{K}^{0}$	$-4.27_{-0.77}^{+0.83}+1.48$	$-4.33_{-0.78}^{+0.84}+3.29$	$-1.411_{-0.25}^{+0.27}+{ }_{-6.10}^{+54}$	1 ± 10
$\delta(\pi \bar{K})$	$2.17{ }_{-0.40}^{+0.40}+1.39$	$2.10_{-0.39-2.86}^{+0.39+1.40}$	$2.07{ }_{-0.39}^{+0.39+2.76}$	12.2 ± 2.2
$\Delta(\pi \bar{K})$	$-1.15_{-0.22}^{+0.21}{ }_{-0.84}^{+0.55}$	$-0.88_{-0.17}^{+0.16}{ }_{-0.91}^{+1.31}$	$-0.48{ }_{-0.09}^{+0.09+1.09}$	-14 ± 11

QCD Factorization

Main limitation of QCDF approach，e．g．weak annihilation

$$
\sim \quad \int d \omega d u d v T(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u) \text { ? }
$$

－convolutions diverge at endpoints \Rightarrow non－factorisation in SCET－2
－currently modelled with arbitrary soft rescattering phase

Pure annihilation decays

$$
10^{6} \mathrm{Br}\left(B_{d} \rightarrow K^{+} K^{-}\right)=0.13 \pm 0.05 \quad(\Delta D=1, \text { exchange topology })
$$

$10^{6} \operatorname{Br}\left(B_{S} \rightarrow \pi^{+} \pi^{-}\right)=0.76 \pm 0.13 \quad(\Delta S=1$ ，penguin annihilation $)$
\Rightarrow extract weak annihilation amplitudes from data
\triangleright Or use＂clean＂combinations，e．g．$\Delta=T-P$ in penguin mediated decays

Perturbative QCD Approach

Li，Lu，Sanda，Kuem，Yang

Perturbative QCD Approach

Li，Lu，Sanda，Kuem，Yang

$$
\mathcal{A} \sim C(t) \Phi(x) H(t) \exp \left\{-s(s, p)-2 \int_{1 / b}^{t} \frac{d \mu}{\mu} \gamma_{q}\left(\alpha_{s}(\mu)\right)\right\}
$$

