Light hadron progress at BESIII

Wencheng Yan (On behalf of the BESIII Collaboration) Beihang University

Joint Workshop on theory and experiment of hadron and heavy flavor physics 31, Mar.--1, Apr. 2018, Lanzhou, Lanzhou University

OUTLINE

>Introduction

- BEPCII and BESIII Detector
- BESIII Collaboration
- BESIII data samples

Selected topics on light hadron

- X(18xx) states
- Isospin violation and $a_0^0(980)$ -f₀(980) mixing

>Summary

Beijing Electron Positron Collider II (BEPC II)

Storage ring ~240m

Linac ~200m

BESIII Detector

/ sta

2018/4/1 W. Grad 2004: started BEPCII/BESIII construction

- ✓ Double rings
- ✓ Beam energy: 1-2.3 GeV
- ✓ Designed luminosity: 1×10³³ cm⁻²s⁻¹
 2008: test run
 2009 today: BESIII physics runs

BESIII Detector

BESIII Collaboration

Political Map of the World, June 1999 http://bes3.ihep.ac.cn **Europe (16)** that the price of taxable is Germany: Univ. of Bochum, Mongolia (1) Univ. of Giessen, GSI Univ. of Johannes Gutenberg Ins. of Phy. & Tech. **USA (4)** Helmholtz Ins. In Mainz Korea (1) Univ. of Hawaii Russia: JINR Dubna; BINP Novosibirsk **Carnegie Mellon Univ.** Italy: Univ. of Torino, Univ. of Ferrara, Univ. of Minnesota Seoul Nat. Univ. Frascati Lab **Univ. of Indiana** Netherland : KVI/Univ. of Groningen **Japan** (1) Sweden: Uppsala Univ. **Turkey: Turkey Accelerator Center** Tokyo Univ. UK:Oxford Univ., Univ. of Manchester Pakistan (2 IHEP, CCAST, GUCAS, Shandong Univ. Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll. **unazUniv.** of Punjab Huazhong Normal Univ., Wuhan Univ. **COMSAT CHT** Zhengzhou Univ., Henan Normal Univ. Peking Univ., Tsinghua Univ., India Zhongshan Univ., Nankai Univ. Shanxi Univ., Sichuan Univ., Univ. of South China **Indian Institute of Technology** Hunan Univ., Liaoning Univ. Nanjing Univ., Nanjing Normal Univ. Guangxi Normal Univ., Guangxi Univ. ~450 members Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ. **64** institutions Beihang Univ., Beijing Petrol Chemical Univ. Jinan Univ., FudanUniv. **14 countries** Antarctica Hunan Normal Univ.

2018/4/1

BESIII data samples

- World largest J/ψ, ψ(2S), ψ(3770), Y(4260), ... produced directly from e⁺e⁻ collision. 3.5/fb in 4.2-4.3GeV, 500/pb at each energy.
- J/ ψ data taking since Dec. 7th, 2017. Aim at 10billion J/ ψ events!

$X(p\overline{p})$ in PWA of $J/\psi \rightarrow \gamma p\overline{p}$

- First observed at BESII [PRL 91,022001(2003)] and confirmed by CLEO-c [PRD82,092002(2012)]
- PWA was firstly performed at BESIII [PRL 108, 112003(2012)]
- Significance of the $X(p\overline{p})$ component > 30 σ
- The 0⁻⁺ assignment is better that other J^{PC}
- $M=1832^{+19}_{-5}(stat)^{+18}_{-17}(syst) \pm 19(model) MeV/c^2$
- **Γ<76MeV** (90% C.L.)

➢ No similar structure was observed in ψ(2S) → π⁰pp̄, J/ψ→ωpp̄, J/ψ→φpp̄

强子与重味物理理论与实验联合研讨会

X(1835) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Resonance	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	N _{event}	
$f_1(1510)$	1522.7 ± 5.0	48 ± 11	230 ± 37	>5.7σ
<i>X</i> (1835)	1836.5 ± 3.0	190.1 ± 9.0	4265 ± 131	>20σ
<i>X</i> (2120)	2122.4 ± 6.7	83 ± 16	647 ± 103	>7.2σ
<i>X</i> (2370)	2376.3 ± 8.7	83 ± 17	565 ± 105	>6.4σ

- X(1835) was first observed at BESII [PRL95, 262001(2005)]
- Confirmed at BESIII via two η' modes based on 225M J/ψ [PRL 106, 072002 (2011)]
- Significance of the X(1835) is $>20\sigma$
- J^{PC} is assigned to be 0⁻
- Two additional structures was observed
- Nature of X(2120)/X(2370): pseudoscalar glueball ? η/η excited states?

