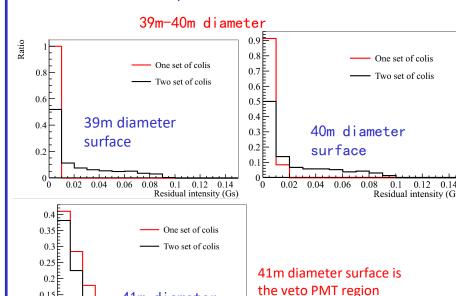


Outline

- Compensation coils
- PMT position optimization
- Summary

Earth magnetic field shielding coils



Consideration of compensation coils:

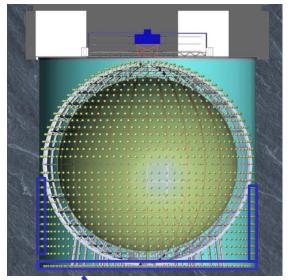
- At early time, we use one sets of coils. It's too hard to installation for that time(The coils are not allowed support by stainless steel(SS) frame). We change one sets of coils to two sets of coils.
- Now, our suggestion is to return back to one sets of coils.
- One sets of coils vs. two sets of coils:
 - Installation: there are no big difference between one sets or two sets coils(we can have support structure on SS frame)
 - Coils and installation work quantity reduce ~50%;save cost;
 - One sets of coils performance are better than two sets's as right figure shown.
 - The coils direction should be accurate in installation.

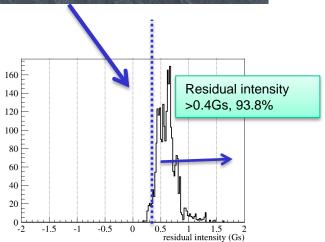
Resident intensity on different diameter surface)

41m diameter

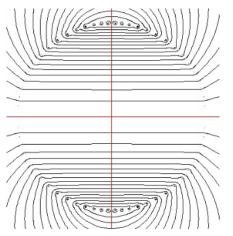
 $0.1 \quad 0.12 \quad 0.14$

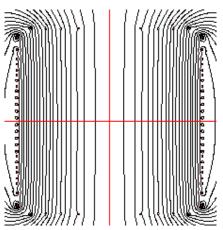
Residual intensity (Gs)

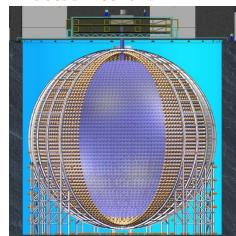

0.02 0.04 0.06 0.08

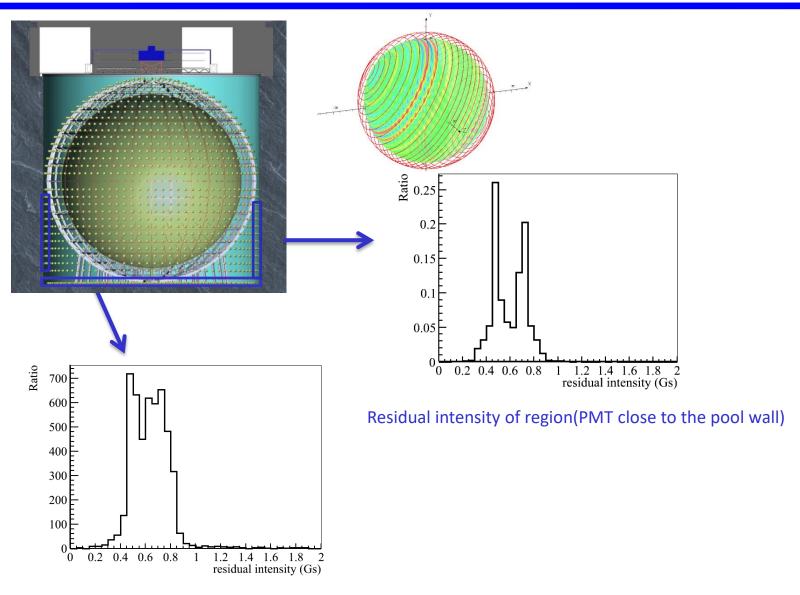

0.15

0.05


Two sets of coils


- The coils can have good shielding in central detector region.
- The bottom veto PMT region is too close to the coils with large residual intensity.