Perturbative QCD Approach

Li，Lu，Sanda，Kuem，Yang

Perturbative QCD Approach

Mishima，Li

Mode	Data［1］	LO	LO ${ }_{\text {NLOWC }}$	＋VC	＋QL＋MP	＋NLO
$B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$	${ }^{0} \quad 24.1 \pm 1.3$	17.3	32.9	31.6	$\begin{array}{lll}34.9 & 24.5\end{array}$	$24.9{ }_{-8.2(+8.2)}^{+13.9}$
$B^{ \pm} \rightarrow \pi^{0} K^{ \pm}$	$\pm \quad 12.1 \pm 0.8$	10.4	18.7	17.7	$\begin{array}{lll}19.7 & 14.2\end{array}$	$14.2{ }_{-5.8}^{+10.2}\left(+\begin{array}{c}\text { 7．1 } \\ -4.3)\end{array}\right.$
$B^{0} \rightarrow \pi^{\mp} K^{ \pm}$	$\pm 18.9 \pm 0.7$	14.3	28.0	26.9	$29.7 \quad 20.7$	$21.1_{-8.4(-6.6)}^{+15.7}$
$B^{0} \rightarrow \pi^{0} K^{0}$	11.5 ± 1.0	5.7	12.2	11.9	$13.0 \quad 8.8$	
$B^{0} \rightarrow \pi^{\mp} \pi^{ \pm}$	$\pm 5.0 \pm 0.4$	7.1	6.8	6.6	6.96 .7	$6.6{ }_{-3.8}^{+6.7}(+2.7)$
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$	5.5 ± 0.6	3.5	4.2	4.1	4.24 .2	$4.1+3.5(+1.7)$
$B^{0} \rightarrow \pi^{0} \pi^{0}$	1.45 ± 0.29	0.12	0.28	0.37	$\begin{array}{ll}0.29 & 0.21\end{array}$	$10.30^{+0.49(+0.12)}$
Mode	Data［1］	LO	$\mathrm{LO}_{\text {NLOWC }}$	＋VC	＋QL＋MP	＋NLO
$B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$	-0.02 ± 0.04	－0．01	－0．01	－0．01	$0.00-0.01$	0.00 ± 0.00（ $\pm 0.00)$
$B^{ \pm} \rightarrow \pi^{0} K^{ \pm}$	0.04 ± 0.04	－0．08	－0．06	－0．01－	$-0.05-0.08$	$-0.01_{-0.05}^{+0.03}(+0.05)$
$B^{0} \rightarrow \pi^{\mp} K^{ \pm}$	-0.115 ± 0.018	－0．12	－0．08	－0．09－	－0．06－0．10	${ }_{-0.09}^{+0.008(+0.04)}$
$B^{0} \rightarrow \pi^{0} K^{0}$	－	－0．02	0.00	－0．07	$0.00 \quad 0.00$	${ }_{-0.07}^{+0.033}+{ }_{-0.01)}^{+0.01)}$
$B^{0} \rightarrow \pi^{\mp} \pi^{ \pm}$	0.37 ± 0.10	0.14	0.19	0.21	$\begin{array}{ll}0.16 & 0.20\end{array}$	$0.188_{-0.12}^{+0.20}(+0.07)$
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$	0.01 ± 0.06	0.00	0.00	0.00	$\begin{array}{lll}0.00 & 0.00\end{array}$	$0.00 \pm 0.00(\pm 0.00)$
$B^{0} \rightarrow \pi^{0} \pi^{0}$	$0.28{ }_{-0.39}^{+0.40}$	－0．04	－0．34	0.65	－0．41－0．43	$0.63_{-0.34}^{+0.35}(+-0.15)$

NLO Calculation

Xiao，Cheng，Lu，Li，Wang．．

NLO Calculation

Wang，Shen，Cheng，Li，．．

Channel	LO	NLO_{0}［16］	NLO	QCDF［39］	Data
$\operatorname{Br}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$	6.87	7.67	$7.69_{-2.67}^{+3.27}$	8.9	5.11 ± 0.22
$\operatorname{Br}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$	3.54	4.27	$4.27_{-1.47}^{+1.85}$	6.0	$5.38_{-0.34}^{+0.35}$
$\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$	0.12	0.23	$0.24_{-0.07}^{+0.09}$	0.3	0.9 ± 0.12

Diagrammatic Approach

With SU（3）symmetry and data，the magnitude of each diagram can be fitted．

Diagrammatic Approach－FAT

Zhou，Yu，Lu，YL，．．．

（a）P

（c）P_{E}

（b）$P_{C}\left(P_{E W}\right)$

（d）P_{A}

$$
\begin{aligned}
& T^{P_{1} P_{2}}=i \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u q^{\prime}} a_{1}(\mu) f_{p_{2}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right) \\
& C^{P_{1} P_{2}}=i \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u q^{\prime}} \chi^{C} \mathrm{e}^{i \phi^{C}} f_{p_{2}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right) \\
& E^{P_{1} P_{2}}=i \frac{G_{F}}{\sqrt{2}} V_{u b} V_{u q^{\prime}} \chi^{E} \mathrm{e}^{i \phi^{E}} f_{B} m_{B}^{2}\left(\frac{f_{p_{1}} f_{p_{2}}}{f_{\pi}^{2}}\right) \\
& P^{P P}=-i \frac{G_{F}}{\sqrt{2}} V_{t b} V_{t q^{\prime}}^{*}\left[a_{4}(\mu)+\chi^{P} \mathrm{e}^{i \phi^{P}} r_{\chi}\right] f_{p_{2}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right) \\
& P_{C}^{P P}=-i \frac{G_{F}}{\sqrt{2}} V_{t b} V_{t q^{\prime}}^{*} \chi^{P_{C}} \mathrm{e}^{i \phi^{P} C} f_{p_{2}}\left(m_{B}^{2}-m_{p_{1}}^{2}\right) F_{0}^{B P_{1}}\left(m_{p_{2}}^{2}\right)
\end{aligned}
$$

