

Institute of High Energy Physics Chinese Academy of Sciences

Overview of the $J^{PC} = 1^{--}$ charmonium (-like) states decaying in $B\overline{B}$ (a) $B\overline{E}S$

Xiongfei Wang(王雄飞), Xinchou Lou

(on behalf of BESIII collaboration) **IHEP**

> 甘肃,兰州大学 April 1,2018

Outline

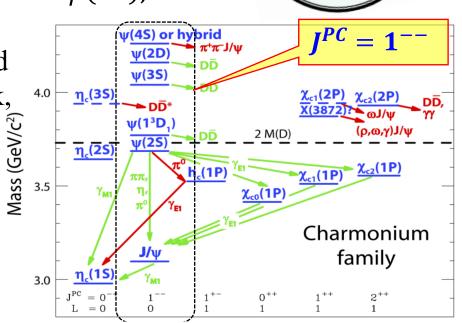
□Introduction

DExperimental apparatus

- **≻BEPCII**
- **BESIII detector**

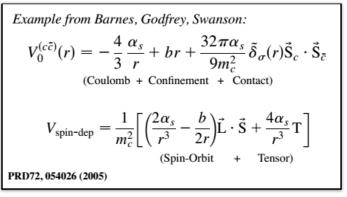
DRecent results

> Study of J/ ψ , $\psi(3686) \rightarrow B\overline{B}$ (baryon anti-baryon) 1. J/ ψ , $\psi(3686) \rightarrow \Xi^{-}\overline{\Xi}^{+}$, $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$ 2. J/ ψ , $\psi(3686) \rightarrow \Xi^{0}\overline{\Xi}^{0}$, $\Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$ 3. J/ ψ , $\psi(3686) \rightarrow \Lambda\overline{\Lambda}$, $\Sigma^{0}\overline{\Sigma}^{0}$ 4. J/ ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$ 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$ > Measurement of cross section of $e^{+}e^{-} \rightarrow B\overline{B}$ 1. $e^{+}e^{-} \rightarrow p\overline{p}$ 2. $e^{+}e^{-} \rightarrow \Lambda\overline{\Lambda}$ 3. $e^{+}e^{-} \rightarrow \Lambda_{c}\overline{\Lambda}_{c}$

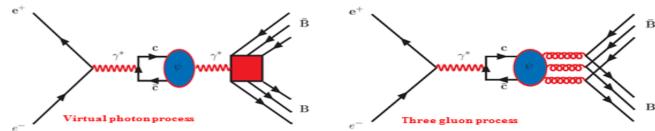


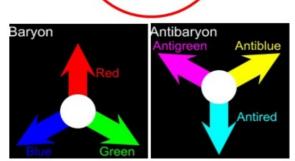
Charmonium(-like) states

Nonrelativistic *c̄c* bound states, J/ψ (1³S₁) is the first member with *J^{PC}* = 1⁻⁻, other *below charm threshold* like ψ(2S), *etc.*.
 Chamonium (-like) states *above charm threshold* like Y(4260), Y(4360), etc., proposed more exotic explanations as hybrids, tetraquark, hadronic molecule, glueball, etc..


Hybrid Glueball Tetraquark Pentaquark Glueball Tetraquark Pentaquark Hadronic molecule Hadronic molecule Deuteron: p-n molecule

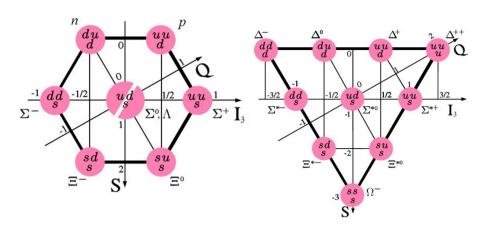
Potential models and L-QCD, very successful in describing spectra & onium properties!


C


Potential models:

Baryon spectroscopy/production

- Established baryons described by 3-quark configuration with the zero total color charge.
- **Production of** $B\overline{B}$ **in** e^+e^- **annihilation:**



Provide a favorable test of pQCD and baryonic properties

- ✓ Test "12%" rule: $Q_h = \frac{Br(\psi(2S) \to X_h)}{Br(J/\psi \to X_h)} = 12\%$ (QCD prediction).
- ✓ Test SU(3)-flavor symmetry
 - -- Allowed for $\psi \to B_8 \overline{B}_8$, $B_{10}, \overline{B}_{10}$, forbidden for $\psi \to B_8 \overline{B}_{10}$.
- ✓ Angular distribution study $(\frac{dN}{d(\cos\theta)} \propto 1 + \alpha \cos^2\theta)$:
 - Quark mass effect, electromagnetic effect, etc.: $0 < \alpha < 1$.
- $\checkmark B\overline{B}$ threshold effect
 - $-B\overline{B}$ bound states or unobserved meson resonances
- ✓ Electromagnetic form factor (EMFFs)
 - Further understand the strong interaction
 - -- Measure time-like EMFFs
- ✓ Search for 1^{--} Y states in $B\overline{B}$ final states above open charm threshold.