Horizontal magnetic field \mathbf{B}_2 Vertical magnetic field \mathbf{B}_1

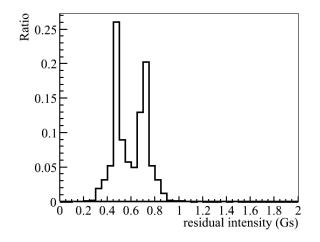


• We need to move some veto PMTs far from coils .

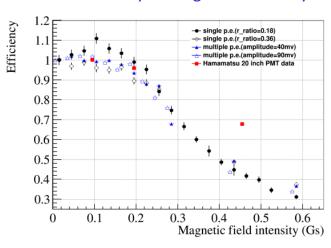
DocDB1468-v12

One sets of coils

Residual intensity of bottom veto PMT region


Shielding material performance

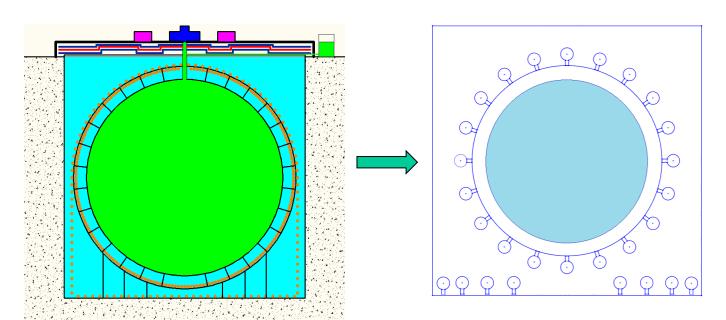
geomagnetic field intensity = 500mG PMT is at 90° with the geomagnetic field


DocDB2178 Residual intensity in different position of the shielding material. 284 314 294 263 305 311 288 204 227 214 579 215 237 212 163 181 145 194 188 167 169 171 212 255 232 192 194 205 big size big size 3layers 3layers +bent big size

- ■Based on measurement, the magnetic shielding decrease 20-50% after using shielding material.
- □If the intensity is 0.5-0.8Gs and assumed 20-50% decrease after shielding, the residual intensity is 0.3-0.6Gs.
- ☐ The veto PMT efficiency loss can reach 30-70%。

