

Combination of CEPC Higgs precision measurement

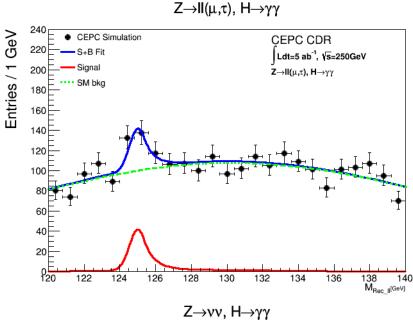
Zhang Kaili, IHEP

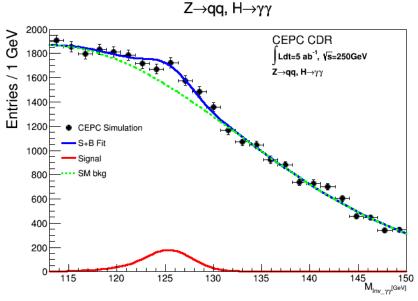
Wang Jin, Liu Zhen

Follow up study from:

http://indico.ihep.ac.cn/event/6618/session/22/contribution/141/material/slides/0.pdf

Channels Table

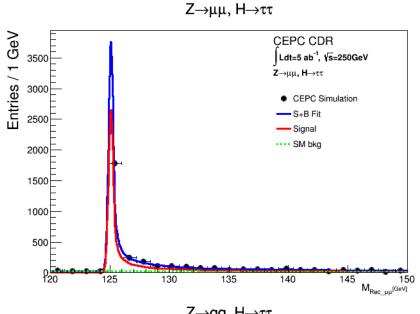

Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab⁻¹.

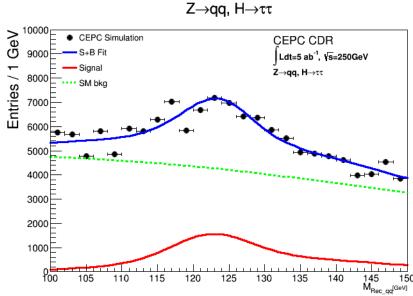

Sig	gnal Observed Who takes Procision Signal		nal	Observed	Who takes	Danaisian				
Z	Н	Events	charge	Precision	Z	Н	Events	charge	Precision	
H->Inclusive						H->WW				
vv	Inclusive	164170				μνμν	52		2.6% 2.6% 1.3% 8.3% 3.4% 7.4% 40% 23% 3.0% 2.8% 1.9% 3.7%	
μμ	Inclusive	29552	Liao Libo	\		evev	36			
ee	Inclusive	22200			μμ	evμv	105]	2.6%	
H->qq						evqq	663]		
	bb	7655		1.3%		μνqq	717			
ee	СС	351		15%		μνμν	44	Liao Libo		
	gg	1058		8.2%	ĺ	evev	22]		
	bb	11108		1.0%	ee	evμv	81		2.9%	
μμ	СС	567		11%		evqq	612			
	gg	1762	Bai Yu	5.5%		μνqq	684	1		
	bb	176542	Dai tu	0.5%	VV	qqqq	9022		1.3%	
qq	СС	8272] !	17%			H->ZZ			
	gg	25293		7.2%	VV	μμϳϳ	179		8.3%	
	bb	70608]	0.4%	VV	eejj	64]	34%	
vv	сс	3061		3.9%	μμ	vvjj	200	, ·	7.4%	
	gg	9633		1.6%	ee	eejj	55		40%	
Η->γγ,Ζγ				ee	mmjj	81		23%		
II	II 93		Wang Feng	27%		H→ττ				
vv	Ι γγ	309	vvalig i elig	12%	ee		\]	3.0%	
qq		822	Sun Yitian	13%	μμ	ττ	2135	Yu Dan	2.8%	
qq	Ζγ	219	Yao Weimin	21%	qq		23168		1.9%	
				Br, Upper	VV		8809		3.7%	
qq		202		0.3%			Н→μμ			
ee	vvvv	8	Mo Xin	1.1%	qq		71			
μμ		18		0.7%	ee	J l	1 Cui 7h	Cui Zhenwei	15%	
	V	vH(WW fusio	n)		μμ	μμ	4	Cui Ziieiiwei	13/0	
vv	bb	10256	Liang Hao	3.1%	VV		14			