Octet / decuplet

Outline

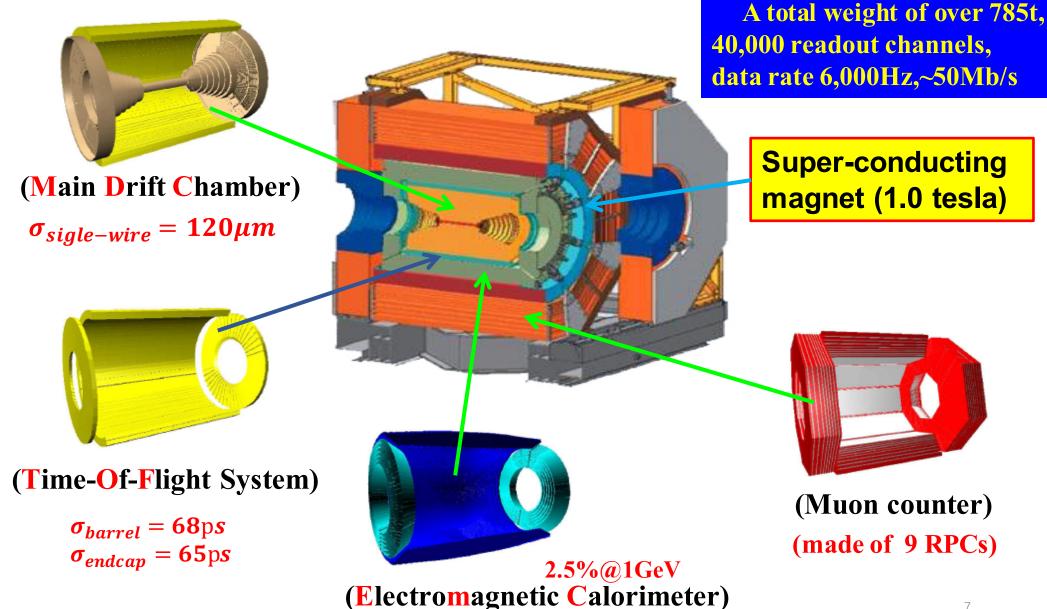
Introduction

DExperimental apparatus >BEPCII >BESIII detector

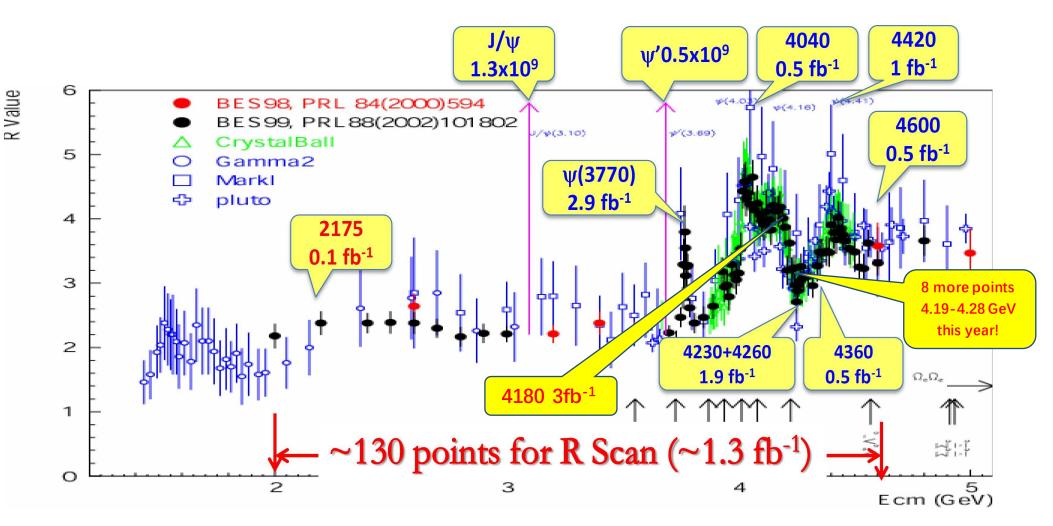
CRecent results

Study of J/ψ , $\psi(3686) \rightarrow B\overline{B}$ (B: baryon) 1. J/ψ , $\psi(3686) \rightarrow \Xi^-\overline{\Xi}^+$, $\Sigma(1385)^+\overline{\Sigma}(1385)^\pm$ 2. J/ψ , $\psi(3686) \rightarrow \Xi^0\overline{\Xi}^0$, $\Sigma(1385)^0\overline{\Sigma}(1385)^0$ 3. J/ψ , $\psi(3686) \rightarrow \Lambda\overline{\Lambda}$, $\Sigma^0\overline{\Sigma}^0$ 4. J/ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$ 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$ Measurement of cross section of $e^+e^- \rightarrow B\overline{E}$ 1. $e^+e^- \rightarrow p\overline{p}$ 2. $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ 3. $e^+e^- \rightarrow \Lambda_c\overline{\Lambda}_c$

Beijing Electron Positron Collider-II



Beam energy: 1-2.3 GeV **Design Lum:** 1×10³³ cm⁻²s⁻¹ Opt. energy: 1.89 GeV **Energy spread:** 5.16 × 10⁻⁴ **Bunches No.:** 93 **Bunch length:** 1.5 cm Total current: 0.91 A SR mode: 0.25A @ 2.5 GeV



