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MOTIVATION FOR FLAVOUR PHYSICS

 

 

Baryon Asymmetry in the Universe:  
A violation of the CP symmetry  - which causes matter and anti-matter to evolve 
differently with time - seems to be necessary to explain the existence of matter in 
the Universe. 
CP violation has so far only been found in hadron decays, which are 
experimentally investigated at LHCb and NA62 (CERN), SuperBelle (Japan),…

Indirect Search for BSM Physics:  
To find hints for Physics beyond the Standard Model we can either use brute force 
 (= higher energies) or more subtle strategies like high precision measurements.  
New contributions to an observable f are identified via:

Understanding QCD:  
Hadron decays are strongly affected by QCD (strong interactions) effects, which 
tend to overshadow the interesting fundamental decay dynamics. Theory tools like 
effective theories, Heavy Quark Expansion,  HQET, SCET ,…enable a control over 
QCD-effects and they are used in other fields like Collider Physics, Higgs Physics, 
DM searches…

Standard Model parameters:  
Hadron decays depend strongly on Standard Model parameters like quark masses and 
CKM couplings (which are the only known source of CP violation in the SM). A precise 
knowledge of these parameters  is needed for all branches of particle physics.

fSM + fNP = fExp

Why study B decays
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CP Violation and CKM
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CP Violation and CKM

5 烟台⼤大学-李李营 - 2018年年3⽉月31⽇日



Where do we stand?
The Current “Tensions”

More Flavour and CP Violation
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T. Mannel, Siegen University Theory Summary

CP Violation and CKM
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Direction CP Violation
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CP Violation in Oscillation
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Mixing CP Violation
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Hierarchy of Scales

⇤NP ⇠ 10

(0...?)TeV � ⇤EW ⇠ 10

�1TeV| {z }
(very) short distances

�� ⇤QCD ⇠ 10

�4TeV| {z }
long distances

• Powerful theoretical concepts/techniques:

! “E↵ective Field Theories”

– Heavy degrees of freedom (NP particles, top, Z, W ) are “integrated
out” from appearing explicitly: ! short-distance loop functions.

– Calculation of perturbative QCD corrections.

– Renormalization group allows the summation of large log(µSD/µLD).

• Applied to the SM and various NP scenarios, such as the following:

– MSSM, UED, WED, LH, LHT, Z 0 models, ...

[! talks by Wolfgang Altmannshofer and Jorge Martin Camalich]

Hierarchy  of Scales
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Low-Energy E↵ective Hamiltonians

• Separation of short-distance from long-distance contributions (OPE):

hf |He↵|Bi =

GFp
2

P
j �j

CKM

P
k Ck(µ) hf |Qj

k(µ)|Bi

[GF: Fermi’s constant, �j
CKM: CKM factors, µ: renormalization scale]

• Short-distance physics: [Buras et al.; Martinelli et al. (’90s); ...]

! Wilson coe�cients Ck(µ) ! perturbative quantities ! known!

b bc c

s s

u

u
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W
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s s

u

u WO1,2

b bc c

s s

u

u

• Long-distance physics:

! matrix elements hf |Qj
k(µ)|Bi ! non-perturbative ! “unknown”!?

Low-energy Effective Hamiltonian
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Theoretical Framework for Non-Leptonic B Decays

|Aj|ei�j / P
k

Ck(µ)| {z }
pert. QCD

⇥ hf |Qj
k(µ)|Bi

• QCD factorization (QCDF):

Beneke, Buchalla, Neubert & Sachrajda (99–01); Beneke & Jäger (05); ... Bell, Bobeth, ...

• Perturbative Hard-Scattering (PQCD) Approach:

Li & Yu (’95); Cheng, Li & Yang (’99); Keum, Li & Sanda (’00); ...

• Soft Collinear E↵ective Theory (SCET):

Bauer, Pirjol & Stewart (2001); Bauer, Grinstein, Pirjol & Stewart (2003); ...

• QCD sum rules:

Khodjamirian (2001); Khodjamirian, Mannel & Melic (2003); ...

) Lots of (technical) progress, still a theoretical challenge

[! talk by Rahul Sinha]

Theoretical Framework of Hadronic B decays
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QCD Factorization
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QCD Factorization
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QCD Factorization

PP, PV           BBNS, Cheng, Yang, Chua 
VV,                Beneke, Rohrer, Yang, Cheng, Chua 
AP,AV, AA       Cheng, Yang 
SP,SV             Cheng, Yang, Chua 
TP, TV            Cheng, Yang 
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QCD Factorization
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QCD Factorization
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QCD Factorization
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Perturbative QCD Approach

Li, Lu, Sanda, Kuem, Yang
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Perturbative QCD Approach

Li, Lu, Sanda, Kuem, Yang
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Perturbative QCD Approach

Li, Lu, Sanda, Kuem, Yang
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Perturbative QCD Approach
Mishima, Li
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NLO Calculation
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FIG. 3: Vertex corrections to Fig. 1(a).

(d) (e) (f)
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FIG. 4: Box and pentagon diagrams.

The amplitude from Fig. 3(a) depends only on the regulator δ2, because the radiative gluon attaches to the virtual b
quark line. The double logarithm 2 ln δ2 lnx2 leads to the known Sudakov logarithm ln2 δ2 and the known threshold
logarithm ln2 x2 [13, 15], as reexpressed in the form

2 ln δ2 lnx2 = ln2 δ2 + ln2 x2 − ln2
δ2
x2

. (20)

The radiative gluon in Fig. 3(b) attaches to the massive valence b quark and the virtual b quark, so Eq. (16) is infrared
finite. The radiative gluon in Fig. 3(c) attaches to the light valence anti-quarks, such that both the collinear and soft
divergences are produced, with the latter being denoted by the product ln δ1 ln δ2. This term can be absorbed neither
into the B meson wave function nor into the pion wave function. Since the radiative gluon attaches to the virtual LO
hard gluon in Fig. 3(d), the soft divergence does not appear Eq. (18). Equations (17) and (18) are symmetric under
the exchange of the regulators δ1 and δ2, as they should. Similar to Fig. 3(b), Fig. 3(e) also gives an infrared finite
contribution.
The box diagrams and the pentagon diagrams in Fig. 4 lead to the amplitudes

G(1)
4a = −

αsNc

4π

[

ln

(

x2η2

δ2

)

+ 1

]

x2H
(0), (21)

G(1)
4c = −

αs

4πNc

[

ln

(

x1η

δ1

)

ln

(

δ12
δ2

)

+
π2

6

]

H(0), (22)

G(1)
4d = −

αsCF

4π

[

ln2
(

δ1
x2
1

)

− ln2 x1 −
7π2

3

]

H(0), (23)
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FIG. 2: Self-energy corrections to Fig. 1(a).

where 1/ϵ represents the ultraviolet pole, µ is the renormalization scale, γE is the Euler constant, Nf is the number
of quark flavors, and H(0) denotes the leading-twist LO hard kernel proportional to P2

µ,

H(0)(x1, k1T , x2, k2T ) = −
4g2CFP2

µ

x2ηδ12m2
B

. (12)

The above expressions are basically similar to the corresponding ones obtained in the pion electromagnetic form
factor [13]. We emphasize only that Fig. 2(a), the self-energy correction to the b quark, requires a mass renormalization
as indicated by the first term in the square brackets of Eq. (7). The finite piece of the first term is then absorbed,
with the relation (P1 − k1)2 −m2

b = −k21T , into the redefinition the b quark mass,

1

(P1 − k1)2 −m2
b

[

1−
αsCF

4π

6

δ1

(

ln
µ2

m2
B

+
5

3

)]

=
1

(P1 − k1)2 −m2
b(µ)

, (13)

leading to the pole mass

mb(µ) = mb

[

1 +
αs

π

(

ln
µ2

m2
B

+
5

3

)]

. (14)

In this work we shall not differentiate mb(µ) from mB, because the distinction between them contributes at next-to-
leading power. The second term in the square brackets of Eq. (7) represents the correction to the b quark wave function.
As explained before, we shall consider an on-shell valence b quark, so the involved soft divergence is regularized by a
gluon mass mg, which will be cancelled by the corresponding soft divergence in the effective diagram Fig. 5(a) below.
The results from the vertex corrections in Fig. 3 are summarized as
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FIG. 1: Leading-order quark diagrams for the B → π transition form factors with ⊗ representing the weak vertex.

with the strong coupling g, and the color factor CF . To reach the above expression, we have applied the hierarchy
x2m2

B ≫ k22T in Eq. (2) to the internal b quark propagator. The denominator x1x2ηm2
B + |k1T − k2T |2 comes from

the virtuality of the LO hard gluon, in which the |k1T − k2T |2 term smears the end-point singularity from small x2.
Similarly, Fig. 1(b) leads to the amplitude

H(0)
b (x1, k1T , x2, k2T ) = −4g2CF

(ηP1
µ − P2

µ)φ(+)
B (x1) + P2

µφ(−)
B (x1)

η(x1x2ηm2
B + |k1T − k2T |2)

φπ(x2). (5)

Comparing Eqs. (4) and (5), it is easy to see that the term proportional to φ(−)
B from Fig. 1(a) dominates numerically

according to the hierarchy in Eq. (2). As explained above, the B → π form factors receive major contributions from
the small-x region, in which the kT factorization is an appropriate framework. Since the amplitude from Fig. 1(b) is

suppressed by a power of x2, we will not consider the NLO corrections to H(0)
b (x1, k1T , x2, k2T ), and focus on those to

Fig. 1(a) below. The term proportional to P1
µ in Eq. (5) gives the symmetry breaking effect [16], which is calculable

even in the collinear factorization, as convoluted with φ(+)
B (x1) ∼ x1 at small x1.