Veto PMT region magnetic intensity

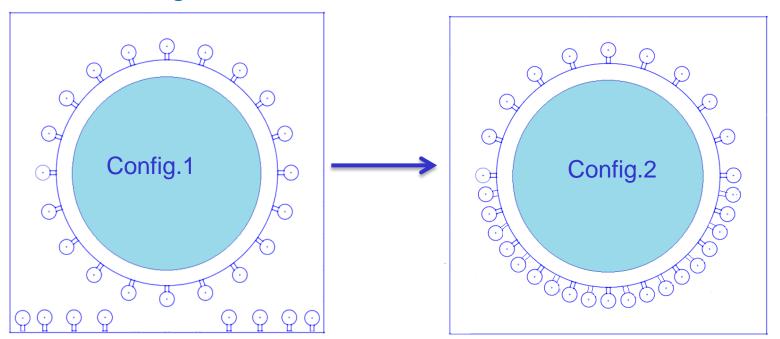
PMT efficiency vs magnetic intensity

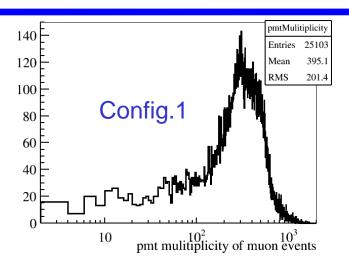


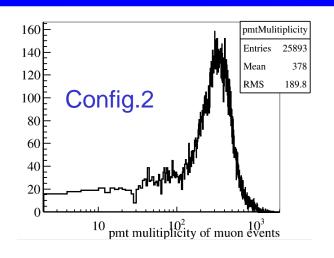
Veto PMT optimization

• Earth magnetic field shielding coils

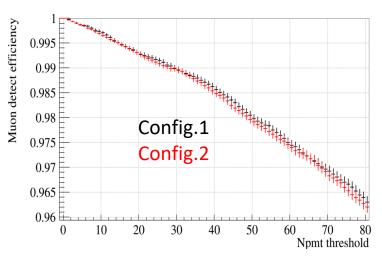
DocDB2878

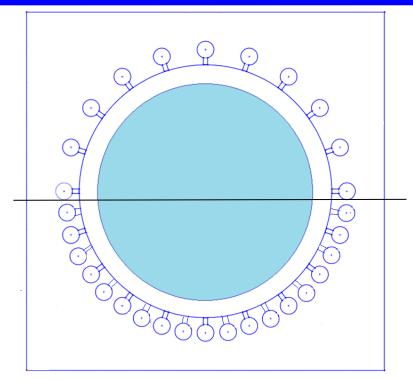

- 2 Sets of coils->1 Sets of colis
 - Installation: No big difference between 1 and 2 sets(There are support structure on the stainless steel frame)
 - Cost reduced ~50%; installation work reduced ~50%.
 - One sets of Coils shielding is better.
- Baseline design:
 - move some veto PMTs to the SS frame.
 - There are no PMT at bottom center(high intensity field region).


Veto PMT optimization


DocDB2953:

After consideration the shielding material and resident magnetic intensity(PMT magnetic shielding(Doc2084)), we intend to move all the bottom to the SS frame to reduce the magnetic field influence.

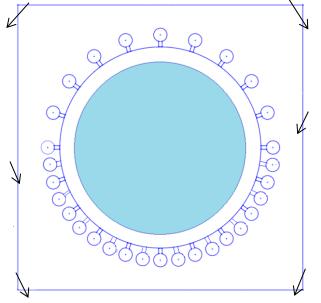

Muon detection efficiency


Assumed PMT noise coincidence in 200ns,PMT dark noise 50kHz, veto window 1ms for future analysis and we can afford the 1% dead time from noise coincidence. The coincidence rate should <10Hz. nPMT =54.

	Cut nPMT=54
Config.1	(97.81+/-0.09)%
Config.2	(97.72+/-0.09)%

- The efficiency difference is very small~0.1%.
- We prefer config.2, mover all the bottom PMT to ball surface.

Upper half sphere and lower half sphere comparison


Muon detection ability

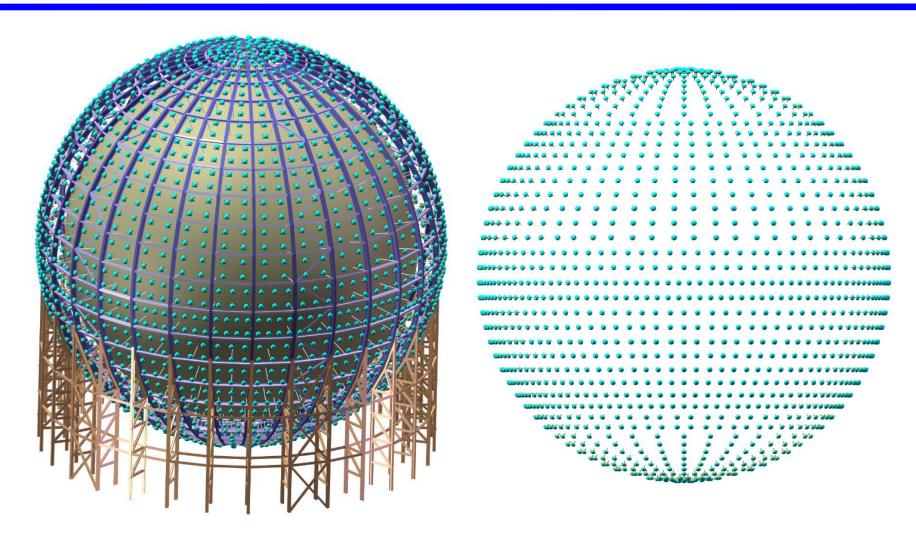
 The lower half shpere PMTs fired PMT ability is better than upper's.