$\gamma\gamma$ plots

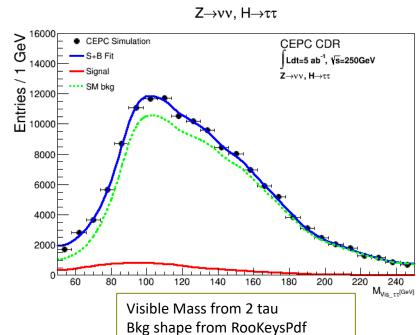
Change fit functions

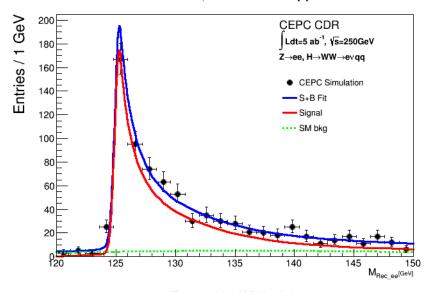
Now fit shapes better than before.

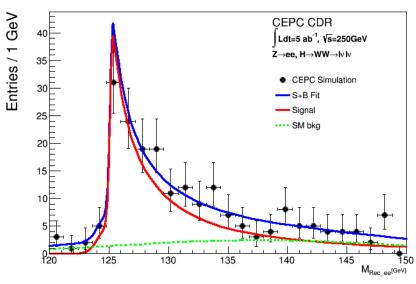

Change plot style

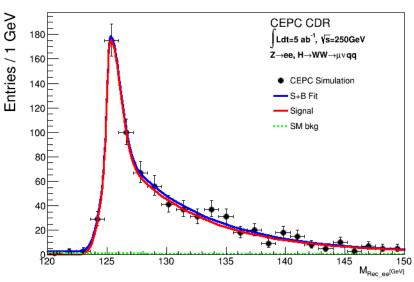

- Now black dot stands for MC total data.
- Legend & CEPC logo
- Less points, X-axis error bar

Please comment if any other demands

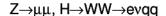

au au plots

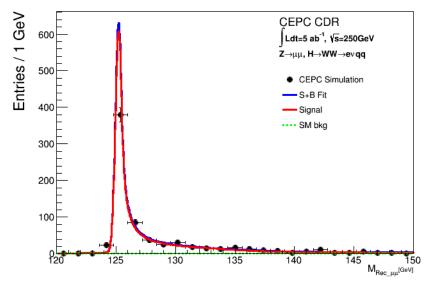



WW plots

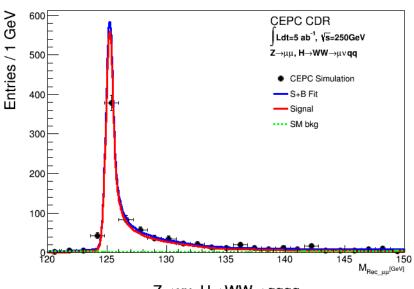


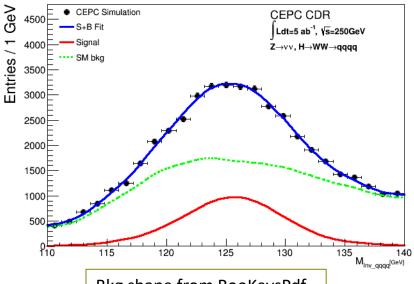
$Z\rightarrow$ ee, $H\rightarrow WW\rightarrow lvlv$