A. NLO Quark Diagrams

The NLO corrections to Fig. 1(a) contain Figs. 2, 3, and 4 for the self-energy corrections, the vertex corrections,
and the box and pentagon diagrams, respectively. The ultraviolet poles are extracted in the dimensional reduction
[24] in order to avoid the ambiguity from handling the matrix γ5. We adopt the following convenient dimensionless
ratios

δ1 =
k21T
m2

B

, δ2 =
k22T
m2

B

,

δ12 =
x1x2ηm2

B + |k1T − k2T |2

m2
B

, (6)

as presenting our results. The infrared poles are then identified as the logarithms ln δ1 and ln δ2.
The self-energy corrections in Fig. 2 give

G(1)
2a = −

αsCF

4π

[

6

δ1

(

1

ϵ
+ ln

4πµ2

m2
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γE

+
5

3

)

+
1

2

(

1

ϵ
+ ln

4πµ2

m2
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γE

+ 2 ln
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g

m2
B

− 1

)]

H(0), (7)

G(1)
2b = −
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8π

[

1

ϵ
+ ln

4πµ2

δ1m2
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γE

+ 2

]

H(0), (8)

G(1)
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8π

[

1

ϵ
+ ln
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+ 2

]

H(0), (9)

G(1)
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4π

[

6

x2η

(

1

ϵ
+ ln

4πµ2

m2
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+
5

3

)

+

(

1

ϵ
+ ln

4πµ2

m2
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γE

+ 4 ln(x2η)− 5

)]

H(0), (10)

G(1)
2f+2g+2h+2i =

αs

4π

[(

5

3
Nc −

2

3
Nf

)(

1

ϵ
+ ln

4πµ2

δ12m2
Be

γE
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H(0), (11)

Xiao, Cheng,Lu, Li, Wang..
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NLO Calculation
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FIG. 12: LO and NLO contributions to the B → π form factors with the B meson distribution amplitudes in Eq. (59), however,
varying the shape parameter ω0 from 0.30 GeV to 0.40 GeV and the first scenario for the scale choice: µf = t and µ = ts(µf ).
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FIG. 13: Theoretical uncertainties of the B → π form factors with the first scenario for the scale choice: µf = t and µ = ts(µf ).

simply take ω0 = 0.35± 0.05GeV to illustrate the effect on the form factors from the variation of ω0. It is seen from
Fig. 12 that both the form factors f+(q2) and f0(q2), including LO and NLO contributions, increase (decrease) by 15 %
with the decrease (increase) of ω0. Combining the uncertainties due to a2(1GeV) = 0.16+0.09

−0.07, a4(1GeV) = 0.04+0.12
−0.08,

m0(1GeV) = 1.74+0.67
−0.38GeV, and ω0 = 0.35 ± 0.05GeV, we predict the form factors f+(q2) and f0(q2) as displayed

in Fig. 13. Fitting to the BaBar data on the integrated B → πℓν̄ branching ratio within the region 0 ≤ q2 ≤ 8 GeV2

[41], where the leading-twist kT factorization is expected to work well, we obtain

|Vub| = 2.90+0.77
−0.80

∣

∣

th.
+0.13
−0.14

∣

∣

exp.
. (63)

The above value is in good agreement with that in [41], which employed the data on q2 bins in the whole kinematic
region and the lattice QCD results of the B → π form factors from the FNAL/MILC Collaboration [42]. Equation (63),
however, differs from |Vub| = 3.59+0.38

−0.33

∣

∣

th.
± 0.11

∣

∣

exp.
extracted in [34], where the B → π form factors were computed

in the light-cone sum rule (LCSR). The distinction can be traced back to the different q2 dependence of the form
factor f+(q2) predicted in the kT factorization and in LCSR, albeit with the similar f+(0) value in both approaches.
More dedicated efforts on the study of the shape of B → π form factors in QCD is in demand in order to resolve the
potential difference in the extraction of |Vub|.

Wang, Shen, Cheng,Li,..
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TABLE I. The LO and NLO pQCD predictions for the branching rations (in unit of 10−6) of the three
B → ππ decays. The last column lists the data from Refs.[37, 38]. For details, see text.

Channel LO NLO0 [16] NLO QCDF[39] Data
Br(B0 → π+π−) 6.87 7.67 7.69+3.27

−2.67 8.9 5.11 ± 0.22

Br(B+ → π+π0) 3.54 4.27 4.27+1.85
−1.47 6.0 5.38+0.35

−0.34

Br(B0 → π0π0) 0.12 0.23 0.24+0.09
−0.07 0.3 0.9± 0.12

scalar pion form factor in Eq. (61), we recalculate the three rare decays B → ππ in the pQCD
factorization approach by using the pion distribution amplitudes as given in Eq. (19). Because this
newly known NLO contribution brings only a very small correction to the LO form factor as we
have elaborated in previous section, one generally expect that such new NLO contribution to the
time-like scalar pion form factor can not change the pQCD predictions for the B → ππ decays
obviously.
In the framework of the pQCD factorization approach, the LO contributions to B → ππ de-

cays come from the emission diagrams, the hard-spectator diagrams, the factorizable and non-
factorizable annihilation diagrams as illustrated in the Fig. 1 of Ref. [16]. At the NLO level, on the
other hand, those currently known NLO contributions to B → ππ decays include the following
pieces from rather different sources:
1. TheWilson coefficientsCi(mW) and the renormalization group evolutionmatrixU(µ,mW,α)
at the NLO level [40], as well as the strong coupling constant αs(µ) at two-loop level [41].

2. The NLO contributions from the vertex corrections (VC), the quark-loops (QL), and the
chromo-magnetic penguin operator O8g (MP) as given in Refs. [13, 39, 42].

3. The NLO twist-2 and twist-3 contributions to the form factors of the B → π transition as
presented in Refs. [24, 26].

4. The NLO contribution to the time-like scalar pion form factor F ′
a,I, i.e., the NLO “annihi-

lation correction” to the factorizable annihilation diagrams (see Fig. 2), evaluated firstly in
this paper.

The still missing NLO parts in the pQCD approach are those O(α2
s) contributions to the hard

spectator diagrams and the non-factorizable annihilation diagrams.
Following the same procedure 1 as in Ref. [16], we make the numerical calculations and present

the pQCD predictions for the branching ratios of the three B → ππ decays after the inclusion of
all currently known NLO corrections in Table I. In the third column of Table I, we list the NLO
pQCD predictions for the branching ratios of three decay modes as given in Ref. [16], where
all known NLO contributions except for the NLO contribution to the factorizable annihilation
diagrams calculated in this paper have been taken into account. The numerical results in the fourth
column with the label ”NLO”, however, are obtained with the inclusion of all currently known
NLO contributions in the pQCD factorization approach. In fifth column, we show the central
values of the theoretical predictions based on the QCDF approach [39], while the last column lists
the data from Refs.[37, 38].

1 For the sake of simplicity, we do not show the explicit expressions of the decay amplitudes of B0 → π+π−,π0π0

and B+ → π+π0 decays here. For relevant formulaes, one can see those as given in Ref. [16] explicitly.
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Charmless Hadronic B-Meson Decays 5

been established that a least model-dependent analysis of heavy meson decays
can be carried out in the so-called quark-diagram approach (11, 12). In the
diagrammatic approach, all two-body nonleptonic weak decays of heavy mesons
can be expressed in terms of six distinct quark diagrams (Fig. 1):2 T , the color-
allowed external W -emission tree diagram; C, the color-suppressed internal W -
emission diagram; E, the W -exchange diagram; A, the W -annihilation diagram;
P , the penguin diagram; and V , the vertical W -loop diagram. It should be
stressed that these quark diagrams are classified according to the topologies of
weak interactions with all strong interaction effects included and hence they are
not Feynman graphs. All quark graphs used in this approach are topological with
all the strong interactions included, i.e. gluon lines are included in all possible
ways. The diagrammatic approach was applied to hadronic B decays first in (14).
Various topological amplitudes have been extracted from the data in (13,15–17)
after making some reasonable approximations, e.g., SU(3) symmetry.

T C E

VPA

Figure 1: Various topological diagrams for B → M1M2 decays.