Reached peaking luminosity: $1.0 \times 10^{33} cm^{-2} s^{-1}$

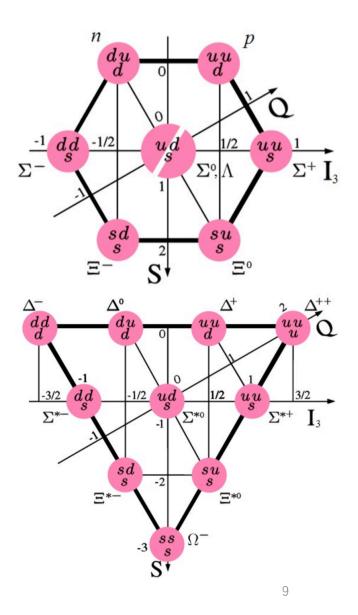
Beijing Spectrometer-III detector

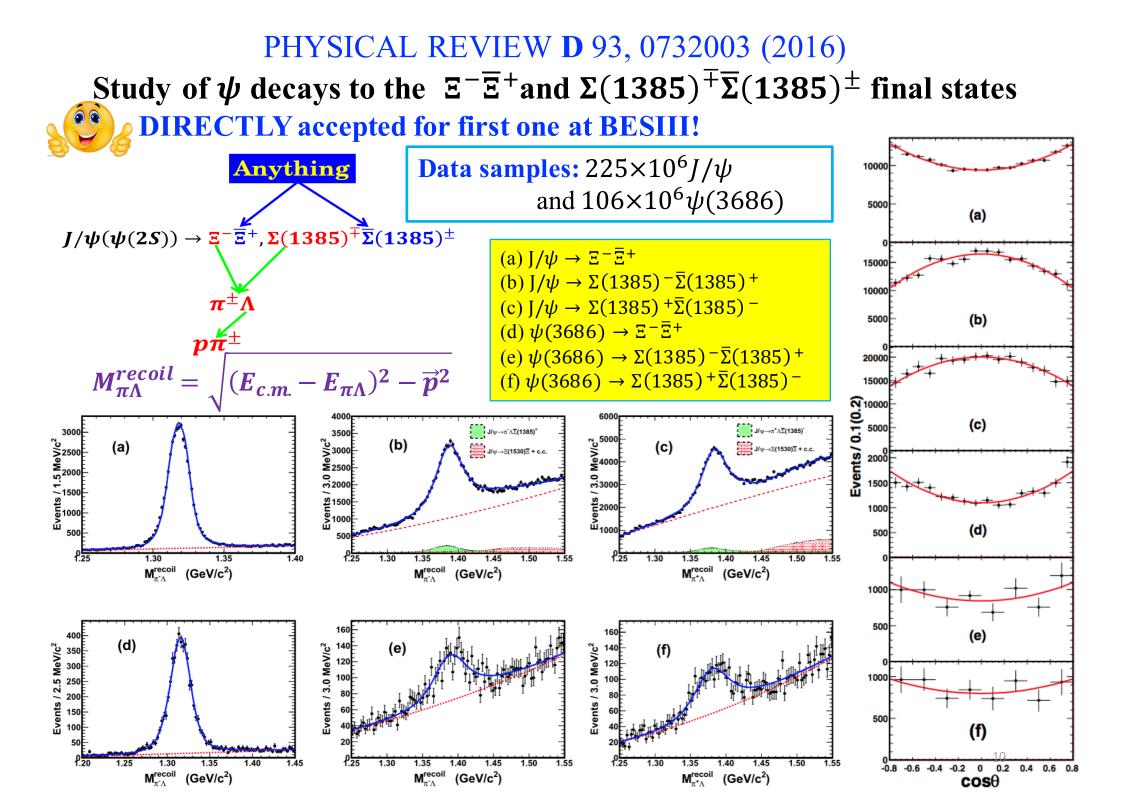
BESIII Data Samples

World largest data samples of J/ψ , $\psi(2S)$, $\psi(3770)$, etc., produced directly from e^+e^- collision.

Outline

DIntroduction

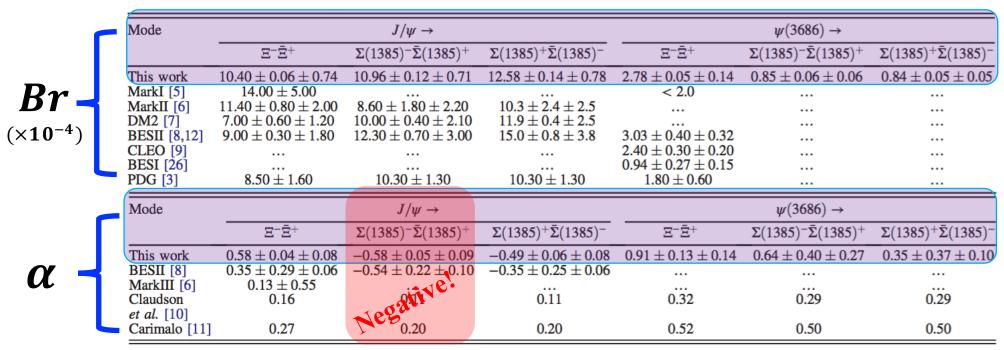

■Experimental apparatus >BEPCII >BESIII detector


DRecent results

Study of J/ψ , $\psi(3686) \rightarrow B\overline{B}$ (B: baryon) 1. J/ψ , $\psi(3686) \rightarrow \Xi^-\overline{\Xi}^+$, $\Sigma(1385)^+\overline{\Sigma}(1385)^\pm$ 2. J/ψ , $\psi(3686) \rightarrow \Xi^0\overline{\Xi}^0$, $\Sigma(1385)^0\overline{\Sigma}(1385)^0$ 3. J/ψ , $\psi(3686) \rightarrow \Lambda\overline{\Lambda}$, $\Sigma^0\overline{\Sigma}^0$ 4. J/ψ , $\psi(3686) \rightarrow NN(p\overline{p}, n\overline{n})$ 5. $\psi(3686) \rightarrow \Xi(1690/1820)\Xi$ Measurement of cross section of $e^+e^- \rightarrow E$ 1. $e^+e^- \rightarrow p\overline{p}$