X(1835) in PWA of $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

- Based on 1310M J/ψ data in 09 and 12 [PRL 115, 091803 (2015)]
- Clear structure on mass spectrum of K⁰_sK⁰_sη around 1.85GeV/c²
- Strongly correlated to $f_0(980) \rightarrow K_S^0 K_S^0$
- A PWA of events satisfying $M_{K_SK_S\eta} < 2.8 GeVc^2$, $M_{K_SK_S} < 1.1 GeV/c^2$

X(1835):

- J^{PC} determined to be 0⁻⁺
- Significance is 12.9 σ , dominated by $f_0(980) \rightarrow K^0_S K^0_S$
- $M = 1844 \pm 9^{+16}_{-25} MeV/c^2$
- $\Gamma = 192^{+20}_{-17} \, {}^{+62}_{-43} \, \text{MeV}$
- $B_{\text{product}} = 3.31^{+0.33}_{-0.30} \, {}^{+1.96}_{-1.29} \times 10^{-5}$
- Consistent with X(1835) from $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

X(1560):

- J^{PC} determined to be 0⁻⁺
- Significance is 8.9σ
- $M = 1565 \pm 8^{+0}_{-63} MeV/c^2$
- $\Gamma = 45^{+14}_{-13} \, {}^{+21}_{-28} \text{MeV}$
- Consistent with $\eta(1405)/\eta(1475)$ with 2. $0\sigma/1. 4\sigma$, but not concluded

Anomalous line shape of $\pi^+\pi^-\eta'$ in $J/\psi\to\gamma\pi^+\pi^-\eta'$

- Based on new 1090M J/ψ data in 2012 [PRL 117, 042002 (2016)]
- Two η' modes of $\eta' \to \gamma \pi^+ \pi^-$, $\eta' \to \eta \pi^+ \pi^-$
- Clear peaks of X(1835), X(2120), X(2370), η_c and additional structure near 2.6 GeV/c²
- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\overline{p}$ mass threshold

- Simultaneous fits to two η' modes in [1.3, 2.25](GeV/c²)
- Three simple Breit-Wigner
- Can not describe the distortion near pp mass threshold

Anomalous line shape of $\pi^+\pi^-\eta'$ in $J/\psi\to\gamma\pi^+\pi^-\eta'$

 A threshold effect caused by opening *pp̄* decay mode, use Flatt éformula, additional X(1920) is needed (5.7σ)

Interference between two resonances

$\frac{X(1835)}{M_{000}(M_0 N/(z^2))}$

$1825.3 \pm 2.4^{+17.5}_{-2.4}$
$245.2 \pm 13.1^{+4.6}_{-9.6}$
$(3.01 \pm 0.17^{+0.26}_{-0.28}) \times 10^{-4}$
$(3.72 \pm 0.21^{+0.18}_{-0.35}) \times 10^{-4}$

$X(1870) > 7.0\sigma$	
Mass (MeV/c^2)	$1870.2 \pm 2.2^{+2.3}_{-0.7}$
Width (MeV/ c^2)	$13.0 \pm 6.1^{+2.1}_{-3.8}$
B.R. (constructive interference)	$(2.03 \pm 0.12^{+0.43}_{-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57 \pm 0.09^{+0.49}_{-0.86}) \times 10^{-5}$

2018/4/1

. 1 17

X(1810) in PWA of $J/\psi \rightarrow \gamma \omega \phi$

- $J/\psi \rightarrow \gamma \omega \phi$ is double OZI suppressed
- The X(1810) is first observed by PWA at BESII [PRL 96, 162002 (2006)]
- X(1810) is observed and confirmed at BESIII [PRD 87, 032008(2013)]
- Significance >30σ
- the J^{PC} of the X(1810) is 0⁺⁺
- The X(1810) is not compatible with either X(1835) or X(pp) due to the different masses and spin-parity

Resonance	J^{PC}	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$>30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0^{-+}	2226	185	70 ± 30	23	2	6.4σ
Coherent nonresonant component	0^+			319 ± 24	45	2	9.1 <i>o</i>