3 EXPERIMENTAL TOOLS

The experimental measurements involve separation of small samples (10—2000
signal events) from total samples of BB and light quark-pairs (qq) of several
billion events. The background is typically dominated by the copious qq produc-
tion, where the background after preliminary sample selection is often 1000 times

2Historically, the quark-graph amplitudes T, C, E, A, P named in (13) were originally de-
noted by A, B, C, D, E, respectively, in (11, 12). For the analysis of charmless B decays, one
adds the variants of the penguin diagram such as the electroweak penguin and the penguin
annihilation.

Diagrammatic Approach
Cheng, Chiang

With SU(3) symmetry and data, the magnitude of each diagram can be fitted.
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FIG. 2: Topological penguin diagrams contributing to B → PP and B → PV decays: (a) the

color-favored QCD-penguin diagram, P ; (b) the flavor-singlet QCD-penguin diagram, PC and EW-

penguin diagram PEW ; (c) the exchange type QCD-penguin diagram, PE and (d) the QCD-penguin

annihilation diagram, PA.

for each decay is calculated in the factorization framework by the heavy quark expansion.

In this work, to avoid the dependence of specific factorization approach, we extract the

two-body hadronic weak decay amplitude of different topological diagram from the exper-

imental data by the χ2 fit. Therefore all strong interaction effects, the factorization and

non-factorization contributions, perturbative and non-perturbative QCD corrections are all

determined by experimental measurements. This is the idea of conventional topological

diagram approach [14]. In order to have predictive power, one has to assume the flavor

SU(3) symmetry, reducing the number of independent parameters. The precision of this

topological diagram approach is then limited to the order of SU(3) breaking. In the FAT

approach, we will try to recover the SU(3) breaking effects, further reducing the number of

free parameters by fitting all the decay channels.

Let’s start from tree amplitudes shown in Fig.1. In the conventional topological diagram

approach, the color favored tree amplitude (T) is tuned to be a real number, with 6 parame-

ters (magnitudes and phases) for three other amplitudes. However, these 7 parameters have
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and associate phase as χC and eiφ
C
in B → PP , V P decays and χC′

eiφ
C′

in B → PV ,

respectively to distinguish cases in which the emissive meson is pseudo-scalar or vector:

CP1P2 = i
GF√
2
VubVuq

′χCeiφ
C

fp2(m
2
B −m2

p1
)FBP1

0 (m2
p2
),

CPV =
√
2GFVubVuq

′χC′

eiφ
C′

fVmV F
B−P
1 (m2

V )(ε
∗
V · pB),

CV P =
√
2GFVubVuq

′χCeiφ
C

fPmV A
B−V
0 (m2

P )(ε
∗
V · pB), (4)

where the decay constants and form factors fP , fV ,F
BP1

0 , FB−P
1 and AB−V

0 characterizing

the SU(3) breaking effects are factorized out.

The W-exchange E topology is non-factorization in QCD factorization approach. It is

expected smaller than emission diagram due to helicity suppression. We use χE , eiφ
E
to

represent the magnitude and its strong phase for all decay modes:

EP1P2 = i
GF√
2
VubVuq

′χEeiφ
E

fBm
2
B(

fp1fp2
f 2
π

),

EPV,V P =
√
2GFVubVuq

′χEeiφ
E

(µ)fBmV (
fPfV
f 2
π

)(ε∗V · pB), (5)

Considering flavor SU(3) breaking effects, we multiply decay constants of three mesons

fB,fp1(fP ) and fp2(fV ) in each amplitude. In order to make parameters χE and eiφ
E
di-

mensionless, a normalization factor f 2
π is introduced. Actually, dimensionless parameters

χE , eiφ
E
are defined from B → ππ decays. Other processes are related by different decay

constant factors
fp2fp1 (fP fV )

fπfπ
. The last diagram in Fig.1(d) is the so called W-annihilation

topology. As discussed in ref.[14], its contribution is negligible. We will also ignore it in this

paper.

The penguin topological diagrams are grouped into QCD penguin and electro-weak pen-

guin (EW penguin) topologies. In terms of QCD penguin diagram amplitude, we consider

all contributions from every topological diagram in Fig.2, where topology P contributes

most. The leading contribution from topology P diagram is similar to the color favored tree

diagram T, which is proved factorization in various QCD-inspired approaches, such as QCD

factorization [8], perturbative QCD [6] and soft-collinear effective theory [19]. They give

very similar numerical results proportional to the Wilson coefficient a4, related to the QCD

penguin operators O3, O4. Therefore, in the same spirit of T diagram, we will not fit this con-

tribution from the experimental data, but predict its contribution from QCD calculations for

all the three type of B → PP , B → V P and B → PV decays. This is not the whole story.
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to be tripled for B → PP , B → PV and B → V P decays, since there is a non-negligible dif-

ference between pseudo-scalar and vector mesons. In this work, we will try to parametrize

these three kinds of decays together. The color-favored T topology shown in Fig.1(a) is

proved factorization to all orders of αs expansion in QCD factorization, perturbative QCD,

and soft-collinear-effective theory. Their numerical results also agree to each other in dif-

ferent approaches. Thus, to reduce one free parameter, we will just use their theoretical

results, not fitting from the experiments:

T P1P2 = i
GF√
2
VubVuq

′a1(µ)fp2(m
2
B −m2

p1
)FBP1

0 (m2
p2
), (1)

T PV =
√
2GFVubVuq

′a1(µ)fVmV F
B−P
1 (m2

V )(ε
∗
V · pB), (2)

T V P =
√
2GFVubVuq

′a1(µ)fPmVA
B−V
0 (m2

P )(ε
∗
V · pB), (3)

where the superscript of T P1P2 denote the final mesons are two pseudoscalar mesons, T PV (V P )

for recoiling mesons are pseudoscalar meson (vector meson). a1(µ) is the effective Wilson

coefficient from short distance QCD corrections, where the factorization scale µ is insensitive

to different final state mesons. Therefore we can choose it within a certain range arbitrarily

and set it at the point µ = mb/2 = 2.1GeV. a1(µ) at this scale is 1.05. fP2
(fP ) and fV are

the decay constants of emissive pseudoscalar meson and vector meson, respectively. FBP1

0

(FB−P
1 ) and AB−V

0 are the form factors of B → P and B → V transitions, respectively. ε∗V

is the polarization vector of vector meson and pB is the 4-momentum of B meson.

For the color suppressed C topology, dominated by non-factorization contributions, it

is least-understood by us although having been calculated up to next-to-leading order in

the factorization methods. The next-to-leading order corrections in factorization framework

could not resolve the ππ and πK puzzles strongly sensitive to this C topology contribution.

A large C contribution with large strong phase (mostly non-perturbative) can resolve the

so called πK puzzle. However, it is not possible to explain the ππ puzzle: theoretically

Br(B0 → π0π0) < Br(B0 → π0ρ0) < Br(B0 → ρ0ρ0), but experimentally it is in the inverse

order. In the conventional topological diagram approach [14], the authors introduced two

parameters (amplitude and phase) in the B → PP modes and another four parameters in the

B → PV , V P modes for this diagram to be fitted from experimental data. To our knowledge,

this inverse order can be understood only in the formalism of Glauber gluons introduced in

ref.[11], where extra phase was introduced for the pseudo-scalar meson (Goldstone boson)

emission diagram. Inspired by these studies, We parameterize the C diagram magnitude
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and associate phase as χC and eiφ
C
in B → PP , V P decays and χC′

eiφ
C′

in B → PV ,
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),
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√
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V · pB),

CV P =
√
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′χCeiφ
C

fPmV A
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0 (m2

P )(ε
∗
V · pB), (4)

where the decay constants and form factors fP , fV ,F
BP1

0 , FB−P
1 and AB−V

0 characterizing

the SU(3) breaking effects are factorized out.

The W-exchange E topology is non-factorization in QCD factorization approach. It is

expected smaller than emission diagram due to helicity suppression. We use χE , eiφ
E
to

represent the magnitude and its strong phase for all decay modes:

EP1P2 = i
GF√
2
VubVuq

′χEeiφ
E

fBm
2
B(

fp1fp2
f 2
π

),

EPV,V P =
√
2GFVubVuq

′χEeiφ
E

(µ)fBmV (
fPfV
f 2
π

)(ε∗V · pB), (5)

Considering flavor SU(3) breaking effects, we multiply decay constants of three mesons

fB,fp1(fP ) and fp2(fV ) in each amplitude. In order to make parameters χE and eiφ
E
di-

mensionless, a normalization factor f 2
π is introduced. Actually, dimensionless parameters

χE , eiφ
E
are defined from B → ππ decays. Other processes are related by different decay

constant factors
fp2fp1 (fP fV )

fπfπ
. The last diagram in Fig.1(d) is the so called W-annihilation

topology. As discussed in ref.[14], its contribution is negligible. We will also ignore it in this

paper.