3. $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

DSummary



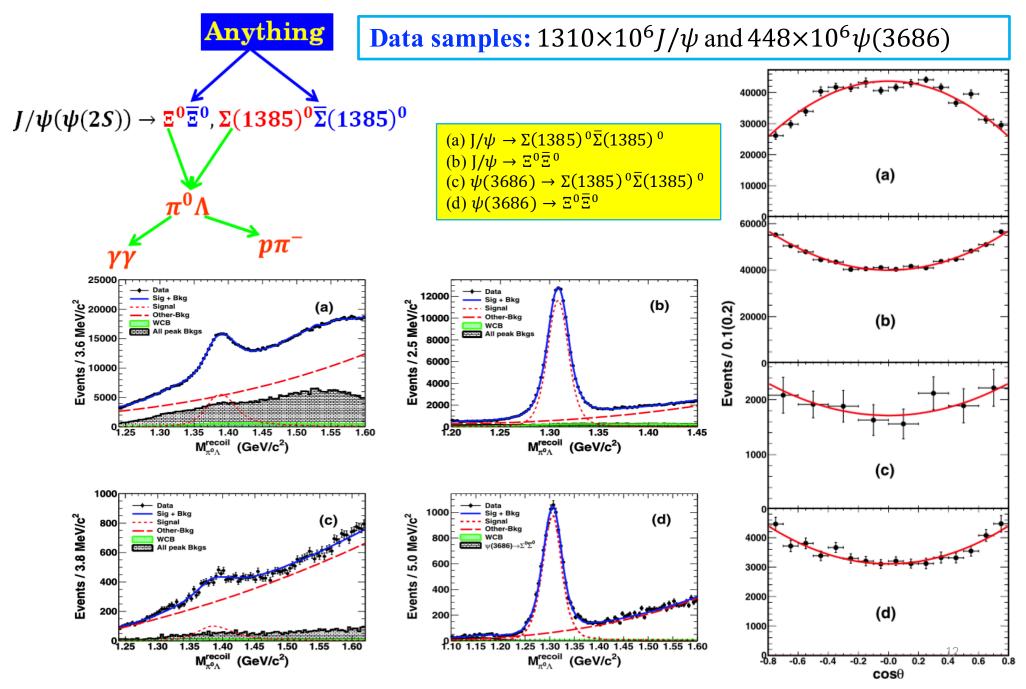
PHYSICAL REVIEW **D** 93, 0732003 (2016)

Study of ψ decays to the $\Xi^-\overline{\Xi}^+$ and $\Sigma(1385)^+\overline{\Sigma}(1385)^{\pm}$ final states

Numerical results ($Br(N_{obs}/N_{\psi} \cdot \epsilon)$ **and \alpha values)**

> Provide more new and precise measurements and experimental evidences, But for the predictions of α values without the consideration of the higher order correction, it is deviated from the measured values.

Ratio of branching fractions $\left(\frac{Br(\psi(3686) \rightarrow X_h)}{Br(U(h) \rightarrow X_h)}\right)$


$\overline{z}^{-}\overline{\overline{z}}^{+}$	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\frac{Br(J/\psi \rightarrow X_h)}{\Sigma(1385)^+ \overline{\Sigma}(1385)^-}$	12% !	
(26.73±0.50±2.30)%	(7.76±0.55±0.68)%	(6.68±0.40±0.50)%		

Deviated from

Theoretical models are expected to be improved to understand the difference

Physics Letters **B** 770 (2017) 217-225

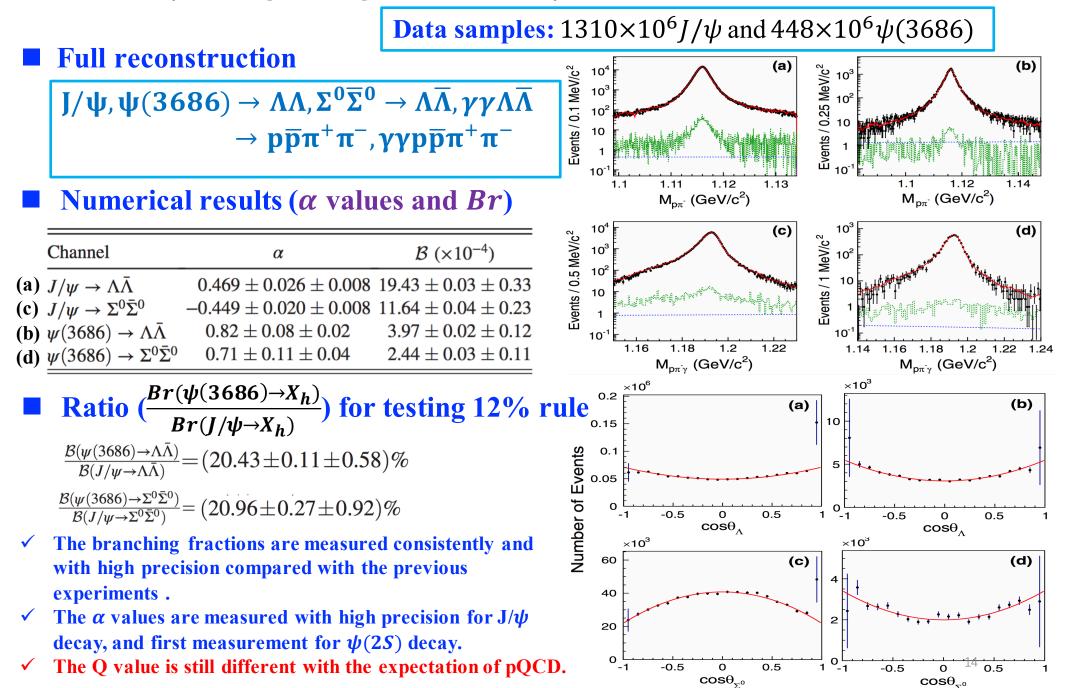
Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$ and $\Xi^0 \overline{\Xi}^0$

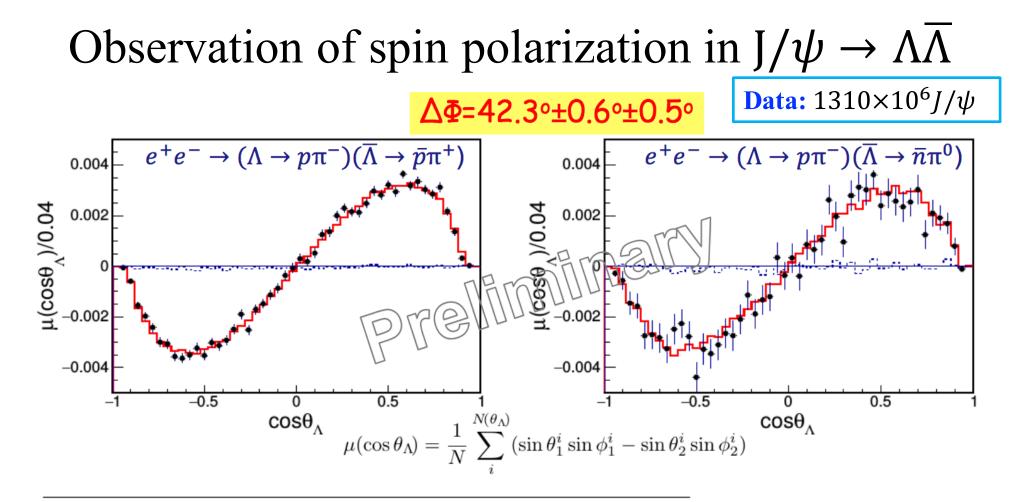
Physics Letters **B** 770 (2017) 217-225

Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$ and $\Xi^0 \overline{\Xi}^0$

Numerical results (Br and α values)

_		Mode	$J/\psi \rightarrow \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686)\to \Xi^0\bar{\Xi}^0$
Br		This work	$10.71 \pm 0.09 \pm 0.82$	$11.65 \pm 0.04 \pm 0.43$	$0.69 \pm 0.05 \pm 0.05$	$2.73 \pm 0.03 \pm 0.13$
		BESII [23]	-	$12.0 \pm 1.2 \pm 2.1$	-	-
(×10 ⁻⁴)		CLEO [24]	-	-	-	$2.75 \pm 0.64 \pm 0.61$
		Dobbs et al. [25]	-	-	-	$2.02 \pm 0.19 \pm 0.15$
		PDG [4]	-	12.0 ± 2.4	-	2.07 ± 0.23
	-	Mode	$J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686) \to \Xi^0 \bar{\Xi}^0$
		This work	$-0.64 \pm 0.03 \pm 0.10$	$0.66 \pm 0.03 \pm 0.05$	$0.59 \pm 0.25 \pm 0.25$	$0.65 \pm 0.09 \pm 0.14$
$\alpha \prec$		Carimalo et al. [6]	-0.64±0.03±0.10 0.11 0.19 Negative.	0.16	0.28	0.33
		Claudson [7]	0.19 Nega	0.28	0.46	0.53


> Provide more new and precise measurements and experimental evidences, but for the predictions of α values without the consideration of the higher order correction, it is basically deviated from the measured values. Within 1σ of


Test of isospin conservation

Physical Review D 95, 052003 (2017)

Study of J/ ψ and $\psi(3686)$ decay to $\Lambda\overline{\Lambda}$ and $\Sigma^0\overline{\Sigma}^0$ final states

Parameters	This work	Previous rest	ults	
$lpha_{oldsymbol{\psi}}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027]	BESIII	
$\Delta \Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_		
α_{-}	$0.750 \pm 0.009 \pm 0.004$		PDG	CD och um motion ut
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$		PDG	CP asymmetry:
$lpha_+ \ ar lpha_0$	$-9.692 \pm 0.016 \pm 0.006$	_		$A_{CP} = \frac{\alpha + \alpha_+}{2}$
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG	$\alpha_{-} - \alpha_{+}$
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_		

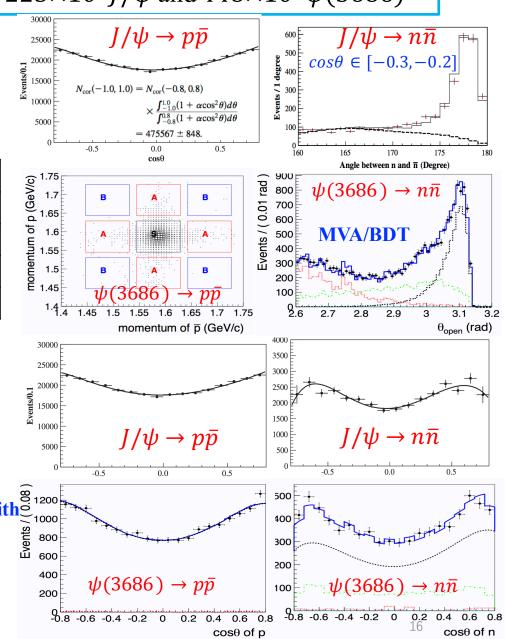
Physical Review D 86, 032014 (2012), arXiv:1803.02039 Study of J/ ψ and ψ (3686) \rightarrow N \overline{N} final states

Data samples: $225 \times 10^6 J/\psi$ and $448 \times 10^6 \psi$ (3686)

Full reconstruction

 $J/\psi, \psi(3686) \rightarrow N\overline{N} \ (p\overline{p}, n\overline{n})$

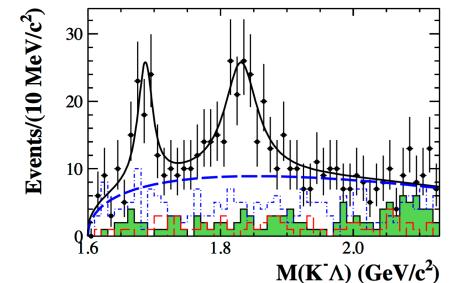
Numerical results (α values and Br)


Channel	α	$Br \times 10^{-4}$
$J/\psi ightarrow p\overline{p}$	$0.60 \pm 0.01 \pm 0.02$	$21.12\pm 0.04\pm 0.31$
$J/\psi ightarrow n\overline{n}$	$0.50 \pm 0.04 \pm 0.21$	$20.70\pm 0.10\pm 1.70$
$\psi(3686) \rightarrow p \overline{p}$	$1.03 \pm 0.06 \pm 0.03$	$3.05 \pm 0.02 \pm 0.12$
$\psi(3686) \rightarrow n\overline{n}$	$0.68 \pm 0.12 \pm 0.11$	$3.06 \pm 0.06 \pm 0.14$

Ratio
$$\left(\frac{Br(\psi(3686) \rightarrow X_h)}{Br(J/\psi \rightarrow X_h)}\right)$$
 for testing 12% rule

$$\frac{\mathcal{B}(\psi(3686) \rightarrow p\bar{p})}{\mathcal{B}(J/\psi \rightarrow p\bar{p})} = (14.4 \pm 0.6)\%$$

$$\frac{\mathcal{B}(\psi(3686) \rightarrow n\bar{n})}{\mathcal{B}(J/\psi \rightarrow n\bar{n})} = (14.8 \pm 1.2)\%$$


- ✓ The branching fractions are measured consistently and with $\begin{bmatrix} 0 \\ 1200 \\ 1000 \\ 1000 \\ 800 \end{bmatrix}$ ✓ The α values are measured with high precision for J/th
- ✓ The α values are measured with high precision for J/ ψ decay, and first measurement for $\psi(2S)$ decay.
- ✓ The Q value is consistent with the expectation of pQCD 12%.