强子与重味物理理论与实验联合研讨会

X(1870) in J/ψ→ωηπ⁺π⁻

- Based on 225M J/\u03c6 data
- First observation of $J/\psi \rightarrow \omega X(1870)$ and $X(1870) \rightarrow a_0^{\pm}(980)\pi^{\mp}$ at BESIII
- A significance of 7.2σ
- J^{PC} is unknown
- M=1877.3 \pm 6.3(stat) $^{+3.4}_{-7.4}$ (syst) MeV/c²
- $\Gamma = 57 \pm 12(\text{stat}) \stackrel{+19}{-4.0}(\text{syst}) \text{ MeV}$
- $f_1(1285)$ and $\eta(1405)$ are also observed with significances >10 σ
- the product branching fractions for X(1870), f₁(1285) and η(1405) are measured for the first time.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$ $\eta(1405)$ X(1870)	$\begin{array}{c} 1285.1 \pm 1.0 \substack{+1.6 \\ -0.3} \\ 1399.8 \pm 2.2 \substack{+2.8 \\ -0.1} \\ 1877.3 \pm 6.3 \substack{+3.4 \\ -7.4} \end{array}$	$\begin{array}{c} 22.0 \pm 3.1 \substack{+2.0 \\ -1.5} \\ 52.8 \pm 7.6 \substack{+0.1 \\ -7.6} \\ 57 \pm 12 \substack{+19 \\ -4} \end{array}$	$\begin{array}{c} 1.25 \pm 0.10 \substack{+0.19 \\ -0.20} \\ 1.89 \pm 0.21 \substack{+0.21 \\ -0.23} \\ 1.50 \pm 0.26 \substack{+0.72 \\ -0.36} \end{array}$

Whether the structure of X(1870) is due to the X(1835), the $\eta_2(1870)$, or an interference of both, or a new state still needs further study!

2018/4/1

X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- $B\left(J/\psi \to \gamma X(1840) \times B\left(X(1840) \to 3(\pi^+\pi^-)\right)\right) = \left(2.44 \pm 0.36^{+0.60}_{-0.74}\right) \times 10^{-5}$
- The mass is consistent with X(1835) and $X(p\overline{p})$
- But the width is very different from either of them, and much smaller than $\Gamma_{X(1835)} = 190.1 \pm 9.0 \text{ MeV}$
- Cannot determine whether X(1840) is a new state or a new decay modes of existing X(1835)
- A PWA is needed to determine the spin and parity

Comparison of X(18xx) at BESIII

- X(18xx) are all near $p\overline{p}$ mass threshold
- X(1835) and X(pp̄) have similar mass, same J^{PC}, X(pp̄) may be tail of X(1835)
- X(1810) is not compatible with X(1835) or X(pp̄) due to different masses and J^{PC}
- X(1870) is due to X(1835), $\eta_2(1870)$, or interference of both? needs PWA
- X(1840) agrees with X(1835) and X(pp), while their width is very different
- In theory, mesons, pp bound state, glueballs, hybrid and multiquark states

Isospin-violated decay $J/\psi \rightarrow \gamma \pi^0 f_0(980)$

- Based on 225M J/ ψ
- $\eta(1405)$ mainly decay to $a_0(980)\pi$
- First observation of isospin violated $\eta(1405) \rightarrow \pi^0 f_0(980) \text{ with a significance }>10\sigma$
- $f_0(980) \rightarrow \pi^+\pi^-$: $M = 989.9 \pm 0.4 MeV/c^2$ $\Gamma = 9.5 \pm 1.1 MeV$
- $f_0(980) \rightarrow \pi^0 \pi^0$: $M = 987.0 \pm 1.4 MeV/c^2$ $\Gamma = 4.6 \pm 5.1 MeV (<11.8@90C.L.)$

$$\frac{BR(\eta(1405) \to f_0(980)\pi^0)}{BR(\eta(1405) \to a_0(980)\pi)} \approx 18\%$$

Large isospin breaking!

2018/4/1

强子与重味物理理论与实验联合研讨会

Isospin-violating decay $J/\psi \rightarrow \phi \pi^0 f_0(980)$

- Based on 1310M J/ ψ data
- $J/\psi \rightarrow \phi \pi^0 f_0(980)$ is isospinviolated
- $\pi^+\pi^-$ and $\pi^0\pi^0$ simultaneous fit $M = 989.4 \pm 1.3 MeV/c^2$ $\Gamma = 15.3 \pm 4.7 MeV$
- Much narrower than the world averaged value, but wider than $J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0(980)$
- Obvious $f_1(1285) \rightarrow \pi^0 f_0(980)$ signal

$$\begin{split} &\frac{B\big(f_1(1285) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-\big)}{B\big(f_1(1285) \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta\big)} = (3.6 \pm 1.4)\% \\ &\text{About 1/5 of } J/\psi \to \gamma \eta (1405) \to \gamma \pi^0 f_0(980) \end{split}$$

$a_0^0(980)-f_0(980)$ mixing

Particle	I ^G (J ^{PC})	Mass(MeV)	Width(MeV)
a ₀ (980)	1-(0++)	980 ± 20	50~100
f ₀ (980)	0+(0++)	980 ± 10	40~100