The penguin topological diagrams are grouped into QCD penguin and electro-weak pen-

guin (EW penguin) topologies. In terms of QCD penguin diagram amplitude, we consider

all contributions from every topological diagram in Fig.2, where topology P contributes

most. The leading contribution from topology P diagram is similar to the color favored tree

diagram T, which is proved factorization in various QCD-inspired approaches, such as QCD

factorization [8], perturbative QCD [6] and soft-collinear effective theory [19]. They give

very similar numerical results proportional to the Wilson coefficient a4, related to the QCD

penguin operators O3, O4. Therefore, in the same spirit of T diagram, we will not fit this con-

tribution from the experimental data, but predict its contribution from QCD calculations for

all the three type of B → PP , B → V P and B → PV decays. This is not the whole story.
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All these approaches predict large extra contribution in this topology related to the effective

four-quark operators O5, O6, which is also called the “chiral enhanced” penguin contribu-

tions. Since this chiral enhancement only contributes to the pseudo-scalar meson (Goldstone

boson) emission diagram, we will include it only in B → PP and B → V P decays, which

can be parameterize as rχχP , eiφ
P
in Eq.(6) with rχ the chiral factor of pseudo-scalar meson.

The decay amplitude for the penguin diagram P is then parameterized with only two free

parameters for all the three categories of B → PP , B → V P and B → PV decays, as

P PP = −i
GF√
2
VtbV

∗
tq

′

[

a4(µ) + χP eiφ
P

rχ
]

fp2(m
2
B −m2

p1
)FBP1

0 (m2
p2
),

P PV = −
√
2GFVtbV

∗
tq

′a4(µ)fVmV F
B−P
1 m2

V (ε
∗
V · pB),

P V P = −
√
2GFVtbV

∗
tq

′

[

a4(µ)− χP eiφ
P

rχ
]

fPmVA
B−V
0 (m2

P )(ε
∗
V · pB). (6)

The so called penguin annihilation diagram PA shown in Fig.2(d) was considered as a

power correction to P , calculated perturbatively in PQCD approach [6], parameterized as

ρA, φA in QCDF [8] and replaced by the long-distance charming penguins as APP
cc , APV

cc and

AV P
cc in B → PP , B → V P and B → PV decays, respectively in SCET [19]. Numerically

it is not small. However, if one read this diagram carefully, one can find that it is not

distinguishable in weak interaction from the diagram P in Fig.2(a). The only difference

between these two diagrams is the gluon exchange. Since all the QCD dynamics will be

determined by χ2 fit from the experimental data, we will not introduce more parameters for

this diagram in B → PP and B → V P decays. The contribution of this diagram is already

encoded in the parameter rχχP , eiφ
P
in Eq.(6) for diagram Fig.2(a). But for B → PV

decays, we do need two parameters χPA, eiφ
PA for penguin annihilation diagram PA shown

in Fig.2(d):

P PV
A = −

√
2GFVtbV

∗
tq

′χPAeiφ
PAfBmV (

fPfV
f 2
π

)(ε∗V · pB). (7)

The contribution from PE diagram shown in Fig.2(c) is argued smaller than PA diagram,

which can be ignored reliably in decay modes not dominated by it such as measured B0 →

π+π−, B0 → π0π0, B0 → K0K̄0 and B0 → π0ρ0 decays. This PE contribution actually is

the dominant contribution for the recent measurement of Bs → π+π− decay [21]

Br(Bs → π+π−) = (0.76± 0.19)× 10−6. (8)

We do not intend to use this single measurement to determine the contribution from this

diagram PE . Thus we have to ignore it for later discussion.
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The flavor-singlet QCD penguin diagram PC only contribute to the isospin singlet mesons

η, η′, ω and φ. Anomaly related or not, there is also significant difference between these

pseudo-scalar mesons and vector mesons. We distinguish them as χPC , eiφ
PC for B → PP

and B → V P decays and χP ′

C , eiφ
P ′

C for B → PV decays, respectively:

P PP
C = −i

GF√
2
VtbV

∗
tq

′χPCeiφ
PC fp2(m

2
B −m2

p1
)FBP1

0 (m2
p2
),

P PV
C = −

√
2GFVtbV

∗
tq

′χP ′

Ceiφ
P ′

C fVmV F
B−P
1 (m2

V )(ε
∗
V · pB),

P V P
C = −

√
2GFVtbV

∗
tq

′χPCeiφ
PC fPmV A

B−V
0 (m2

P )(ε
∗
V · pB), (9)

The EW-penguin contribution is much smaller than QCD penguin diagram, as the cou-

pling coefficient αem is one order smaller than αs. We only keep its largest contribution

diagram shown in the second one of Fig.2, with gluon g replaced by Z or γ with respect to

QCD penguin diagram. Although the topology of PC diagram is quite similar to the PEW

topology, their contributions are different. They both contribute to the isospin singlet meson

emission decays. But PEW topology also contribute to the neutral isospin 1 meson emission

decays. The topology of this diagram is very similar to the T diagram. Factorization can be

approved without ambiguity. Without introducing new parameters, we evaluate it similar

to T ,

P PP
EW = −i

GF√
2
VtbV

∗
tq

′eq
3

2
a9(µ)fp2(m

2
B −m2

p1
)FBP1

0 (m2
p2
),

P PV
EW = −

√
2GFVtbV

∗
tq

′eq
3

2
a9(µ)fVmV F

B−P
1 (m2

V )(ε
∗
V · pB),

P V P
EW = −

√
2GFVtbV

∗
tq

′eq
3

2
a9(µ)fPmVA

B−V
0 (m2

P )(ε
∗
V · pB), (10)

where a9(µ) is the effective Wilson coefficient equal to −0.009 at scale µ =2.1GeV.

With all the decay amplitudes settled, the decay width for two-body charmless B decays

is given by

Γ(B → M1M2) =
p

8πm2
B

∑

pol

|A|2, (11)

where M1, M2 represent either two pseudoscalar P1,P2 or one pseudoscalar P and one vector

V in the final states. p is the 3 dimension momentum of either meson in the final state in

the center-of-mass frame. The summation over the polarization states is for vector meson

state. The corresponding branching fraction is

B(B → M1M2) =
Γ(B → M1M2) + Γ(B̄ → M̄1M̄2)

2
× τB, (12)
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The so called penguin annihilation diagram PA shown in Fig.2(d) was considered as a
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ρA, φA in QCDF [8] and replaced by the long-distance charming penguins as APP
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cc and
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distinguishable in weak interaction from the diagram P in Fig.2(a). The only difference

between these two diagrams is the gluon exchange. Since all the QCD dynamics will be
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encoded in the parameter rχχP , eiφ
P
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The contribution from PE diagram shown in Fig.2(c) is argued smaller than PA diagram,

which can be ignored reliably in decay modes not dominated by it such as measured B0 →

π+π−, B0 → π0π0, B0 → K0K̄0 and B0 → π0ρ0 decays. This PE contribution actually is

the dominant contribution for the recent measurement of Bs → π+π− decay [21]

Br(Bs → π+π−) = (0.76± 0.19)× 10−6. (8)

We do not intend to use this single measurement to determine the contribution from this

diagram PE . Thus we have to ignore it for later discussion.
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31 BF

4 dof

B—>DM
37 BF+11CP

16 dof

B—>PP,PV
18 BF+20 P+6 PHAS+2CP

10 dof

B—>VV

Zhou, Yu, Lu, YL,…
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TABLE VI: The direct CP asymmetries (A) and mixing-induced CP asymmetries (S) of B̄ → PP

decays. We also show the results from conventional flavor diagram approach [14] for comparison.

Mode Aexp Athis work AFlavor diagram Sexp Sthis work SFlavor diagram

π+π− ⋆0.31± 0.05 0.31± 0.04 0.326± 0.081 ⋆− 0.67± 0.06 −0.60 ± 0.03 −0.717± 0.061

π0π0 0.43± 0.24 0.57± 0.06 0.611± 0.113 0.58± 0.06 0.454± 0.112

π0η −0.16± 0.16 0.566± 0.114 −0.98 ± 0.04 −0.098± 0.338

π0η
′

0.39± 0.14 0.385± 0.114 −0.90 ± 0.07 0.142± 0.234

ηη −0.85± 0.06 −0.405± 0.129 0.33± 0.12 −0.796± 0.077

ηη
′

−0.97± 0.04 −0.394± 0.117 −0.20 ± 0.15 −0.903± 0.049

η
′

η
′

−0.87± 0.07 −0.122± 0.136 −0.46 ± 0.14 −0.964± 0.037

π0Ks 0.00± 0.13 −0.14± 0.03 −0.173± 0.019 ⋆0.58 ± 0.17 0.73± 0.01 0.754± 0.014

ηKs −0.30± 0.10 −0.301± 0.041 0.68± 0.04 0.592± 0.035

η
′

Ks 0.06± 0.04 0.030 ± 0.004 0.022± 0.006 ⋆0.63 ± 0.06 0.69± 0.00 0.685± 0.004

K0K̄0 −0.057± 0.002 0.017± 0.041 0.8± 0.5 0.099± 0.002 0

π−π0 0.03± 0.04 −0.026± 0.003 0.069± 0.027

π−η −0.14± 0.07 −0.14± 0.07 −0.081± 0.074

π−η
′

0.06± 0.16 0.37± 0.07 0.374± 0.087

π−K̄0 −0.017± 0.016 0.0027 ± 0.0001 0

π0K− 0.037± 0.021 0.065 ± 0.024 0.047± 0.025

ηK− ⋆− 0.37± 0.08 −0.22± 0.08 −0.426± 0.043

η
′

K− 0.013± 0.017 −0.021± 0.007 −0.027± 0.008

K−K0 −0.21± 0.14 −0.057± 0.002 0

π+K− ⋆− 0.082± 0.006 −0.081± 0.005 −0.080± 0.011

the QCD factorization and soft-collinear effective theory can predict the branching ratios

of the charmless B decays well but make wrong prediction or no prediction for the direct

