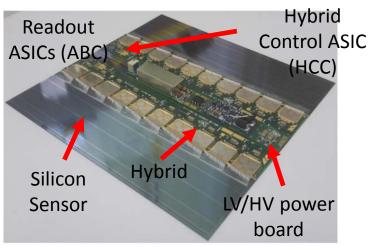
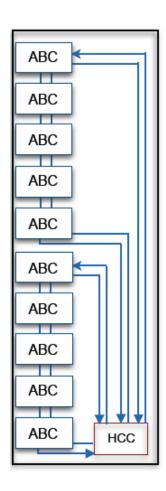
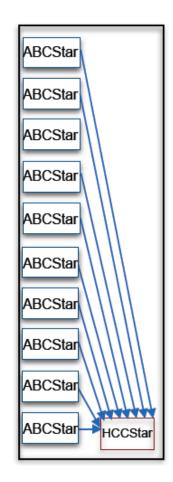
Digital Design and Verification of the Front-end readout chip of ITk Strip for ATLAS Phase II upgrade

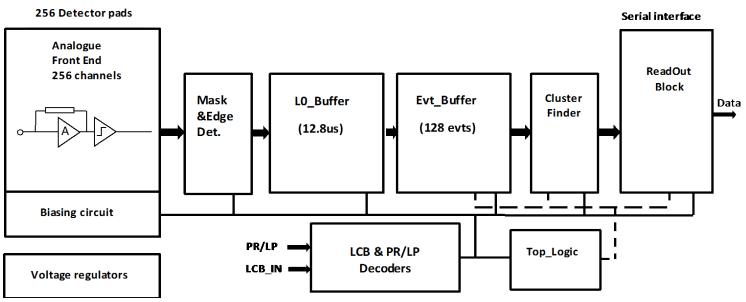

> Weiguo Lu On behalf of ITk Strip ASIC community Dec. 8, 2017

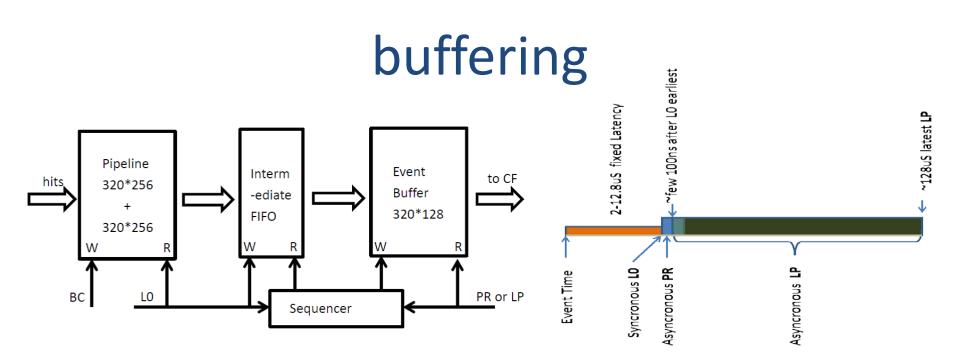
Outline


- Star chips for ITk strip upgrade
- New design features of ABCStar
- Functional Verification
- Other blocks and current status


Star chips for ITk strip upgrade

Star chips for ITk Strip


- Challenge for ITk Strip upgrade
 - Higher luminosity , finer granularity, larger scale, harsher radiation...
- Chip set on module
 - ABC--ATLAS Binary Chip
 - HCC--Hybrid Control Chip
- Interface for higher trigger rate
 - Increased trigger rate->1MHz L0
 - shorter latency
 - From serial transfer to star connection

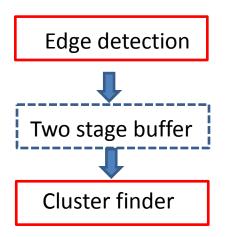


New design features of ABCStar

ABCStar ASIC

- It uses the standard binary readout architecture
- Data path: amplifier, discriminator, input register block, pipeline, event buffer and a cluster algorithm to compress data for output
- It is being designed to support various trigger modes
- It will be built in GF130nm technology




- The two stage buffers: Pipeline(LOBuffer) and EvtBuffer
- Transfer **1** event per LO from Pipeline to EvtBuffer(instead of 3)
 - Less RAM
 - Simpler logic
- Modification of buffer size
 - Pipeline(LOBuffer)extended to 512bit length
 - EvtBuffer reduced to 128bit length(128 events)
- Basic memory IP: single port RAM+ in case of consecutive LOs
 - -->Intermediate FIFO to give the priority to EvtBuffer read operation