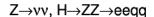

$Z\rightarrow$ ee, $H\rightarrow$ WW \rightarrow $\mu\nu$ qq

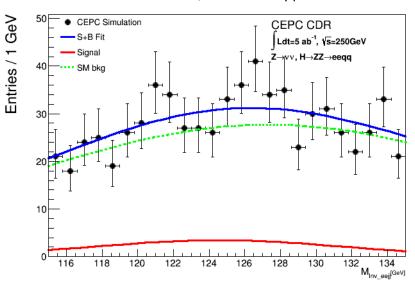

WW plots

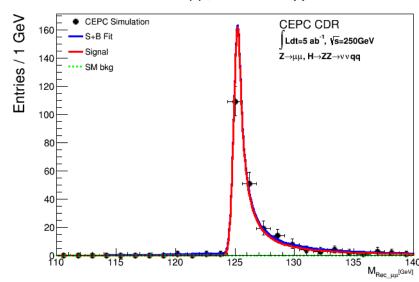


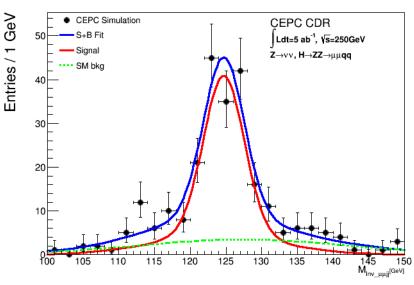

$Z\rightarrow \mu\mu$, $H\rightarrow WW\rightarrow hh$

 $Z\rightarrow \mu\mu$, $H\rightarrow WW\rightarrow \mu\nu qq$



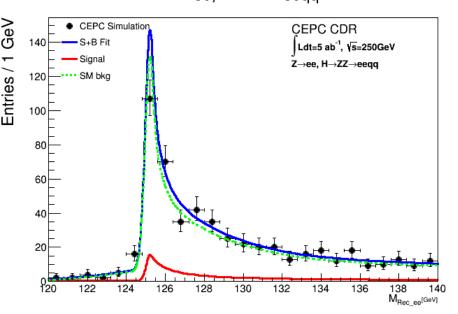

Z→vv, H→WW→qqqq


ZZ plots

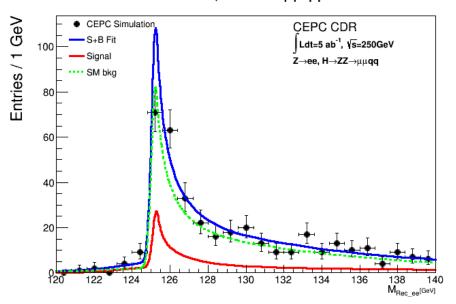


$Z\rightarrow \mu\mu$, $H\rightarrow ZZ\rightarrow vvqq$

 $Z\rightarrow \nu\nu$, $H\rightarrow ZZ\rightarrow \mu\mu qq$

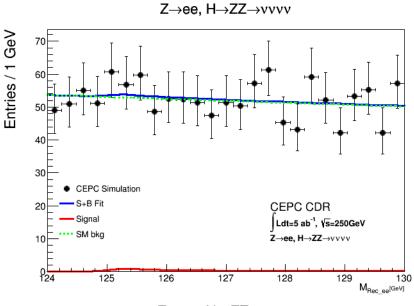


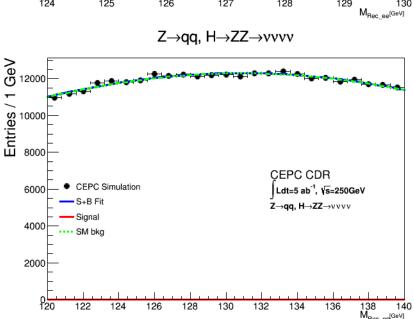
ZZ plot

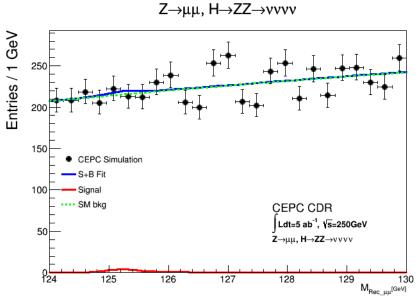


From Yuqian's study Not reported before.