	p.e./PMT/muon	Fired N/PMT/muon	p.e. difference (p.e./PMT/muon) (Top-Bottom)/Bottom	Fired number difference (firedN/PMT/muon) (Top-Bottom)/Bottom
Upper half sphere PMT	0.816	0.147	40%	-8.7%
Lower half sphere PMT	0.582	0.161		

Untagged corner clipping muons

	Upper half sphere PMT	Lower half sphere PMT
Untagged Muon	1.16%	0.59%

When WC untagged muon going through central detector, it could be tagged by central detector.


The corner clipping muon is far from central detector.

Fast neutron contribution can be neglect.

Include the TT muon detection ability

	Upper half sphere PMT	Lower half sphere PMT
Untagged Muon	0.6%	0.59%

Veto PMT placement(new)

Summary

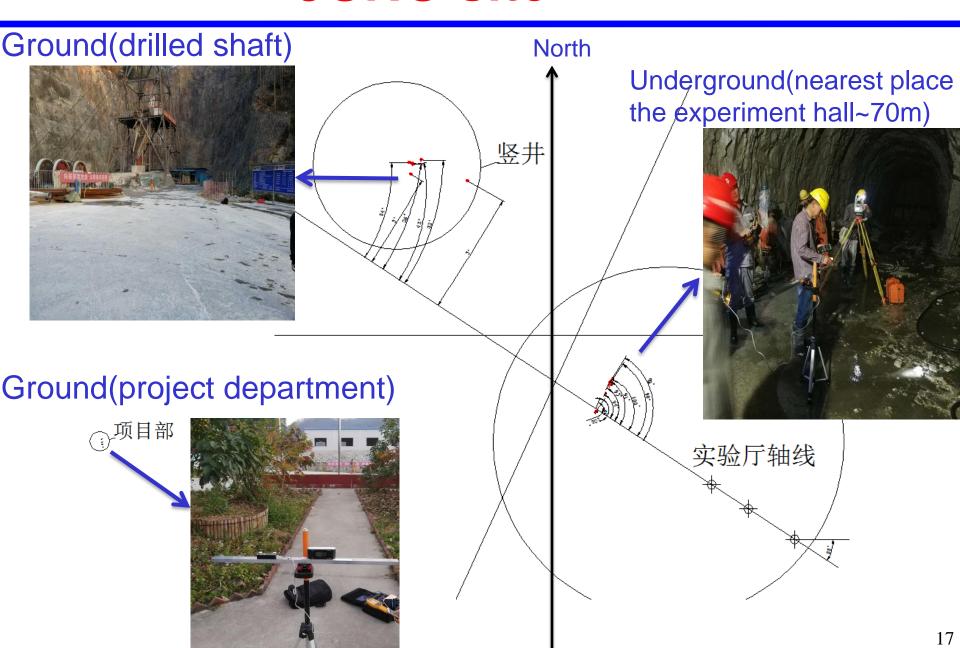
- Based on current installation strategy, we intend to use the one set of coils system.
 - One sets of coils performance is better than two sets of coils.
 - Reduce the cost and quantity installation work .
- Veto PMT optimization
 - Based on current consideration(coils and shielding material measurement),
 we intend to move the bottom veto PMT to the stainless steel frame.
- Untagged muon
 - Mainly corner clipping events and far from the central detector, the fast neutron background contribution is small.
 - Combine with TT, the top and bottom untagged muon event ratio is roughly same.

Earth magnetic field measurement on JUNO site

Haoqi Lu, Guoqing Zhang, Peng Zhang

2018-04-06

The 2nd EMF workshop, Bangkok, Thailand


Motivation

- Earth magnetic field(EMF) measurement on JUNO site
 - Determine the earth magnetic field(EMF) direction
 - It can help us to determine the compensation coils direction and provide the accurate information for detector installation.
 - Now, we can go underground which is not far from the experiment hall to do measurement.