Physical Review D 86, 032014 (2012) Observation of $\psi(3686) \rightarrow \Xi(1690/1820)\overline{\Xi}^+ + c.c.$

Two resonances are observed in $\psi(3686) \rightarrow K^- \Lambda \overline{\Xi}^+$ process

Data samples: $106 \times 10^{6} \psi(3686)$

■ **PDF:** Breit-Wigner ⊗ Gaussian

$$A(m) = \frac{p_{\Lambda}(m)^{(L_{(K^{-}\Lambda)}+1/2)} p_{\bar{\Xi}^{+}}(m)^{(L_{(\Xi^{*}-\bar{\Xi}^{+})}+1/2)}}{m-M+i\frac{\Gamma}{2}} \cdot \left(\frac{B_{L_{(K^{-}\Lambda)}}(p_{\Lambda}(m))}{B_{L_{(K^{-}\Lambda)}}(p'_{\Lambda})}\right) \left(\frac{B_{L_{(\Xi^{*}-\bar{\Xi}^{+})}}(p_{\bar{\Xi}^{+}}(m))}{B_{L_{(\Xi^{*}-\bar{\Xi}^{+})}}(p'_{\bar{\Xi}^{+}})}\right)$$

Mass and width (M, Γ) ; $p_{\Lambda/\Xi}$ momentum; *L* is orbital angular distribution; $B_L(p)$ Blatt-Weisskopf form factor[1].

Fitted results and resonance parameters

	$\Xi(1690)^-$	$\Xi(1820)^-$
$M({ m MeV}/c^2)$	$1687.7{\pm}3.8{\pm}1.0$	$1826.7{\pm}5.5{\pm}1.6$
$\Gamma({ m MeV})$	$27.1{\pm}10.0{\pm}2.7$	$54.4{\pm}15.7{\pm}4.2$
Event yields	$74.4{\pm}21.2$	136.2 ± 33.4
$\operatorname{Significance}(\sigma)$	4.9	6.2
Efficiency($\%$)	32.8	26.1
$\mathcal{B}~(10^{-6})$	$5.21{\pm}1.48{\pm}0.57$	$12.03{\pm}2.94{\pm}1.22$
$\overline{M_{ m PDG}({ m MeV}/c^2)}$	$1690{\pm}10$	1823 ± 5
$\Gamma_{ m PDG}(m MeV)$	<30	24^{+15}_{-10}

The spin-parities for both resonances have not determined due to the limited statistics.

In the fit, the spin- parities for both resonances assumed to be JP = 1/2-,3/2- with previous experimental results[2,3], the $\Xi^*\overline{\Xi}$ angular momenta $L(\Xi^*\overline{\Xi})$ are set to be 0 for both resonances, while the $K^-\Lambda$ angular momenta $L(K^-\Lambda)$ are 0 and 2.

[1] B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003).

[2] B. Aubert et al., (BABAR Collaboration), Phys. Rev. D604 78, 034008 (2008).

[3] J. B. Gay et al., Phys. Lett. B 62, 477 (1976).

Outline

Introduction

DExperimental apparatus

- **≻BEPCII**
- **BESIII detector**

CRecent results

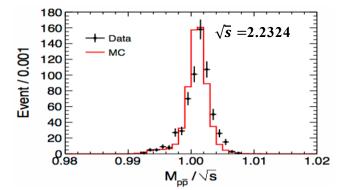
>Study of J/ ψ , ψ (3686) \rightarrow BB (B: baryon) 1. J/ ψ , ψ (3686) \rightarrow $\Xi^-\Xi^+$, Σ (1385) $^+\overline{\Sigma}$ (1385) $^\pm$ 2. J/ ψ , ψ (3686) \rightarrow $\Xi^0\overline{\Xi}^0$, Σ (1385) $^0\overline{\Sigma}$ (1385) 0 3. J/ ψ , ψ (3686) \rightarrow $\Lambda\overline{\Lambda}$, $\Sigma^0\overline{\Sigma}^0$ 4. J/ ψ , ψ (3686) \rightarrow NN(pp, nn) 5. ψ (3686) \rightarrow Ξ (1690/1820) Ξ

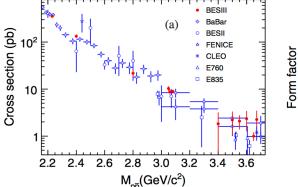
Measurement of cross section of $e^+e^- \rightarrow B\overline{B}$ 1. $e^+e^- \rightarrow p\overline{p}$ 2. $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ 3. $e^+e^- \rightarrow \Lambda_c\overline{\Lambda}_c$

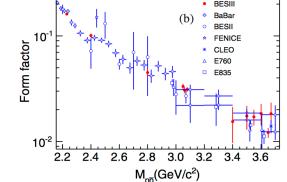
Calculation of Born cross sections and FFs