CP asymmetries. There are already 3 good measurements of direct CP asymmetry mea-

surements in B → PP decays and 3 in B → PV decays indicated as a star in Tables VI

and VII. There are also 5 mixing induced CP asymmetry measurements for the neutral B

meson decays to be used in our χ2 program. We give the direct CP and mixing-induced CP

asymmetries of corresponding B decay modes in Tables VI and VII. From the CP asymme-

try formula in eq.(13), we know that the CP asymmetry is proportional to the difference of

B meson and B̄ meson. Thus the theoretical uncertainty from hadronic parameters mostly

cancel, because they contribute to the charge conjugate modes equally. The main theoretical

uncertainty for CP asymmetry parameters is from the experimental data and CKM angle.

We did not show the individual uncertainty, but the combined one in these CP asymmetry

tables.
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TABLE III: Branching fractions (×10−6) of various B̄ → PP decay modes. We also show the

experimental data [21] and results from conventional flavor diagram approach [14] for comparison.

Mode Amplitudes Exp This work Flavor diagram

π−π0 T,C, PEW ⋆5.5± 0.4 5.08± 0.39± 1.02± 0.02 5.40± 0.79

π−η T,C, P, PC , PEW ⋆4.02± 0.27 4.13± 0.25± 0.64± 0.01 3.88± 0.39

π−η
′

T,C, P, PC , PEW ⋆2.7± 0.9 3.37± 0.21± 0.49± 0.01 5.59± 0.54

π+π− T,E, (PE), P ⋆5.12± 0.19 5.15± 0.36± 1.31± 0.14 5.17± 1.03

π0π0 C,E, P, (PE), PEW ⋆1.91± 0.22 1.94± 0.30± 0.28± 0.05 1.88± 0.42

π0η C,E, PC , (PE), PEW < 1.5 0.86± 0.08± 0.08± 0.04 0.56± 0.03

π0η
′

C,E, PC , (PE), PEW 1.2± 0.6 0.87± 0.08± 0.10± 0.03 1.21± 0.16

ηη C,E, PC , (PE), PEW < 1.0 0.44± 0.09± 0.08± 0.005 0.77± 0.12

ηη
′

C,E, PC , (PE), PEW < 1.2 0.77± 0.13± 0.14± 0.008 1.99± 0.26

η
′

η
′

C,E, PC , (PE), PEW < 1.7 0.38± 0.05± 0.07± 0.003 1.60± 0.20

K−K0 P ⋆1.31± 0.17 1.32± 0.04± 0.26± 0.01 1.03± 0.02

K0K̄0 P ⋆1.21± 0.16 1.23± 0.03± 0.25± 0.01 0.89± 0.11

π−K̄0 P ⋆23.7± 0.8 23.2± 0.6± 4.6± 0.2 23.53± 0.42

π0K− T,C, P, PEW ⋆12.9± 0.5 12.8± 0.32± 2.35± 0.10 12.71± 1.05

ηK− T,C, P, PC , PEW ⋆2.4± 0.4 2.0± 0.13± 1.19± 0.03 1.93± 0.31

η
′

K− T,C, P, PC , PEW ⋆70.6± 2.5 70.1± 4.7± 11.3± 0.22 70.92± 8.54

π+K− T, P ⋆19.6± 0.5 19.8± 0.54± 4.0± 0.2 20.2± 0.39

π0K̄0 C,P, PEW ⋆9.9± 0.5 8.96± 0.26± 1.96± 0.09 9.73± 0.82

ηK̄0 C,P, PC , PEW ⋆1.23± 0.27 1.35± 0.10± 1.02± 0.03 1.49± 0.27

η
′
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3-body Decays

Data are results of entangled nonresonant 
and resonant contributions, and of different 
partial waves.

Developing a reliable theoretical approach 
to 3-body hadronic B decays is important.

Understand data and predict direct CP 
asymmetries of 3-body decay modes in 
localized regions of phase space

Very challenging!

27 烟台⼤大学-李李营 - 2018年年3⽉月31⽇日



3-body Decays

Many 3-body B decays are observed with rates —10-5

• Factorization Approach Cheng, Chua, S. Fajfer, YLi,…

• PQCD Li, Chen, Wang, Wang, Lu, … 

• QCD Factorization Krankl, Mannel,Virto,…

• Diagrammatic Approach combined SU(3) Gronau,London 

• QCD Sum Rules Alexander Khodjamirian,…  

• Others Feldman, Guo, He, Yang,… 

B� ! ⇡+⇡�⇡�,K�⇡+⇡�,K�K+K�,K�KSKS

B0 ! K0⇡�⇡�,K+⇡�⇡0,K0K+K�,KSKSKS

The CP asymmetries of some 3-body decays  have been measured. 

Theoretically, 3-body decays have been studied within many approaches. 

Status of  3-body of B Decay 

3  - 2016 12 27
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+hK0K�⇡+|(ūu)V�A|0ih0|(d̄b)V�A|B
0i
h

a
2

�pu + a
3

+ a
9

i

+hK0K�⇡+|(d̄d)V�A|0ih0|(d̄b)V�A|B
0i
h

a
3

+ ap
4

� 1

2
a
9

� 1

2
ap
10

i

+hK0K�⇡+|(s̄s)V�A|0ih0|(d̄b)V�A|B
0i
h

a
3

� 1

2
a
9

i

+ hK0K�⇡+|d̄(1 + �
5

)d|0ih0|d̄�
5

b|B0i
h

2ap
6

� ap
8

io

. (4)

In each amplitude, the last four terms arising from the annihilation contributions will be ignored
in the following since they are power suppressed and also ↵s suppressed.
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where sij ⌘ (pi + pj)2. The heavy-flavor independent strong coupling g has been extracted from
the D⇤+ decay width, g = �0.59 ± 0.01 ± 0.07. Together with the aforementioned exponential
form, we obtain the nonresonant amplitude of current-induced process as
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Here the resonant e↵ects are described in terms of the usual Breit-Wigner formalism. Similarly,
the matrix element hK�⇡+|(s̄b)V�A|B
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0|(ūb)V�A|B

0iNRh⇡�|(d̄u)V�A|0i

= �f⇡
2

⇥

2m2

3

r + (m2

B � s
12

�m2

3

)!
+

+ (s
23

� s
13

�m2

2

+m2

1

)!�
⇤

e�↵NRpB ·(p1+p2)ei�12 , (9)

and the unknown strong phase �
12

will be set to zero for simplicity. For the decay B
0 ! K0K�⇡+,

the expression of hK�⇡+|(s̄b)V�A|B
0iNRhK0|(d̄s)V�A|0i is similar to Eqs. (6-9).

For the resonant contribution of the current-induced process, the scalar a+
0

(1450) and vector
⇢+ contribute to the matrix element hK+K
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The form factors !± and r can be evaluated within the HMChPT and given by
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where sij ⌘ (pi + pj)2. The heavy-flavor independent strong coupling g has been extracted from
the D⇤+ decay width, g = �0.59 ± 0.01 ± 0.07. Together with the aforementioned exponential
form, we obtain the nonresonant amplitude of current-induced process as
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0|(ūb)V�A|B

0iNRh⇡�|(d̄u)V�A|0i

= �f⇡
2

⇥

2m2

3

r + (m2

B � s
12

�m2

3

)!
+

+ (s
23

� s
13

�m2

2

+m2

1

)!�
⇤

e�↵NRpB ·(p1+p2)ei�12 , (9)

and the unknown strong phase �
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will be set to zero for simplicity. For the decay B
0 ! K0K�⇡+,

the expression of hK�⇡+|(s̄b)V�A|B
0iNRhK0|(d̄s)V�A|0i is similar to Eqs. (6-9).
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Here the resonant e↵ects are described in terms of the usual Breit-Wigner formalism. Similarly,
the matrix element hK�⇡+|(s̄b)V�A|B

0i receives contributions of vector meson K
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and scalar
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(1430), and the expression is given as
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Table 1: Predicted branching fractions (in units of 10�6) of resonant and nonresonant (NR)
contributions to B

0 ! K
0

K+⇡� and K0K�⇡+ under S1.