Location of JUNO

JUNO site

Measurement design and error estimation

Support bars

Level measur ement

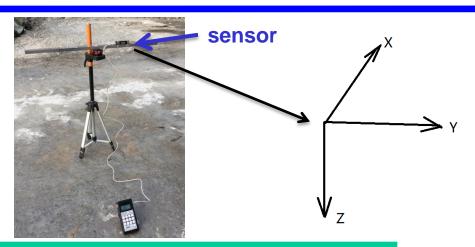
FVM-400手持式矢量磁通门计 FVM-400 Handheld Vector Fluxgate Magnetometer

Electronic Total Station

Probe Size:

25.4 mm W x 25.4 mm H x 100.6 mm L (1"W x 1"H x 4"L).

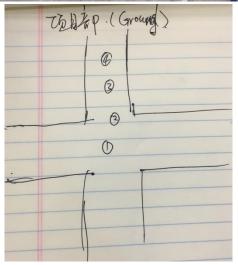
Electronics Case:


100 mm W x 44 mm H x 193mm L (3.94"W x 1.73"H x 7.60"L).

Probe To Electronics Cable Length:

Seven feet standard. Other lengths are possible up to a maximum length of one hundred feet.

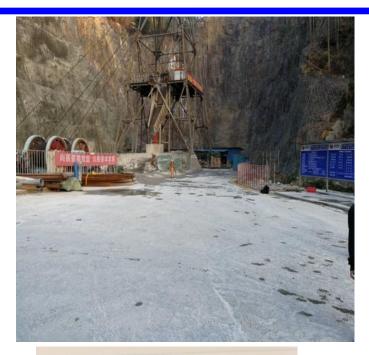
Systematic error estimation


X-Y plane(Declination) error						
error	Deg					
magnetometer	0.1	From data sheet				
Support bar direction (by Electronic Total Station)	0.4	The direction error is determined by the laser spot dimension. ~6mm@1meter support bar measurement.				
Total	0.5					

Inclination	erro	r
error	Deg	
magnetometer	0.1	From data sheet
Level measurement	0.2	
Support bar deformation	<0.2	<2mm at 1 meter length
total	0.3	

Measurement

Measurement data


Underground(nearest place to the experiment hall~70m)

斜井底部,1月 18号上午		斜井底部,1月18号下午			
1	2	3	4	5	6
31.679	30.626	31.529	32.256	32.378	34.382
- 20.869	-22.172	-21.032	-20.018	-19.423	-16.06
24.587	24.606	24.63	24.509	24.741	24.687
37.935	37.809	37.900	37.963	37.757	37.948
45.206	45.111	45.200	45.187	45.141	45.271
0	0	0	0.3	0	0
0.35	0.35	0	0	0	0
58.672	56.47	58.163	60.19	60.63	66.919
		-1.236	-1.334	-1.047	-1.296
37.911	37.777	37.880	37.939	37.742	37.926
24.587	24.606	24.63	24.509	24.741	24.687
2.047	2.373	1.869	2.014	1.589	1.957
	18号 1 31.679 - 20.869 24.587 37.935 45.206 0 0.35 58.672 -1.355 37.911 24.587	18号上午 1 2 31.679 30.626 22.172 24.587 24.606 37.935 37.809 45.206 45.111 0 0 0.35 0.35 56.47 58.672 -1.355 -1.566 37.911 37.777 24.587 24.606	18号上午 1 2 3 31.679 30.626 31.529 	18号上午 1 2 3 4 31.679 30.626 31.529 32.256 	18号上午 1 2 3 4 5 31.679 30.626 31.529 32.256 32.378 - 20.869 -22.172 -21.032 -20.018 -19.423 24.587 24.606 24.63 24.509 24.741 37.935 37.809 37.900 37.963 37.757 45.206 45.111 45.200 45.187 45.141 0 0 0 0 0.3 0 0.35 0.35 0 0 0 58.672 56.47 58.163 60.19 60.63 -1.355 -1.566 -1.236 -1.334 -1.047 37.911 37.777 37.880 37.939 37.742 24.587 24.606 24.63 24.509 24.741