$$
P_{A}^{P V}=-\sqrt{2} G_{F} V_{t b} V_{t d^{\prime}}^{*} \chi^{P_{A}} \mathrm{e}^{i \phi^{P_{A}}} f_{B} m_{V}\left(\frac{f_{P} f_{V}}{f_{\pi}^{2}}\right)\left(\varepsilon_{V}^{*} \cdot p_{B}\right) .
$$

B \rightarrow PP，PV
－ $37 \mathrm{BF}+11 \mathrm{CP}$
o 16 dof
$B \rightarrow V V$
O $18 \mathrm{BF}+20 \mathrm{P}+6 \mathrm{PHAS}+2 \mathrm{CP}$
O 10 dof

Diagrammatic Approach－FAT

Mode	Amplitudes	Exp	This work
$\pi^{-} \pi^{0}$	$T, C, P_{E W}$	$\star 5.5 \pm 0.4$	$5.08 \pm 0.39 \pm 1.02 \pm 0.02$
$\pi^{-} \eta$	$T, C, P, P_{C}, P_{E W}$	$\star 4.02 \pm 0.27$	$4.13 \pm 0.25 \pm 0.64 \pm 0.01$
$\pi^{-} \eta^{\prime}$	$T, C, P, P_{C}, P_{E W}$	$\star 2.7 \pm 0.9$	$3.37 \pm 0.21 \pm 0.49 \pm 0.01$
$\pi^{+} \pi^{-}$	$T, E,\left(P_{E}\right), P$	$\star 5.12 \pm 0.19$	$5.15 \pm 0.36 \pm 1.31 \pm 0.14$
$\pi^{0} \pi^{0}$	$C, E, P,\left(P_{E}\right), P_{E}$	$\star 1.91 \pm 0.22$	$1.94 \pm 0.30 \pm 0.28 \pm 0.05$
$\pi^{-} \bar{K}^{0}$	P	$\star 23.7 \pm 0.8$	$23.2 \pm 0.6 \pm 4.6 \pm 0.2$
$\pi^{0} K^{-}$	$T, C, P, P_{E W}$	$\star 12.9 \pm 0.5$	$12.8 \pm 0.32 \pm 2.35 \pm 0.10$
ηK^{-}	$T, C, P, P_{C}, P_{E W}$	$\star 2.4 \pm 0.4$	$2.0 \pm 0.13 \pm 1.19 \pm 0.03$
$\eta^{\prime} K^{-}$	$T, C, P, P_{C}, P_{E W}$	$\star 70.6 \pm 2.5$	$70.1 \pm 4.7 \pm 11.3 \pm 0.22$
$\pi^{+} K^{-}$	T, P	$\star 19.6 \pm 0.5$	$19.8 \pm 0.54 \pm 4.0 \pm 0.2$
$\pi^{0} \overline{K^{0}}$	$C, P, P_{E W}$	$\star 9.9 \pm 0.5$	$8.96 \pm 0.26 \pm 1.96 \pm 0.09$