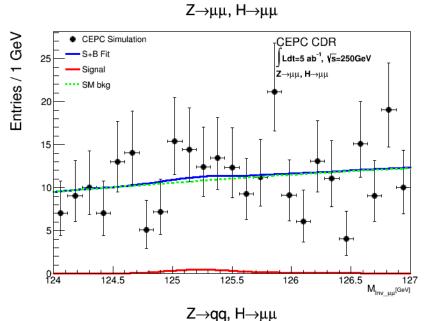
Z→ee, H→ZZ→eeqq

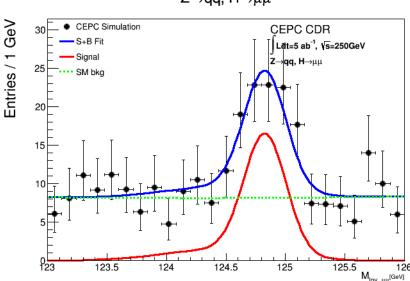


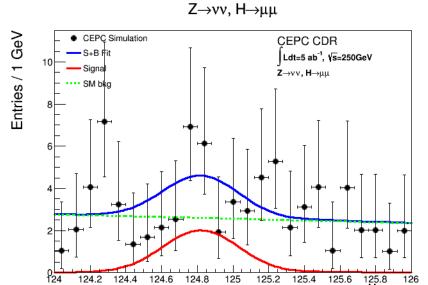

 $Z\rightarrow ee$, $H\rightarrow ZZ\rightarrow \mu\mu qq$

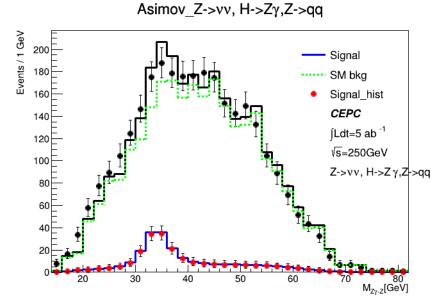


Invisible channel


Precision of Br*CrossX: 158%


Upper limit of Br: 0.24%


Br: $0.103\% \pm 0.075\%$


$\mu\mu$, $Z\gamma$ channel

 $Z\gamma$ from Weimin, binned fit

$\tau \tau$

	preCDR	Now
ττ	1.2%	1.34%

- Pre_CDR concludes the precision 1.2% but no description.
- Develop LICH to identify lepton. Eff>99%
- Signal and ZH events(Main WW) share the same shape
 - Dan use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal
 - Impact parameter, Distance from beam spot
 - Determine the ratio, then use ratio to produce signal sample.

Still tuning

• eeH is extrapolated from mmH, assuming bkg 4 times worse;

	BR (H $\rightarrow \tau\tau$)	$\delta (\sigma \times BR)/(\sigma \times BR)$	Mine
$\mu\mu$ H	6.40 ± 0.18	2.68%	2.75%
eeH(extrapolated)	6.37 ± 0.18	4.34%	2.98%
ννH	6.19 ± 0.17	4.29%	3.69%
qqH	6.25 ± 0.04	1.71%	1.93%
combined	6.28 ± 0.07	1.30%	1.34%

Table showed here use number counting; After discussing with Dan, We think my result is more reliable.

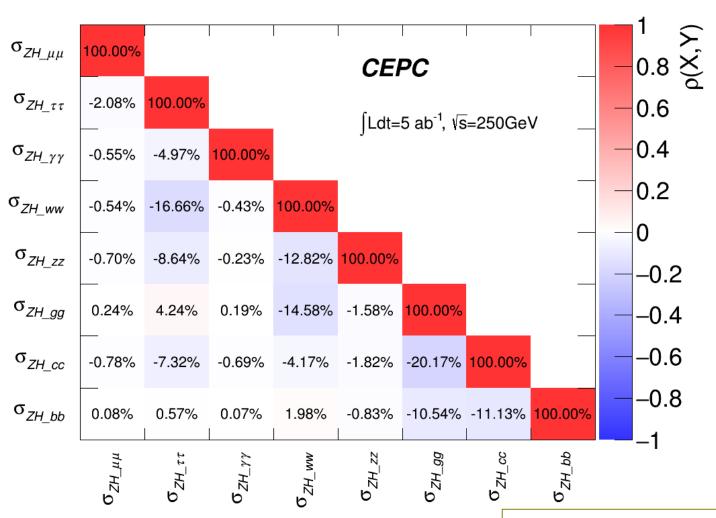
see more details in https://agenda.linearcollider.org/event/7645/contributions/40070/attachments/32408/49220/lcws2017_Dan.pdf

Fit results

 $\sigma(ZH) * Br(H \rightarrow Z\gamma)$

(5ab ⁻¹)	Pre_CDR	Current
$\sigma(ZH)$	0.51%	0.50%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	$\{^{+0.27\%}_{-0.27\%}$
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	$\{^{+3.46\%}_{-3.44\%}$
$\sigma(ZH) * Br(H \to gg)$	1.6%	$\{^{+1.44\%}_{-1.44\%}$
$\sigma(ZH) * Br(H \to WW)$	1.5%	$\{^{+1.20\%}_{-1.20\%}$
$\sigma(ZH) * Br(H \to ZZ)$	4.3%	$\{^{+5.25\%}_{-5.10\%}$
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	{+1.34% -1.34%
$\sigma(ZH) * Br(H \to \gamma \gamma)$	9.0%	$\{^{\mathbf{+8.20\%}}_{\mathbf{-8.12\%}}$
$\sigma(ZH) * Br(H \to \mu\mu)$	17%	{+15.8% -14.9%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	$\{^{+3.12\%}_{-3.11\%}$
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.24%