Experimentally, Born cross sections of $e^+e^- \rightarrow B\overline{B}$ are calculated by: $\sigma^{B} = \frac{N_{obs}}{2 \mathcal{L}(1+\delta)(1+\Pi)\epsilon \mathcal{B}r(B \to \text{hadrons})},$ where N_{obs} number of observed events, \mathcal{L} luminosity, $1 + \sigma$ ISR factor, $1 + \Pi$ vacuum polarization factor, $\mathcal{B}r$ the branching fraction. Theoretically, Born cross section can be expressed as: $\sigma^{B} = \frac{4\pi\alpha^{2}C\beta}{3s} [|G_{M}|^{2} + \frac{2m_{B}^{2}}{s}|G_{E}|^{2}].$ $G_{M/E}: \text{ electric/magnetic FF}$ $\beta = \sqrt{1 - \frac{4m_{B}^{2}}{s}}: \text{ velosity}$ $\alpha = \frac{1}{137}: \text{ fine structure constant}$ So the square of CM energy The effective form factor defined by $|G_{eff}(s)| = \sqrt{\frac{|G_M|^2 + \left(\frac{2m_B^2}{s}\right)|G_E|^2}{1 + 2m_B^2/s}} \quad For charged B: C = \varepsilon F with \varepsilon = \frac{\pi\alpha}{\beta} and F = \frac{\sqrt{1-\beta^2}}{1-e^{-\varepsilon}}$ for a non-zero cross section at threshold is proportional to the square root of the baryon pair born cross section $\left|G_{eff}(s)\right| = \sqrt{\frac{3s\sigma^B}{4\pi\alpha^2 C\beta(1+\frac{2m_B^2}{s})}}.$ **The electric and magnetic form factor** G_E , G_M can be expressed by the following

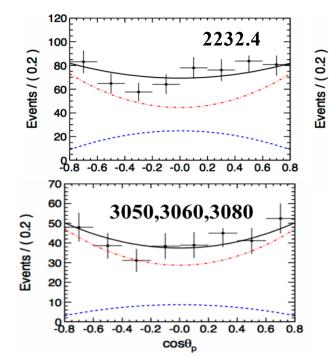
$$\frac{d\sigma^B(s)}{d\cos\theta} \propto 1 + \eta\cos^2\theta \qquad R = \sqrt{\frac{\tau(1-\eta)}{1+\eta}} \qquad R = \left|\frac{G_E(s)}{G_M(s)}\right|$$

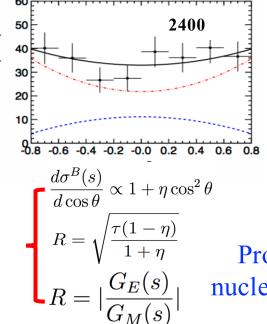

Physical Review D 91, 112004(2015)

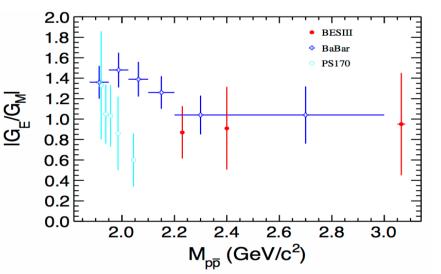

Measurement of the proton form factor in $e^+e^- o p\overline{p}$


Full reconstruction method Signal yields extraction by counting number of events

Data samples: $\sqrt{s} = 2.2324 \text{ to } 3.671 \text{ GeV}$

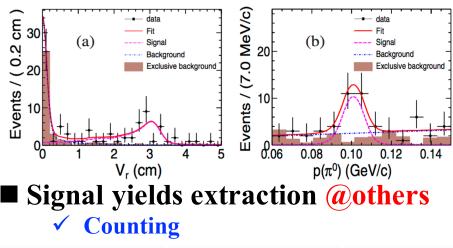

Born cross section and effective FFs

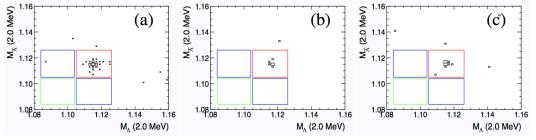




Electromagnetic G_E/G_M ratio extraction

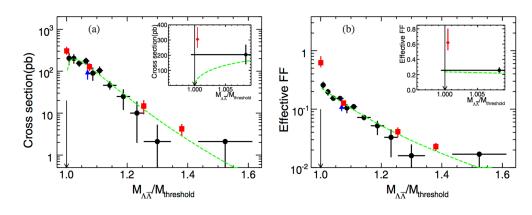
Provide more experimental evidences about nucleon internal structure and dynamics!