Mode	$\mathcal{A}_{\text {exp }}$	$\mathcal{A}_{\text {this work }}$
$\pi^{+} \pi^{-}$	\mathcal{A}	
$\pi^{0} \pi^{0}$	0.43 ± 0.24	0.57 ± 0.06
$\pi^{0} \eta$		-0.16 ± 0.16
$\pi^{0} \eta^{\prime}$		0.39 ± 0.14
$\eta \eta$	-0.85 ± 0.06	
η^{\prime}		-0.97 ± 0.04
$\eta^{\prime} \eta^{\prime}$		-0.87 ± 0.07
$\pi^{0} K_{s}$	0.00 ± 0.13	-0.14 ± 0.03
ηK_{s}		-0.30 ± 0.10
$\eta^{\prime} K_{s}$	0.06 ± 0.04	0.030 ± 0.004
$K^{0} \bar{K}^{0}$		-0.057 ± 0.002
$\pi^{-} \pi^{0}$	0.03 ± 0.04	-0.026 ± 0.003
$\pi^{-} \eta$	-0.14 ± 0.07	-0.14 ± 0.07
$\pi^{-} \eta^{\prime}$	0.06 ± 0.16	0.37 ± 0.07
$\pi^{-} \bar{K}^{0}$	-0.017 ± 0.016	0.0027 ± 0.0001
$\pi^{0} K^{-}$	0.037 ± 0.021	0.065 ± 0.024
ηK^{-}	$\star-0.37 \pm 0.08$	-0.22 ± 0.08
$\eta^{\prime} K^{-}$	0.013 ± 0.017	-0.021 ± 0.007
$K^{-} K^{0}$	-0.21 ± 0.14	-0.057 ± 0.002
$\pi^{+} K^{-}$	-0.082 ± 0.006	-0.081 ± 0.0053

3－body Decays

Data are results of entangled nonresonant and resonant contributions，and of different partial waves．

Developing a reliable theoretical approach to 3－body hadronic B decays is important．
－Understand data and predict direct CP asymmetries of 3－body decay modes in localized regions of phase space
－Very challenging！

3－body Decays

－Factorization Approach Cheng，Chua，S．Fajfer，YLi，．．．
－PQCD Li，Chen，Wang，Wang，Lu，．．．
－QCD Factorization Krankl，Mannel，Virto，．．．
－Diagrammatic Approach combined SU（3）Gronau，London
－QCD Sum Rules Alexander Khodjamirian，．．．
－Others Feldman，Guo，He，Yang，．．．

3－body Decays－Factorization

Cheng，Chua，Li，．．

3－body Decays－QCDF

Krankle，Mannel，Virto，．．．

$$
\left\langle\pi^{+} \pi^{-} \pi^{+}\right| \mathcal{O}_{i}\left|B^{+}\right\rangle_{s_{i j} \sim 1 / 3}=T_{i}^{I} \otimes F^{B \rightarrow \pi} \otimes \Phi_{\pi} \otimes \Phi_{\pi}+T_{i}^{I I} \otimes \Phi_{B} \otimes \Phi_{\pi} \otimes \Phi_{\pi} \otimes \Phi_{\pi}
$$

$$
\begin{aligned}
\left\langle\pi^{a} \pi^{b} \pi^{c}\right| \mathcal{O}_{i}|B\rangle_{s_{a b} \ll 1} & =T_{c}^{I} \otimes F^{B \rightarrow \pi^{c}} \otimes \Phi_{\pi^{a} \pi^{b}}+T_{a b}^{I} \otimes F^{B \rightarrow \pi^{a} \pi^{b}} \otimes \Phi_{\pi^{c}} \\
& +T^{I I} \otimes \Phi_{B} \otimes \Phi_{\pi^{c}} \otimes \Phi_{\pi^{a} \pi^{b}}
\end{aligned}
$$

3－body Decays－PQCD

partial counting

$$
\mathcal{A}=\phi_{B} \otimes H \otimes \phi_{h_{1} h_{2}} \otimes \phi_{h_{3}}
$$