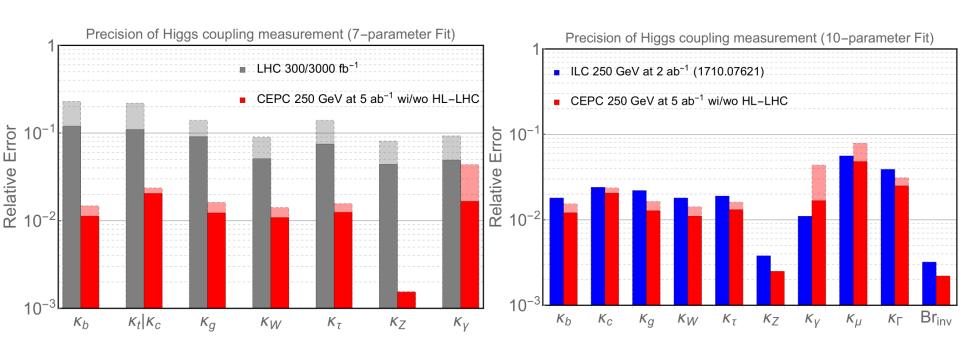
After the improvement in function, most kappa get a bit better.



	10κ	Pre_CDR	7к	Pre_CDR	
κ_b	1.5%	1.3%	1.2%	1.2%	
$\kappa_{ m c}$	2.4%	1.7%	2.2%	1.6%	
κ_{g}	1.6%	1.5%	1.5%	1.5%	
κ_{γ}	4.4%	4.7%	4.3%	4.7%	
$\kappa_{ au}$	1.6%	1.4%	1.4%	1.3%	
$\kappa_{ m Z}$	0.25%	0.26%	0.13%	0.16%	
$\kappa_{ m W}$	1.4%	1.2%	1.2%	1.2%	
κ_{μ}	7.9%	8.6%			
Br_{inv}	0.24%	0.28%	From 10κ to 7κ , we assume No exotic decay Γ_{BSM} Trop Br_{inv} $\kappa_{\mu} = \kappa_{\tau}$		
$\Gamma_{\!H}$	3.1%	2.8%			

10Kappa from Zhen, 7Kappa from Mine;

Correlations in channel

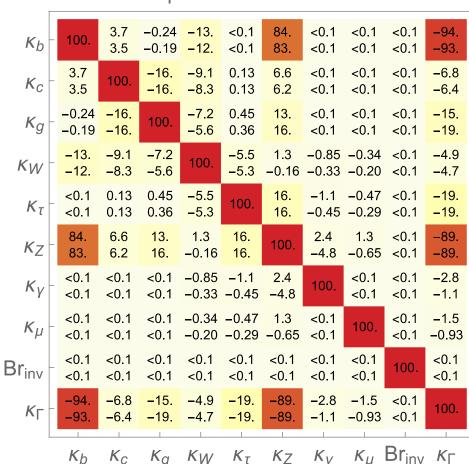

bb/cc/gg highly correlated because template fit; Other are linked by ZH bkg events.

κ with HL-LHC, ILC

HL-LHC: ATL-PHYS-PUB-2014-016

ILC: 1710.07621

Correlation of κ , From Zhen


The implication, under discussing;

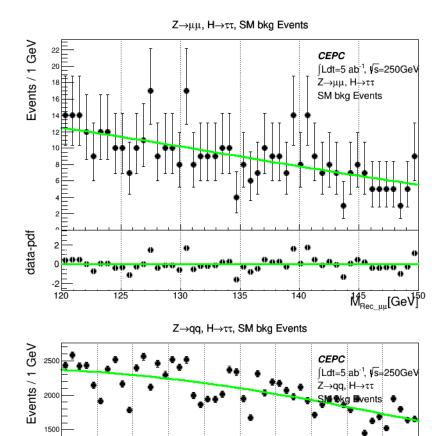
For each entry, upper one is CEPC result lower one is CEPC+HL-LHC result.