B
0 ! K

0

K+⇡� B
0 ! K0K�⇡+

K⇤0K
0

0.24+0.00+0.04+0.01
�0.00�0.04�0.01 K

⇤0
K0 0.05+0.00+0.11+0.00

�0.00�0.04�0.00

K⇤0
0

(1430)K
0

0.94+0.00+0.19+0.03
�0.00�0.17�0.02 K

⇤0
0

(1430)K0 0.02+0.00+0.06+0.00
�0.00�0.02�0.00

a+
0

(1450)⇡� 2.04+0.00+0.54+0.02
�0.00�0.44�0.01 a�

0

(1450)⇡+ 0.20+0.00+0.06+0.01
�0.00�0.05�0.01

⇢+⇡� 0.29+0.00+0.06+0.00
�0.00�0.06�0.01 ⇢�⇡+ 0.48+0.00+0.12+0.01

�0.00�0.11�0.01

NR 2.71+0.57+0.64+0.04
�0.64�0.37�0.04 NR 0.34+0.01+0.14+0.01

�0.01�0.11�0.01

Total 6.35+0.49+1.59+0.06
�0.52�1.18�0.06 Total 0.82+0.01+0.38+0.02

�0.01�0.24�0.01

Table 2: The nonresonant and total branching fraction of B
0 ! K

0

K+⇡� under S2 and S3.

NR Total

S2 2.72+0.60+0.64+0.03
�0.67�0.36�0.03 5.83+0.51+1.49+0.04

�0.55�1.08�0.04

S3 2.18+0.58+0.85+0.03
�0.65�0.29�0.03 5.58+0.49+1.94+0.04

�0.53�1.24�0.05

If the aforementioned scenarios could be discriminated in the future, it might give us some hints
in studying this scalar form factor.

For the decay modeB
0 ! K0K�⇡+, the contribution of hK0K�|d̄u|0i arising from nonresonant

background is similar to hK+K�|s̄s|0i according to the SU(3) symmetry. In principle, the flavor
SU(3) asymmetry should be included, however previous studies show that its e↵ect is small enough
to be ignored. Together with the resonant contribution of a�

0

(1450), we are led to

hK�(p
2

)K0(p
3

)|d̄u|0i =
ma�0 (1450)

f̄a�0 (1450)

ga
�
0 (1450)!K�K0

m2

a�0 (1450)

� s
23

� ima�0 (1450)

�a�0 (1450)

+
v

3
(3F

NR

+ 2F 0
NR

) + �NRe
�↵s23 . (24)

In the numerical calculation of the branching fractions we follow the discussions of the input
parameters given in [4]. In Table.1, we present the resonant and nonresonant contributions to
the branching fractions of the B

0 ! K
0

K+⇡� and B
0 ! K0K�⇡+ decays individually under

S1. We also give the nonresonant and total branching fractions of B
0 ! K

0

K+⇡� under S2 and
S3 in Table.2. In above two tables, the first errors are from the uncertainties in the parameter
↵NR which governs the momentum dependence of the nonresonant amplitude. The second ones
arise from the strange quark mass ms, the form factors, the nonresonant parameter �NR and the
flavor SU(3) symmetry breaking. And the last uncertainties are induced by the CKM angle �.
Note that the ignored uncertainties arising from the power corrections such as annihilations and
hard-scattering corrections may be sizable, but the estimation of them is beyond the scope of the
current work.
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Now, we shall evaluate the transition processes. The matrix element hK+(p
2

)⇡�(p
3

)|(d̄s)V�A|0i
can be parameterized as:

hK0

(p
1
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0ihK+(p
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3
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23

)
(m2
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K)(m
2

K �m2

⇡)

s
23

. (12)

A recent detailed analysis of B� ! K�⇡+⇡� decay in [4] indicates that the nonresonant contribu-
tion (weak form factor FK⇡(q2)) plays negligible role, so it can be ignored safely. The contributions
from vector and scalar poles to the form factors have the expressions as:

FK⇡,R
1

(s) =
mK⇤fK⇤gK

⇤!K⇡

m2

K⇤ � s� imK⇤�K⇤
, (13)

FK⇡,R
0

(s) =
fK⇤
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gK

⇤
0!K⇡
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K⇤
0
� s� imK⇤

0
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K⇤ � s� imK⇤�K⇤

⇥

� 1 +
s
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. (14)

Note that for the scalar meson, the scale-dependent scalar decay constant f̄S and the vector decay
constant fS are defined by

hS|q̄
2

q
1

|0i = mS f̄S, hS(p)|q̄
2

�µq1|0i = fSpµ. (15)

The two decay constants are related by the equation of motion

µSfS = f̄S, with µS =
mS

m
2

(µ)�m
1

(µ)
, (16)

where m
2

and m
1

are the running current quark masses and mS is the scalar meson mass.
For the term h⇡+|(ūb)V�A|B

0ihK�K0|(d̄u)V�A|0i, the contributions are not only from non-
resonant contribution hK�K0|(d̄u)V�A|0i that is related to hK�K+|(ūu)V�A|0i via flavor SU(3)
symmetry, but also from the o↵shell vector meson ⇢�. For the expression for the nonresonant
background and its inner functions we refer to [4]; the contributions from resonant particles are
similar to Eqs.(12-14).

We also need to specify the amplitudes induced from the scalar densities. With the equation
of the motion, we are led to, for example,

hK0

(p
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)|s̄b|B0

(pB) =
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FBK
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). (17)

The matrix element hK+⇡�|d̄s|0i receives both resonant and nonresonant contributions:
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The form factors !± and r can be evaluated within the HMChPT and given by
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where sij ⌘ (pi + pj)2. The heavy-flavor independent strong coupling g has been extracted from
the D⇤+ decay width, g = �0.59 ± 0.01 ± 0.07. Together with the aforementioned exponential
form, we obtain the nonresonant amplitude of current-induced process as
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and the unknown strong phase �
12

will be set to zero for simplicity. For the decay B
0 ! K0K�⇡+,

the expression of hK�⇡+|(s̄b)V�A|B
0iNRhK0|(d̄s)V�A|0i is similar to Eqs. (6-9).

For the resonant contribution of the current-induced process, the scalar a+
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(1450) and vector
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Here the resonant e↵ects are described in terms of the usual Breit-Wigner formalism. Similarly,
the matrix element hK�⇡+|(s̄b)V�A|B

0i receives contributions of vector meson K
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and scalar
K
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(1430), and the expression is given as
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and B
0 ! K

0

K+⇡� can be respectively read
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In each amplitude, the last four terms arising from the annihilation contributions will be ignored
in the following since they are power suppressed and also ↵s suppressed.

As mentioned before, in order to study the nonresonant background of the matrix element
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)M
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(p
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)|(d̄b)V�A|B
0i, where the meson M
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involves the spectator quark d̄, we shall use the
HMChPT and generalize the results obtained previously in calculating the decay B� ! ⇡+⇡�⇡�

in [4]. We then obtain the matrix element, for example hK0
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)|(ūb)V�A|B
0i, in the general

form

hK0

(p
1

)K+(p
2
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FIG. 1. Point-like and pole diagrams responsible for the B− → K−K+ matrix element of the

current ūγµ(1 − γ5)b, where the symbol • denotes an insertion of the current.

Ha =
√

mHa

1 + v/

2
(P ∗

aµγµ − Paγ5), (2.9)

where v is the velocity of the heavy meson and ξ2 is equal to the unitary matrix U which

describes the Goldstone bosons. The general expression of the matrix U up to the fourth
order in the meson matrix φ is [23]

U = 1 + 2i
φ

fπ
− 2

φ2

f 2
π

− ia3
φ3

f 3
π

+ 2(a3 − 1)
φ4

f 4
π

+ · · · , (2.10)

where a3 indicates the nonlinear chiral realization and it has the well-known value 4
3 in the

usual exponential expression for U , namely, U = exp(i2φ/fπ). Here we do not specify the
value of a3 in order to demonstrate that the physical quantity is independent of the choice
of chiral realization, i.e. the value of a3. The traceless meson matrix φ reads

φ =

⎛

⎜

⎜

⎝

π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K
0 −

√

2
3 η

⎞

⎟

⎟

⎠

. (2.11)

To compute the form factors r, ω± and h, one needs to consider not only the point-like

contact diagram, Fig. 1(a), but also various pole diagrams shown in Fig. 1. The heavy
meson chiral Lagrangian given in [13–15] is needed to compute the strong B∗BP , B∗B∗P

and BBPP vertices. The results for the form factors are [22,2]

ω+ = −
g

f 2
π

fB∗
s
mB∗

s

√
mBmB∗

s

t − m2
B∗

s

[

1 −
(pB − p1) · p1

m2
B∗

s

]

+
fB

2f 2
π

,

ω− =
g

f 2
π

fB∗
s
mB∗

s

√
mBmB∗

s

t − m2
B∗

s

[

1 +
(pB − p1) · p1

m2
B∗

s

]

,
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Now, we shall evaluate the transition processes. The matrix element hK+(p
2