Xiao，Li，Li，．．．
256 Feynman diagrams

LI，Xiao，Wang，Lu，Li．．．

3－body Decays－PQCD

		Results	Xiao，
$K^{+} \pi^{+} \pi^{-}$	$\mathcal{B}\left(10^{-6}\right)$	$3.42_{-0.55}^{+0.78}\left(\omega_{B}\right)_{-0.39}^{+0.44}\left(a_{2}^{t}\right)_{-0.38}^{+0.39}\left(m_{0}^{K}\right)_{-0.32}^{+0.39}\left(a_{2}^{0}\right)_{-0.28}^{+0.29}\left(a_{2}^{s}\right)$	3.7 ± 0.5
	$\mathcal{A}_{C P}$	$0.43_{-0.05}^{+0.04}\left(\omega_{B}\right) \pm 0.06\left(a_{2}^{t}\right) \pm 0.03\left(m_{0}^{K}\right) \pm 0.03\left(a_{2}^{0}\right) \pm 0.01\left(a_{2}^{s}\right)$	0.37 ± 0.10
$K^{0} \pi^{+} \pi^{0}$	$\mathcal{B}\left(10^{-6}\right)$	$7.43_{-1.31}^{+1.92}\left(\omega_{B}\right)_{-1.42}^{+1.65}\left(a_{2}^{t}\right)_{-0.91}^{+0.88}\left(m_{0}^{K}\right)_{-0.62}^{+0.60}\left(a_{2}^{0}+0.0 .47\right.$	
	$\mathcal{A}_{C P}^{+0.53}\left(a_{2}^{s}\right)$	8.0 ± 1.5	
$K^{+} \pi^{-} \pi^{0}$	$\mathcal{B}\left(10^{-6}\right)$	$0.15_{-0.01}^{+0.02}\left(\omega_{B}\right)_{-0.05}^{+0.04}\left(a_{2}^{t}\right) \pm 0.01\left(m_{0}^{K}\right)_{-0.00}^{+0.01}\left(a_{2}^{0}\right) \pm 0.00\left(a_{2}^{s}\right)$	-0.12 ± 0.17
	$6.51_{-1.12}^{+1.71}\left(\omega_{B}\right)_{-0.61}^{+0.58}\left(a_{2}^{t}\right)_{-0.77}^{+0.78}\left(m_{0}^{K}\right)_{-0.64}^{+0.67}\left(a_{2}^{0}\right)_{-0.47}^{+0.39}\left(a_{2}^{s}\right)$	7.0 ± 0.9	
$K^{0} \pi^{+} \pi^{-}$	$\mathcal{B}\left(10^{-6}\right)$	$0.31_{-0.01}^{+0.00}\left(\omega_{B}\right)_{-0.08}^{+0.09}\left(a_{2}^{t}\right)_{-0.02}^{+0.03}\left(m_{0}^{K}\right) \pm 0.01\left(a_{2}^{0}\right) \pm 0.02\left(a_{2}^{s}\right)$	0.20 ± 0.11
	$3.76_{-0.74}^{+1.09}\left(\omega_{B}\right)_{-0.60}^{+0.73}\left(a_{2}^{t}\right)_{-0.47}^{+0.5}\left(m_{0}^{K}\right)_{-0.25}^{+0.28}\left(a_{2}^{0}\right)_{-0.23}^{+0.26}\left(a_{2}^{s}\right)$	4.7 ± 0.6	
	$\mathcal{A}_{C P}$	$0.06_{-0.02}^{+0.01}\left(\omega_{B}\right)_{-0.01}^{+0.00}\left(a_{2}^{t}\right) \pm 0.00\left(m_{0}^{K}\right)_{-0.01}^{+0.00}\left(a_{2}^{0}\right) \pm 0.00\left(a_{2}^{s}\right)$	-

$$
A_{C P}^{r e g}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right)=0.52_{-0.22}^{+0.12}\left(\omega_{B}\right)_{-0.09}^{+0.11}\left(a_{2}^{\pi}\right)_{-0.03}^{+0.03}\left(m_{0}^{\pi}\right)
$$

$$
A_{C P}^{\text {region }}\left(\pi^{+} \pi^{-} \pi^{-}\right)=0.584 \pm 0.082 \pm 0.027 \pm 0.007
$$

Summary

O 2－body decays
Power corrections
NLO calculation of PQCD
Determine the Wave function of Heavy meson
New Physics effects
O 3－body decays

Lots of data，great potential
How to deal with resonance contribution
2－meson LCDAs and B－＞PP form factor
Center region－＞merge

Thanks for your attention！