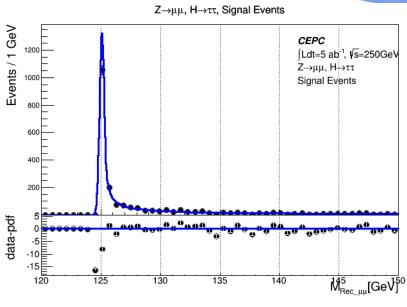
7-parameter fit Correlation

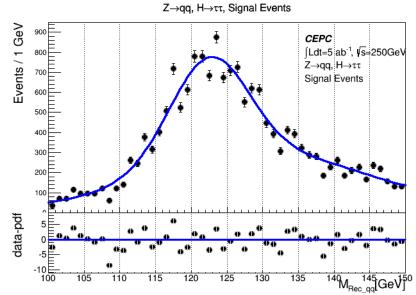
7-parameter in Correlation							
Kb	100.	-25. -23.	-51. -51.	-74. -70.	-47. -46.	62. 59.	-8.7 -3.4
K _C	-25. -23.	100.	-7.1 -12.	11. 11.	2.4 2.4	-24. -23.	1.1 0.42
Kg	-51. -51.	-7.1 -12.	100.	14. 7.0	1.6 -0.91	-28. -17.	1.1 0.15
KW	-74. -70.	11. 11.	14. 7.0	100.	3.5 3.8	-60. -61.	2.2 0.89
K	-47. -46.	2.4 2.4	1.6 -0.91	3.5 3.8	100.	-12. -12.	-1.1 -0.42
KZ	62. 59.	-24. -23.	-28. -17.	-60. -61.	-12. -12.	100.	-4.0 -7.5
KY	-8.7 -3.4	1.1 0.42	1.1 0.15	2.2 0.89	-1.1 -0.42	-4.0 -7.5	100.
	K _b	K _C	K g	KW	$K_{\mathcal{T}}$	KZ	K _Y

10-parameter fit Correlation

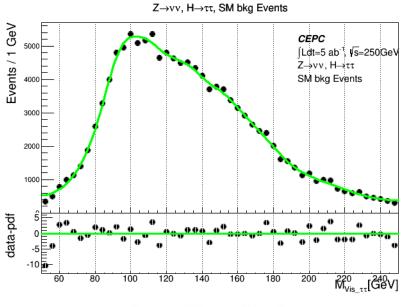
Advice for individual study

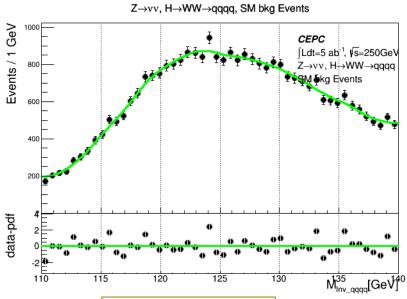

- Work succession
 - Like $\gamma\gamma$, ZZ, invlusive
 - Some one left
 - Then data, selection and others are missing/difficult to repeat
 - Suggest to keep a backup on AFS for follower
 - And contact me anytime
 - Anyone new taking $ll\gamma\gamma, \nu\nu\gamma\gamma$, ZZ, invlusive?
- If convenient, use workspace to store data
 - Not number counting, but likelihood scan for the result;
 - Happened in $qq\gamma\gamma$: Uncertainty between MCtoy & likelihood is different
 - We assume MCtoy test will introduce additional uncertainty to analysis.
 - Technique details, please discuss with me.