- $a_0^0(980)$ and $f_0(980)$ are explained as mesons, tetraquarks, KK molecules, $q\overline{q}g$ hybrids
- In 1970s, the mixing mechanism was proposed between a₀⁰(980) and f₀(980)
 [PLB 88, 367 (1979)]
- $m(K^0\overline{K}^0)-m(K^+K^-)\approx 8MeV/c^2$
- Between the K⁺K⁻ and K⁰K⁰ mass thresholds, amplitude is proportional to difference of phase spaces

$a_0^0(980)-f_0(980)$ mixing

- J.J. Wu, Q. Zhao, B.S. Zou proposed to directly measure $f_0(980) \leftrightarrow a_0^0(980)$ mixing via $J/\psi \rightarrow \varphi a_0(980) \rightarrow \varphi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ [PRD 75 114012(2007), PRD 78 074017(2008)]
- Mixing intensity is crucial to understand the nature of $a_0^0(980)$ and $f_0(980)$

$$\xi_{fa} = \frac{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)}{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi \pi \pi)}$$

$$\xi_{af} = \frac{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-)}{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta)}$$

Channel	$f_0(980)$ -	9(020) (020)	
Channel	Solution I	Solution II	$a_0(980) \to f_0(980)$
$\mathcal{B}(\text{mixing})(10^{-6})$	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
$B(EM)(10^{-6})$	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	
$B(\text{total}) (10^{-6})$	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$

强子与重味物理理论与实验联合研讨会

Isospin violation and physical mechanism

Experimental phenomena: 1. $J/\psi \rightarrow \gamma \eta (1405) \rightarrow \gamma f_0 (980) \pi^0 \rightarrow \gamma \pi^+ \pi^- \pi^0$ $\frac{B(\eta (1405) \rightarrow f_0 (980) \pi^0 \rightarrow \pi^+ \pi^- \pi^0)}{B(\eta (1405) \rightarrow a_0^0 (980) \pi^0 \rightarrow \eta \pi^0 \pi^0)} = (17.9 \pm 4.2)\%$

 $\begin{aligned} & 2.J/\psi \to \varphi f_1(1285) \to \varphi f_0(980)\pi^0 \to \varphi \pi^+\pi^-\pi^0 \\ & \frac{B(f_1(1285) \to \pi^0 f_0(980) \to \pi^0\pi^+\pi^-)}{B(f_1(1285) \to \pi^0 a_0^0(980) \to \pi^0\pi^0\eta)} = (3.6 \pm 1.4)\% \end{aligned}$

$$\begin{split} & \textbf{3. } J/\psi \rightarrow \boldsymbol{\varphi} a_0^0(\textbf{980}) \rightarrow \boldsymbol{\varphi} \eta \pi^0 \\ & \frac{B(J/\psi \rightarrow \boldsymbol{\varphi} a_0^0(\textbf{980}) \rightarrow \boldsymbol{\varphi} \eta \pi^0)}{B(J/\psi \rightarrow \boldsymbol{\varphi} f_0(\textbf{980}) \rightarrow \boldsymbol{\varphi} \pi^+ \pi^-)} < 1.0\% \end{split}$$

$$\begin{split} & \frac{4.\chi_{c1} \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-}{B(\chi_{c1} \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-)} \\ & \frac{B(\chi_{c1} \rightarrow \pi^0 a_0^0(980 \rightarrow \pi^0 \pi^0 \eta))}{B(\chi_{c1} \rightarrow \pi^0 a_0^0(980 \rightarrow \pi^0 \pi^0 \eta))} < 1.0\% \end{split}$$

Summary

- Based on the largest data samples of J/ψ, ψ(2S) at BESIII, two highlight progress in light hadron are presented
 - X(18xx) states:

 $X(p\overline{p}), X(1835), X(1810), X(1870), X(1840)$

Isospin violated processes and $a_0^0(980)$ -f₀(980) mixing

 $J/\psi \rightarrow \gamma \eta (1405) \rightarrow \gamma f_0(980) \pi^0 \rightarrow \gamma \pi^+ \pi^- \pi^0$

$$J/\psi \rightarrow \varphi f_1(1285) \rightarrow \varphi f_0(980)\pi^0 \rightarrow \varphi \pi^+\pi^-\pi^0$$

$$J/\psi
ightarrow \phi a_0^0(980)
ightarrow \phi \eta \pi^0$$

 $\chi_{c1}\rightarrow\pi^0f_0(980)\rightarrow\pi^0\pi^+\pi^-$

- \succ J/ ψ , ψ (2S) is excellent laboratory to study light hadron at BESIII
- More interesting results are expected to be coming soon!

Thank you for your attention!

