

國科學院為能物別湖完所 Institute of High Energy Physics Chinese Academy of Sciences

CMOS Strip Sensor Characterization for the ATLAS Phase-II Strip Tracker Upgrade

Liejian Chen (IHEP) On behalf of IHEP ATLAS Group

Many thanks for ATLAS CMOS Strip Calibration Yubo Han¹, Hongbo Zhu¹, Giulio Villani², Iain Sedgwick², Jens Dopke², Zhige Zhang², Steve MacMahon², Fergus Wilson², Dionisio Doering³, Pietro Caragiulo³, Larry Ruckman³, Camillo Tamma³, Mazin Khader³, Murtaza Safdari³, Su Dong³

¹ Institute of High Energy Physics, Beijing, China

² Rutherford Appleton Laboratory, Didcot, UK

³ SLAC National Accelerator Laboratory, CA, USA

Outline

- Introduction of CMOS Strip
- Primary test results of OverMOS
- Test results of the Chess 2 in-pixel electronics
- Conclusion

CMOS Strips Introduction

- ATLAS evaluate HV/HR CMOS technologies for strip region
 - $\circ~$ "Strip" is composed from pixels with individual readout
 - Similar readout chain: sensor (Analog FE + comparators)->ABCN'->HCC'
- Possible improvements compared to present strip sensor:
 - Significantly lower material budget
 - eliminate the need for bump bonding or other challenging interconnect methods
 - can be thinned to less than 100um
 - Smaller pixel size
 - not limited by bump bonding
 - o Lower costs
 - can be implemented in standard commercial technologies

HV/HR-CMOS Technology

- Depleted CMOS benefits from HV/HR technology
 - $Q_{MIP} \propto d \propto \sqrt{\rho \times V}$
- High-Resistivity CMOS technology
 - \circ $\,$ Developed for image applications
 - Depletion zone ~10-20um
 - High resistivity: up to kOhm*cm
 - TowerJazz-OverMOS 1 -> TowerJazz
 OverMOS 1.1
- High-Voltage CMOS technology
 - o Standard n-in-p sensor
 - Depletion zone ~10-20um
 - High bias voltage: ~100 V
 - Challenging for hybrid pixel readout electronics
 - o AMS-Chess1 -> AMS-Chess2

HV-CMOS Layout

Introduction of OverMOS

- OverMOS 1.0
 - P and n type substrates
 - Numbers of topology of the collecting nwells
 - But it has shortage problems
- OverMOS 1.1
 - similar structure, but collection n-wells surrounded with P-type rings
 - Passive pixel arrays (40X40um², 40X400 um²)
 - Active pixel arrays: AC/DC coupled with Inpixel electronics (40 X 400 um²)

OverMOS 1 with p/n type sub

PASSIVE

Passive Pixel DC Properties

- Probing the central pixel (40X40 um²): HV bias voltage applied to n-well and pwell grounded
- Irradiated at Ljubljana in October 2017: 1e13, 5e13, 1e14 and 5e14 n_{eq}/cm²

Laser Injection on Passive Pixels

- Signal of the sensor amplified with an external preamplifier (A250CF coolFET Charge preamplifier)
- Bias voltage applied through the port of • A250CF
- Laser information:

3000

2500

1000

- ND filter: 1.3 + 3 (decrease intensity) ٠
- Lo_IR (1064 nm) ٠
- Shutter: 4.5x4.5 um² ٠

Charge preamplifier

Laser Response of Passive Pixels

- Total collected charge vs. Vbias , points A,B,C. Integration time 400 ns
- <Q injected> = 1.805 fC/um
- HVbias provided through the A250CF, via a 400 Meg resistor chain

Pos A: Blue	(0,0)
Pos B: Black	(15,0)
Pos C: Red	(15,-15)

TCT Measurements on Active Pixel Arrays

- TCT scanning on active pixel arrays confirm that the shortage problem have been solved
- The diodes are isolated by P-rings in OverMOS 1.1, so only the hit • channel does show a significant response with negligible crosstalk comparing to OverMOS1.0

Pixel 1

Pixel 2

х

Top-TCT/Edge-TCT

• Top-TCT and Edge-TCT scanned indicate the bias strange behavior

Depth direction (X [um])

⁵⁵Fe Experiment

- 55 Fe5.9 keV/3.6 eV \approx 1640 e⁻
- Not very clear spectrum due to low statistic

Introduction of AMS-Chess2

- Designed at UCSC and SLAC, manufactured in the AMS-H35 technology by AMS after being successful in porotypes HV-CMOS Chess1
- n-in-p with 4 substrate resistivities (20 1000 Ω ·cm)
- Full reticle monolithic demonstrator chip
- 3 fully digital striplet arrays + 1 test filed with analog test structures
- IHEP (Yubo) attend the test of in-pixel electronics

In-pixel Electronics

- Charge preamplifier and comparator are implanted in pixels
- Challenging in adjustment to make the electronics work stable

Test on ASICs

- Cooling module added to reduce the noise
- Acquire stable results with good BL/threshold linearity
- Update firmware to enable external pulse injection

Test Results of Chess2

- Average efficiency of multiple pixels @ different external pulses injected
- Beam test is on gonging after enable bias the board

Conclusion

- ATLAS commenced R&D effort to evaluate depleted CMOS pixels (HV/HR)
- IHEP attend most test of OverMOS 1.1 and Chess 2 in-pixel electronics test
- Better understanding of HR-CMOS sensor before/after irradiation and HV-CMOS in-pixel electronics