Data compression

ABC130

ABCStar

- Edge detection circuit before pipeline
 - Extract only the leading edge information
 - To compress the data in terms of time by factor of 2
- Cluster finder after eventbuffer
 - Data reduction in terms of space, creating a cluster byte for channels found with hits
 - takes in 256 bits of strip data and reports out 12 bit clusters at 40MHz

Priority readout

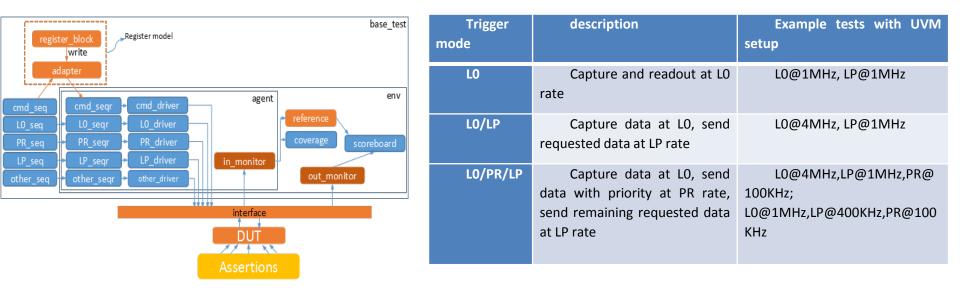
•	Physics data		
	 PR trigger has higher priority over LP trigger 	high	HPR
•	Register readback		
	 32 positions Register Data FIFO 		PR
	 Two cases of conditions independent of read register command 		
٠	HPR		LP
	 The content of the 32 bits register called "HPR" 		L)
	(for High Priority Register) is transmitted periodically after powerup, a HardReset, or a RegisterReset fast command, or in case of the lcb_lock bit being false, indicating the LCB circuit has lost its synchronization with the LCB signal frame.	low	Regular register readback
•	Tonlogic		

- TopLogic
 - Sequencer for the control of EvtBuffer, ClusterFinder and ReadOut

interface

- LCB
 - The LOA/CMD/BCR signal transfers triggers (LOA), fastcommands, register read-writes (CMD) and bunch-counter-reset (BCR) to the HCCStar and then onto the ABCSTAR
 - The signal is 6b8b encoded and sent at 160Mbps over an LVDS bus
 - 16 bits frame extending over 4BC
- Data packets
 - 68 bits fixed length readout packet format
 - 160Mb/s readout rate was rather chosen to reduce the transmission latency for L1-track

Start Bits	Header	Payload	Trailer
3	16	48	1

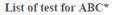

Robust design

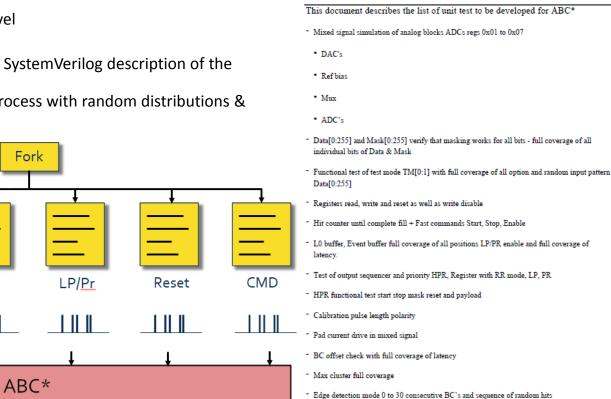
- LOtag insertion in LCB
 - Improve reliability by remove sensitive LOID counter
- Deglitcher for external asynchronous resets
- Radiation hard design
 - TMR for key logic and registers
 - Hamming coded state machine

Functional Verification

UVM setup

- A top verification setup based on (UVM)Universal Verification Methodology was built for ABCStar.
 - Functional coverage with customized random stimulus
 - Result comparison with reference model through scoreboard
 - SystemVerilog assertions for validating key design features
- to verify the current design under several possible trigger conditions
 - different rate, latency and distribution model of triggers


SystemVerilog setup


- Unit tests .
 - **RTI** level tests
 - Done at the module level
- Directed random tests

256 ch

- ABCStar golden model, SystemVerilog description of the _ **ABCStar specs**
- Independent parallel process with random distributions & _ payloads.

Lo

BCR

Other blocks and current status

Analog frontend

Supporting blocks

- Power options for TID current bump mitigation
 - extend the range of digital voltage regulator, lower voltage down to 1 volt for the digital part
- eFuse for chip identification
 - an individual chip identifier programmed with eFuses
- Analogue monitor of voltage and temperature
 - an analogue monitor circuit like in the HCC to measure regulated VDDs, and temperature

Pads and layout

Summary

- In order to meet new challenges, many new features are adopted for ABCStar design, especially in the digital part
- rtl designs are close to the end, a lot of verification work ahead
- Analog blocks almost fixed, the layout has started

Thanks for your attention !