Backup


Signal & Bkg plot for demonstration

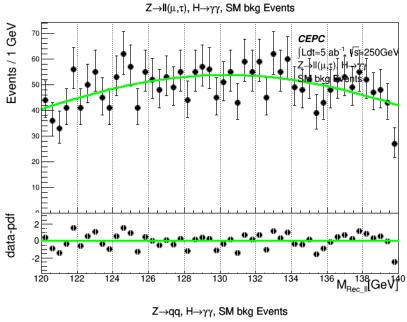
000 0

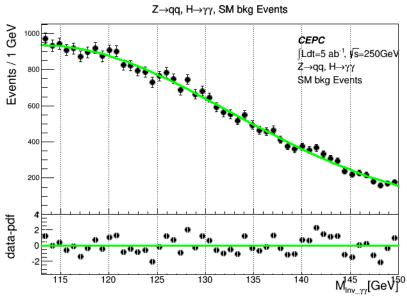


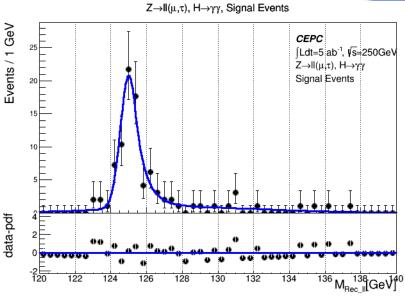


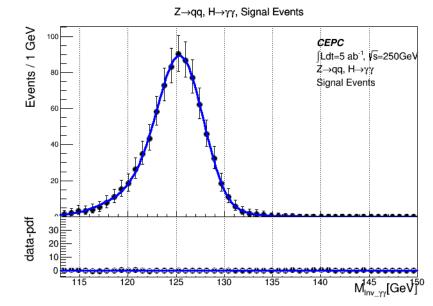
data-pdf

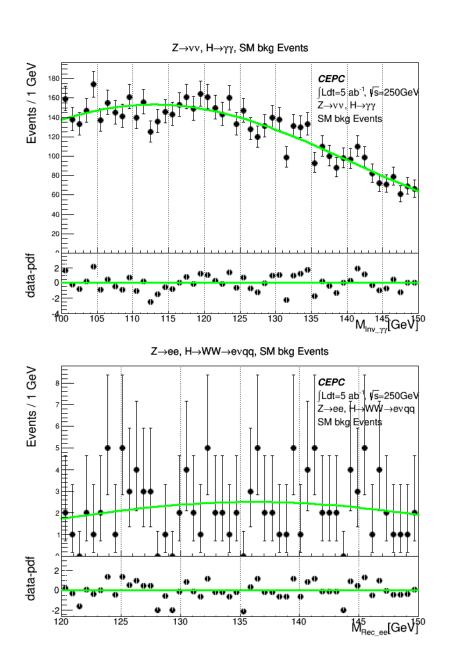

-10⊨

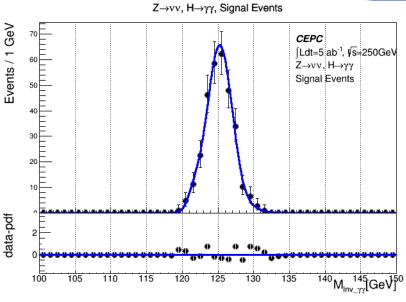


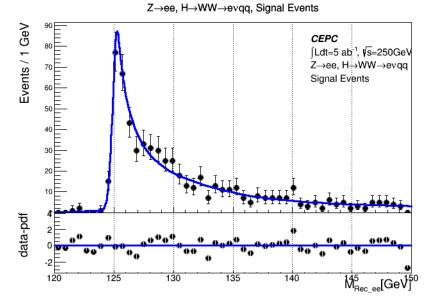


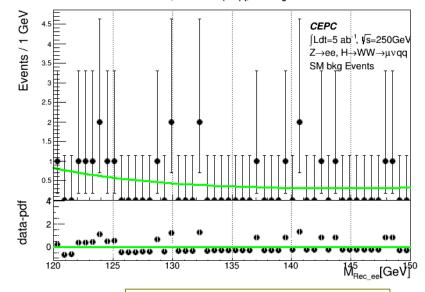


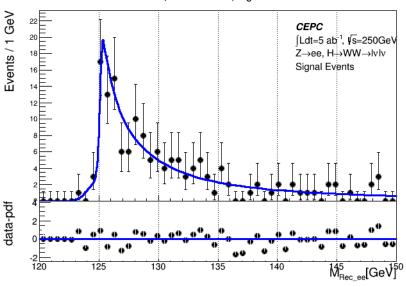


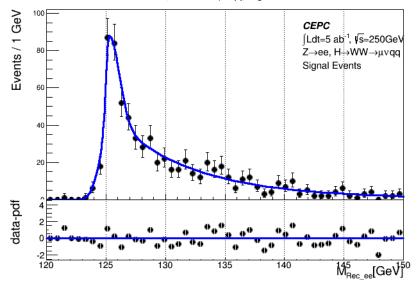




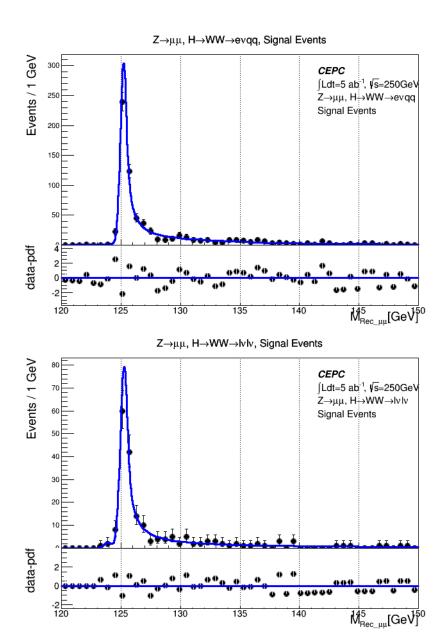


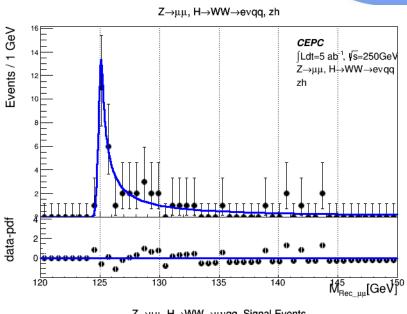


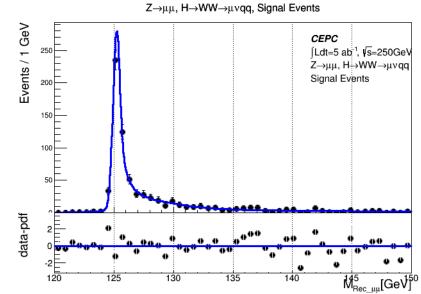



Z→ee, H→WW→µvqq, SM bkg Events