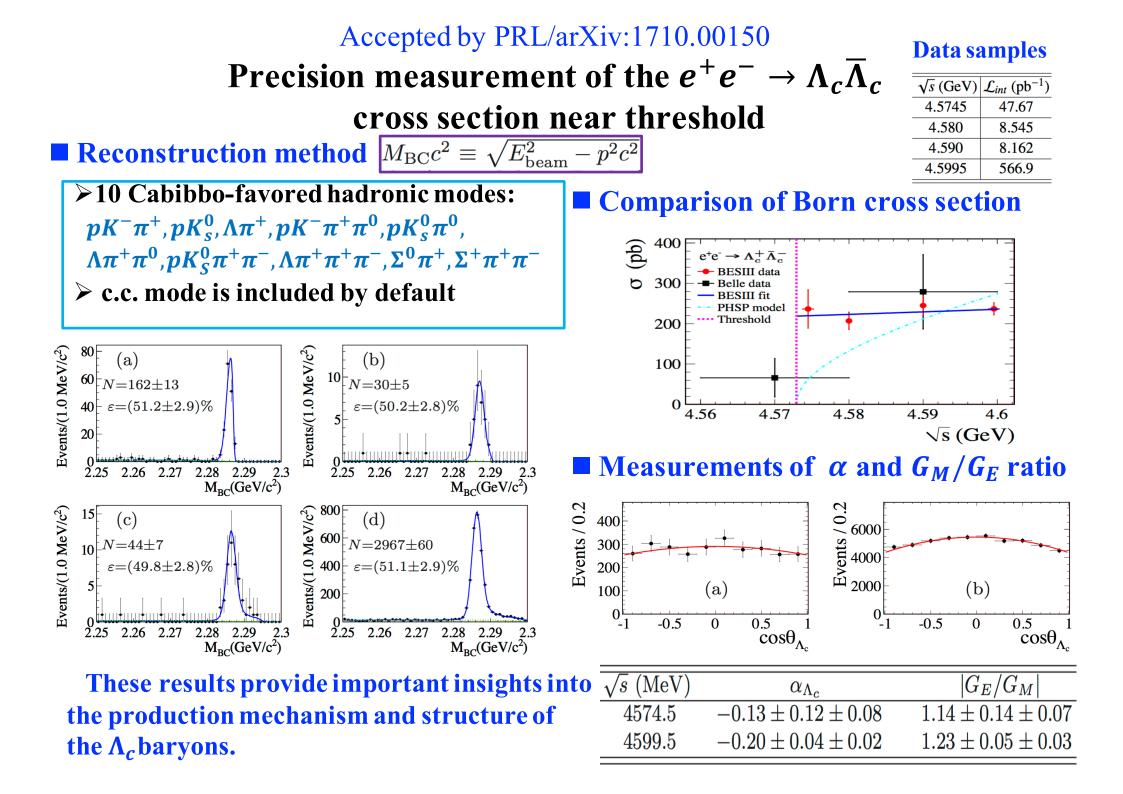

Physical Review D 97, 032013 (2018)


Measurement of cross section

near mass threshold for $e^+e^- \to \Lambda \overline{\Lambda}$

Reconstruction


- 1. $e^+e^- \rightarrow \Lambda \overline{\Lambda} \rightarrow \overline{p}\pi^+\pi^-, \overline{n}\pi^0 X @ 2.2324$
- 2. $e^+e^- \rightarrow \Lambda \overline{\Lambda} \rightarrow p\overline{p}\pi^+\pi^-$ @others
- Signal yields extraction @2.2324
- ✓ Fit to the distance from IP to the beam pipe
- ✓ Fit to π^0 momentum for $\overline{n}\pi^0 X$
- A boosted decision tree (BDT) technique are used to distinguish between π
 and γ


Data samples

\sqrt{s} GeV	Lumi. (pb ⁻¹)
2.2324	2.63
2.40	3.42
2.80	3.75
3.08	30.73

Born cross section and effective FFs

- The result is larger than the traditional theory expectation for neutral baryon pairs, which predicts a vanishing cross section at threshold.
 - The results may help to understand the mechanism of baryon production and test the theory hypotheses based on the threshold enhancement effect.

Summary

BESIII is successfully operating since 2008.

 \checkmark Collected large data samples in the τ -charm threshold region \checkmark Continues to take data until 2022 at least

■Many results for *BB* in 1⁻⁻ state decay have been obtained:

 \checkmark Precise measurement of Br/α for J/ψ , $\psi(2S) \rightarrow B\overline{B}$

 \checkmark New observation/measurement of J/ψ , $\psi(2S) \rightarrow B\overline{B}$

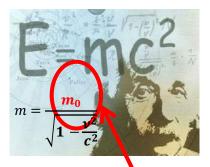
- ✓ Born cross section of $e^+e^- \rightarrow B\overline{B}$ near threshold measured.
- ✓ "12% rule" is violated compared with the expectation of pQCD with exception of $\psi \to N\overline{N}$.

✓ The threshold effect of production cross section observed.

✓ Need theoretical model further explain above difference

More new results for $B\overline{B}$ in 1^{--} state decay are on the way!

Thanks for your attention !


Backup

Standard Model of Particle Physics

Since time immemorial, human has begun to explore the world around us, "Where Do We Come From? What Are We? Where Are We Going?"

SM of Particle Physics:

Fundamental Interactions

	Strong	Electromagnetic	Weak	
Source	Color charge	Charge	Flavor	
Object	Quarks, Gluons	Charged particles, Photon	Quarks, Leptons	
Mediator	Gluons (g)	Photons (γ)	W^{\pm},Z^{0}	
Force range (m)	10^{-15}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10^{-18}	
Strength	10 ³⁸	10 ³⁶	10 ²⁵	
Lifetime (s)	10^{-23}	10^{-20}	10^{-10}	5
Cross section	mb	$\mu \mathrm{b}$	pb	
Current theory	QCD	QED	EW	İ

Fundamental particles

mass →	~2.3 MeV/c2	=1.275 GeV/c ²	=173.07 GeV/c ⁴	0	=126 GeV/c ²
charge →		23 C	2/3	; g	P (H)
spin →	1/2	1/2	1/2	1 3	
	up	charm	top	gluon	Higgs boson
_	=4.8 MeV/c²	=95 MeV/c ²	=4.18 GeV/c ²	0	
KS	-1/3	-1/3	-1/3		
AR	1/2 U	1/2 S	1/2 b	T Y	
QUARKS	down	strange	bottom	photon	
-	_				
	0.511 MeV/c ²	105.7 MeV/c ^a	1.777 GeV/c ²	91.2 GeV/c ^a	B €SⅢ
	-1 e	1	t T	91.2 GeV/c ⁴	₽ <mark>₽€S</mark> Ⅲ
	-1 1/2	-1 1/2	-1 1/2 T	, Z	
	-1 e	1	t T	91.2 GeV/c ^a 1 Z Z boson	
S	-1 1/2	-1 1/2	-1 1/2 T	, Z	
SNC	-1 1/2 electron -2.2.eV/c ⁴	-1 1/2 muon	-1 1/2 tau	^o ¹ Z Z boson	BOSONS
TONS	-1 1/2 electron -2.2.eV/c ⁴ 0 1/2 De	-1 1/2 muon	-1 1/2 tau	1 Z Z boson	BOSONS
LEPTONS	-1 1/2 electron	-1 1/2 muon	-1 1/2 tau	1 Z Z boson	