)⇡�(p
3

)|(d̄s)V�A|0i
can be parameterized as:

hK0

(p
1

)|(s̄b)V�A|B
0ihK+(p

2

)⇡�(p
3

)|(d̄s)V�A|0i

= �FBK
1

(s
23

)FK⇡
1

(s
23

)



s
13

� s
12

� (m2

B �m2

K)(m
2

K �m2

⇡)

s
23

�

�FBK
0

(s
23

)FK⇡
0

(s
23

)
(m2

B �m2

K)(m
2

K �m2

⇡)

s
23

. (12)

A recent detailed analysis of B� ! K�⇡+⇡� decay in [4] indicates that the nonresonant contribu-
tion (weak form factor FK⇡(q2)) plays negligible role, so it can be ignored safely. The contributions
from vector and scalar poles to the form factors have the expressions as:

FK⇡,R
1

(s) =
mK⇤fK⇤gK

⇤!K⇡

m2

K⇤ � s� imK⇤�K⇤
, (13)

FK⇡,R
0

(s) =
fK⇤

0
gK

⇤
0!K⇡

m2

K⇤
0
� s� imK⇤

0
�K⇤

0

s

m2

K �m2

⇡

� mK⇤fK⇤gK
⇤!K⇡

m2

K⇤ � s� imK⇤�K⇤

⇥

� 1 +
s

m2

K⇤

i

. (14)

Note that for the scalar meson, the scale-dependent scalar decay constant f̄S and the vector decay
constant fS are defined by

hS|q̄
2

q
1

|0i = mS f̄S, hS(p)|q̄
2

�µq1|0i = fSpµ. (15)

The two decay constants are related by the equation of motion

µSfS = f̄S, with µS =
mS

m
2

(µ)�m
1

(µ)
, (16)

where m
2

and m
1

are the running current quark masses and mS is the scalar meson mass.
For the term h⇡+|(ūb)V�A|B

0ihK�K0|(d̄u)V�A|0i, the contributions are not only from non-
resonant contribution hK�K0|(d̄u)V�A|0i that is related to hK�K+|(ūu)V�A|0i via flavor SU(3)
symmetry, but also from the o↵shell vector meson ⇢�. For the expression for the nonresonant
background and its inner functions we refer to [4]; the contributions from resonant particles are
similar to Eqs.(12-14).

We also need to specify the amplitudes induced from the scalar densities. With the equation
of the motion, we are led to, for example,

hK0

(p
1

)|s̄b|B0

(pB) =
m2

B �m2

K

mb �ms
FBK
0

(s
23

). (17)

The matrix element hK+⇡�|d̄s|0i receives both resonant and nonresonant contributions:

hK+(p
2

)⇡�(p
3

)|d̄s|0i =
mK⇤

0
f̄K⇤

0
gK

⇤
0!K+⇡�

m2

K⇤
0
� s

23

� imK⇤
0
�K⇤

0

+ hK+(p
2

)⇡�(p
3

)|s̄d|0iNR. (18)
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Table 1: Predicted branching fractions (in units of 10�6) of resonant and nonresonant (NR)
contributions to B

0 ! K
0

K+⇡� and K0K�⇡+ under S1.

B
0 ! K

0

K+⇡� B
0 ! K0K�⇡+

K⇤0K
0

0.24+0.00+0.04+0.01
�0.00�0.04�0.01 K

⇤0
K0 0.05+0.00+0.11+0.00

�0.00�0.04�0.00

K⇤0
0

(1430)K
0

0.94+0.00+0.19+0.03
�0.00�0.17�0.02 K

⇤0
0

(1430)K0 0.02+0.00+0.06+0.00
�0.00�0.02�0.00

a+
0

(1450)⇡� 2.04+0.00+0.54+0.02
�0.00�0.44�0.01 a�

0

(1450)⇡+ 0.20+0.00+0.06+0.01
�0.00�0.05�0.01

⇢+⇡� 0.29+0.00+0.06+0.00
�0.00�0.06�0.01 ⇢�⇡+ 0.48+0.00+0.12+0.01

�0.00�0.11�0.01

NR 2.71+0.57+0.64+0.04
�0.64�0.37�0.04 NR 0.34+0.01+0.14+0.01

�0.01�0.11�0.01

Total 6.35+0.49+1.59+0.06
�0.52�1.18�0.06 Total 0.82+0.01+0.38+0.02

�0.01�0.24�0.01

Table 2: The nonresonant and total branching fraction of B
0 ! K

0

K+⇡� under S2 and S3.

NR Total

S2 2.72+0.60+0.64+0.03
�0.67�0.36�0.03 5.83+0.51+1.49+0.04

�0.55�1.08�0.04

S3 2.18+0.58+0.85+0.03
�0.65�0.29�0.03 5.58+0.49+1.94+0.04

�0.53�1.24�0.05

If the aforementioned scenarios could be discriminated in the future, it might give us some hints
in studying this scalar form factor.

For the decay modeB
0 ! K0K�⇡+, the contribution of hK0K�|d̄u|0i arising from nonresonant

background is similar to hK+K�|s̄s|0i according to the SU(3) symmetry. In principle, the flavor
SU(3) asymmetry should be included, however previous studies show that its e↵ect is small enough
to be ignored. Together with the resonant contribution of a�

0

(1450), we are led to

hK�(p
2

)K0(p
3

)|d̄u|0i =
ma�0 (1450)

f̄a�0 (1450)

ga
�
0 (1450)!K�K0

m2

a�0 (1450)

� s
23

� ima�0 (1450)

�a�0 (1450)

+
v

3
(3F

NR

+ 2F 0
NR

) + �NRe
�↵s23 . (24)

In the numerical calculation of the branching fractions we follow the discussions of the input
parameters given in [4]. In Table.1, we present the resonant and nonresonant contributions to
the branching fractions of the B

0 ! K
0

K+⇡� and B
0 ! K0K�⇡+ decays individually under

S1. We also give the nonresonant and total branching fractions of B
0 ! K

0

K+⇡� under S2 and
S3 in Table.2. In above two tables, the first errors are from the uncertainties in the parameter
↵NR which governs the momentum dependence of the nonresonant amplitude. The second ones
arise from the strange quark mass ms, the form factors, the nonresonant parameter �NR and the
flavor SU(3) symmetry breaking. And the last uncertainties are induced by the CKM angle �.
Note that the ignored uncertainties arising from the power corrections such as annihilations and
hard-scattering corrections may be sizable, but the estimation of them is beyond the scope of the
current work.
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Fig. 6. Factorization formula for the edges of the Dalitz plot (region II).

with k(0), k(∥) two orthogonal space-like vectors. Due to the structure of the leading order contri-
butions, the time-like form factor Ft(ζ, s12) will be the only one relevant here. This definition of 
Ft coincides with Ref. [40].

In order to be able to make a quantitative prediction, we can relate the different B → ππ form 
factors to the 2πLCDs via a light-cone sum rule [65]. For the time-like form factor Ft we have4:

Ft (ζ, s12) = m2
b√

2f̂B

√
k2

3

1∫

u0

dz

z
exp

[
(1 + s12z̄)m

2
B

M2 − m2
b

zM2

]

#∥(z, ζ, s12) , (4.8)

where f̂B is the static B-meson decay constant extracted from a corresponding sum-rule, which 
is correlated to the Borel parameter M and to the threshold parameter u0. These three parameters 
must be determined simultaneously with the condition that the physical decay constant and form 
factor are independent of M and u0. While we do not attempt to perform a full error analysis 

here, we note that the values f̂B ≃ 0.316, u0 ≃ 0.6 and M2 ≃ 10 GeV2 satisfy this correlation 

approximately. In the asymptotic limit, given by #1
∥ = 6z(1 − z)(2ζ − 1)Fπ (s) [48], and setting 

√
k2

3 = mπ , we have

F 1
t (ζ, s12) = 3

√
2m2

b(2ζ − 1)Fπ (s12)

f̂Bmπ

1∫

u0

dz z̄ exp

[
(1 + s12z̄)m

2
B

M2 − m2
b

zM2

]

. (4.9)

With this we have all ingredients for the factorization formula valid in the collinear regions 
of the Dalitz plot. The modified QCD factorization formula reads, in terms of the new non-
perturbative quantities:

⟨πaπbπc|Oi |B⟩sab≪1 = T I
c ⊗ FB→πc ⊗ #πaπb + T I

ab ⊗ FB→πaπb ⊗ #πc

+ T II ⊗ #B ⊗ #πc ⊗ #πaπb . (4.10)

This formula is illustrated in Fig. 6 and yields now the description of the Dalitz plot in the 
kinematic regions IIa and IIb in Fig. 1.

4 This is a tentative expression where we have ignored a possible contribution from the distribution #⊥ . We use this 
formula for illustrative purposes. The final form of this expression will be presented in Ref. [65].
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Fig. 6. Factorization formula for the edges of the Dalitz plot (region II).
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Fig. 2. Factorization formula in the center (region I).