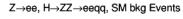
Z→ee, H→WW→lvlv, Signal Events

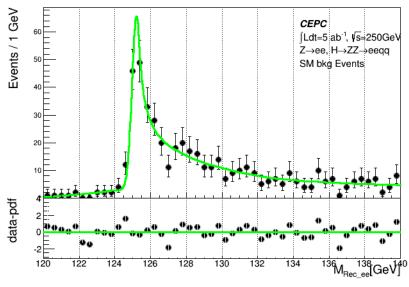


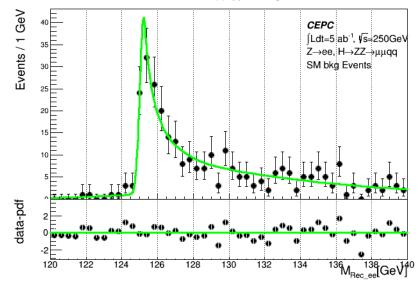

 $Z\rightarrow ee$, $H\rightarrow WW\rightarrow \mu\nu qq$, Signal Events

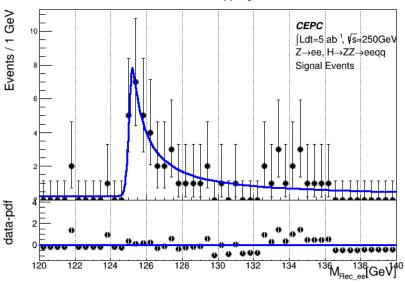


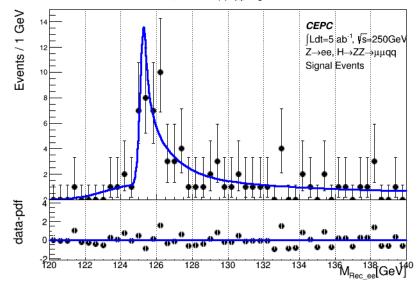
Difficult to fit such low stats events.

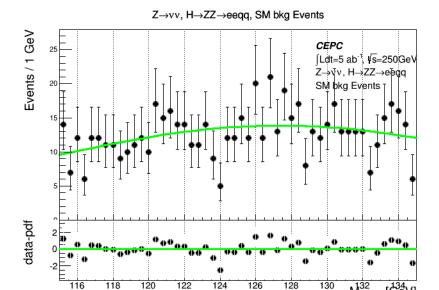


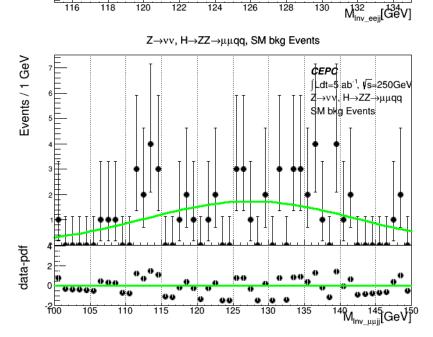


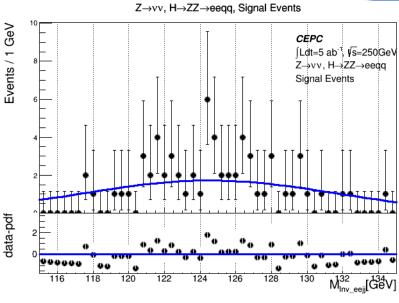





$Z\rightarrow ee$, $H\rightarrow ZZ\rightarrow \mu\mu qq$, SM bkg Events


Z→ee, H→ZZ→eeqq, Signal Events




Z→ee, H→ZZ→μμqq, Signal Events