Fig. 3. Sample contributions to the hard kernels T I
i and T II

i in the factorization formula for the central region. The 
leading αs contributions are given by diagrams such as (a) and (b), while (c) and (d) are next-to-leading in αs . See the 
text for details.

3. The central region of the Dalitz plot

Our starting point is the heavy-quark limit, where we assume that mb/
√

3 ≫ "QCD. In the 
central region of the Dalitz plot (region I) we have all invariant masses of the order mb/

√
3 and 

hence we expect the factorization formula

⟨π+π−π+|Oi |B+⟩sij ∼1/3 = T I
i ⊗ FB→π ⊗ $π ⊗ $π + T II

i ⊗ $B ⊗ $π ⊗ $π ⊗ $π ,

(3.1)

where Oi is a four quark operator in the effective weak Hamiltonian. This factorization formula 
is illustrated in Fig. 2. The hard kernels can be computed perturbatively in QCD. Some typical 
diagrammatic contributions are shown in Fig. 3. We will consider here only the leading αs correc-
tions, and neglect next-to-leading α2

s contributions such as (c) and (d) in Fig. 3. While the study 
of α2

s corrections is beyond the scope of this analysis, we expect these to be about ∼ 10% relative 
to the leading color-allowed amplitude, similar to the case of B → ππ (see e.g. Ref. [55]). The 
diagram (b), where the gluon is ejected from the spectator, requires the spectator quark in the 
B meson to have a large virtuality of order mb, which is either suppressed in the heavy-quark 
limit or requires an additional hard interaction. All in all, we do not include the second term in 
Eq. (3.1) in our analysis, nor radiative corrections to T I

i . To this order, the convolutions of the 
hard kernel T I

i with the B → π form factor and the pion light-cone distribution can be computed 
without encountering end-point singularities. While this would be a trivial statement in the case 
of two-body decays, we stress that here the kernels T I

i (u, v) already depend on the momentum 
fraction of the quarks at the leading order, making the convolutions non-trivial.

The differential decay rate d2%/(ds++ ds+−) computed in this way shows some interesting 
features. First of all, moving from the central point s++ = s+− = 1/3 (region I) toward the edge 
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We propose a theoretical framework for analyzing three-body hadronic B meson decays based on the
perturbative QCD approach. The crucial nonperturbative input is a two-hadron distribution amplitude for
final states, whose timelike form factor and rescattering phase are fit to relevant experimental data. Together
with the short-distance strong phase from the b-quark decay kernel, we are able to make predictions for
direct CP asymmetries in, for example, the B! → πþπ−π! and πþπ−K! modes, which are consistent with
the LHCb data in various localized regions of phase space. Applications of our formalism to other three-
body hadronic and radiative B meson decays are mentioned.
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Three-body hadronic B meson decays have been studied
for many years [1–4]. They attracted much attention
recently, after the LHCb Collaboration measured sizable
direct CP asymmetries in localized regions of phase space
[5–7], such as

Areg
CPðπþπ−πþÞ ¼ 0.584! 0.082! 0.027! 0.007; (1)

for m2
πþπ−high > 15 GeV2 and m2

πþπ−low < 0.4 GeV2, and

Areg
CPðπþπ−KþÞ ¼ 0.678! 0.078! 0.032! 0.007; (2)

for m2
Kþπ−high<15GeV2 and 0.08<m2

πþπ−low<0.66GeV2.
Theoretical attempts to understand these data were made:
The above CP asymmetries were attributed to the inter-
ference between a light scalar and intermediate resonances
in [8]; the relations among the above CP asymmetries in
the U-spin symmetry limit were examined in [9]; SU(3)
and U-spin symmetry breaking effects were included in the
amplitude parametrization in [10]; in [11] the nonresonant
contributions were parametrized in the framework of heavy
meson chiral perturbation theory [12]; and the resonant
contributions were estimated by means of the usual Breit-
Wigner formalism.
Viewing the experimental progress, it is important to

construct a corresponding framework based on the factori-
zation theorem, in which perturbative evaluation can be
performed systematically with controllable nonperturbative
inputs. Motivated by its theoretical self-consistency and

phenomenological success, we shall generalize the pertur-
bative QCD (PQCD) approach [13,14] to three-body
hadronic B meson decays. A direct evaluation of hard b-
quark decay kernels, which contain two virtual gluons at
leading order (LO), is not practical because of the enor-
mous number of diagrams. Besides, the contribution from
two hard gluons is power suppressed and is not important.
In this region all three final-state mesons carry momenta of
OðmBÞ, and all three pairs of them have invariant masses of
Oðm2

BÞ, mB being the B meson mass. The dominant
contribution comes from the region where at least one
pair of light mesons has an invariant mass below OðΛ̄mBÞ
[1], Λ̄ ¼ mB −mb being the B meson and b quark mass
difference. The configuration involves two energetic mes-
ons almost collimating to each other, in which the dynamics
associated with the pair of mesons can be factorized into a
two-meson distribution amplitude ϕh1h2 [15]. It is evident
that ϕh1h2 appropriately describes the nonperturbative
dynamics of a two-meson system in the localized region
of phase space, say, m2

πþπ−low < 0.4 GeV2.
With the introduction of a two-meson distribution

amplitude, the LO diagrams for three-body hadronic B
meson decays reduce to those for two-body decays, as
displayed in Figs. 1–4. The PQCD factorization formula for
a B → h1h2h3 decay amplitude is then written as [1]

A ¼ ϕB ⊗ H ⊗ ϕh1h2 ⊗ ϕh3 ; (3)

where the hard kernel H contains only a single hard gluon.
The B meson (h1-h2 pair, h3 meson) distribution amplitude
ϕB (ϕh1h2 , ϕh3) absorbs nonperturbative dynamics charac-
terized by the soft scale Λ̄ (the invariant mass of the meson
pair, the h3 meson mass). Figure 1 involves the transition of
the B meson into two light mesons. The amplitude from
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‡hnli@phys.sinica.edu.tw
§lucd@ihep.ac.cn
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Fig. 2 is expressed as a product of a heavy-to-light form
factor and a timelike light-light form factor in the heavy-
quark limit. In Figs. 3 and 4, a B meson annihilates
completely, and three light mesons are produced.
Take Fig. 1(a) for the Bþ → πþπ−πþ decay as an

example, in which the Bþ meson momentum pB, the total
momentum p ¼ p1 þ p2 of the pion pair, and the momen-
tum p3 of the second πþ meson are chosen, in light-cone
coordinates, as

pB ¼ mBffiffiffi
2

p ð1; 1; 0TÞ; p ¼ mBffiffiffi
2

p ð1; η; 0TÞ;

p3 ¼
mBffiffiffi
2

p ð0; 1 − η; 0TÞ; (4)

with the variable η ¼ ω2=m2
B, ω

2 ¼ p2 being the invariant
mass squared. The momenta p1 and p2 of the πþ and π−
mesons in the pair, respectively, have the components

pþ
1 ¼ ζ

mBffiffiffi
2

p ; p−
1 ¼ ð1− ζÞηmBffiffiffi

2
p ; pþ

2 ¼ ð1− ζÞmBffiffiffi
2

p ;

p−
2 ¼ ζη

mBffiffiffi
2

p ; (5)

with the πþ meson momentum fraction ζ. The momenta of
the spectators in the B meson, the pion pair, and the πþ

meson read, respectively, as

kB ¼
"
0;
mBffiffiffi
2

p xB; kBT

#
; k ¼

"
mBffiffiffi
2

p z; 0; kT

#
;

k3 ¼
"
0;
mBffiffiffi
2

p ð1 − ηÞx3; k3T
#
: (6)

The definitions of the two-pion distribution amplitudes
in terms of hadronic matrix elements of nonlocal quark
operators up to twist 3 can be found in [1,15,16]. We
parametrize them at the leading partial waves as

ϕv;t
ππðz; ζ;ω2Þ ¼

3Fπ;tðω2Þffiffiffiffiffiffiffiffi
2Nc

p zð1 − zÞð2ζ − 1Þ; (7)

ϕs
ππðz; ζ;ω2Þ ¼ 3Fsðω2Þffiffiffiffiffiffiffiffi

2Nc
p zð1 − zÞ; (8)

with the number of colors Nc, where the factor 2ζ − 1
arises from the Legendre polynomial Plð2ζ − 1Þ for l ¼ 1.

FIG. 1 (color online). Single-pion emission diagrams for the Bþ → πþπ−πþ decay, where Ms stands for the pion pair.

FIG. 2 (color online). Two-pion emission diagrams, where q denotes a u or d quark.

FIG. 3 (color online). Annihilation diagrams.

FIG. 4 (color online). More annihilation diagrams.
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3-body Decays-PQCD
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Summary

 2-body decays

Power corrections 

NLO calculation of PQCD 

Determine the Wave function of Heavy meson 

New Physics effects 

 3-body decays

Lots of data, great potential 

How to deal with resonance  contribution 

2-meson LCDAs and B—>PP form factor 

Center region—>merge
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