Ground(project department)

	邛	5目部,1月	月18号下午	=
位置	中心	向路口1	向路口2	向路口:
uT	1	2	3	4
Bx	3.808	1.472	8.437	4.432
Ву	-37.557	-37.761	-36.555	-37.475
Bz	24.927	24.831	24.89	24.769
Bxy	37.750	37.790	37.516	37.736
Bsum	45.237	45.218	45.022	45.139
水平x偏角°	0	0	0	0
水平y偏角°	0	0	0	0
Bx与东西方向 夹角	8.772	5.311	15.737	9.674
B东(uT)	-1.964	-2.029	-1.794	-1.928
B北(uT)	37.698	37.735	37.473	37.687
B下(uT)	24.927	24.831	24.89	24.769
北偏西 (deg)	2.982	3.079	2.741	2.929

Ground(drilled shaft)

There is a huge wire netting around the mountain.

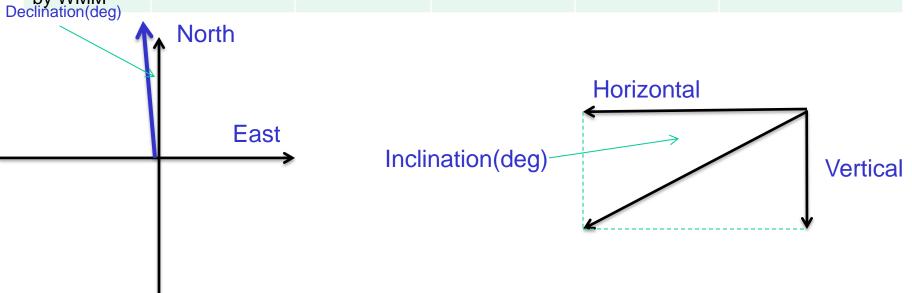
	地面竖井处,1月18日下午							
位置	地面靠近竖井	远离竖井1	远离竖井2	远离竖井3	远离竖井4			
uT	1	2	3	4	5			
Bx	-5.241	12.819	9.05	14.431	19.838			
Ву	-31.046	-38.569	-37.863	-38.416	-38.118			
Bz	23.784	24.204	23.915	23.828	24.109			
Bxy	31.485	40.644	38.930	41.037	42.971			
Bsum	39.459	47.305	45.688	47.453	49.272			
水平x偏角°	0	0	0	0	0			
水平y偏角°	0	0	0	0	0			

Different positions intensity have large fluctuation. This is may effect by the huge wire netting. We'll not use this serial data to do analysis.

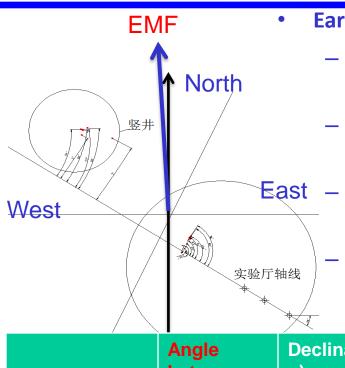
World Magnetic Model(WMM) calculation

Underground

Model Used:	WMM2015						
Latitude:	22.125° N						
Longitude:	112.508° E						•
Elevation:	-410.0 m Mean Sea	a Level					
Date	Declination (+E -W)	Inclination (+ D - U)	Horizontal Intensity	North Comp (+ N - S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field
2018-01-24	-2.5764°	33.1994°	37,936.9 nT	37,898.5 nT	-1,705.3 nT	24,824.7 nT	45,337.3 nT
Change/year	-0.0585°/yr	0.1474°/yr	-21.2 nT/yr	-22.9 nT/yr	-37.7 nT/yr	125.5 nT/yr	51.0 nT/yr
Uncertainty	0.28°	0.22°	133 nT	138 nT	89 nT	165 nT	152 nT

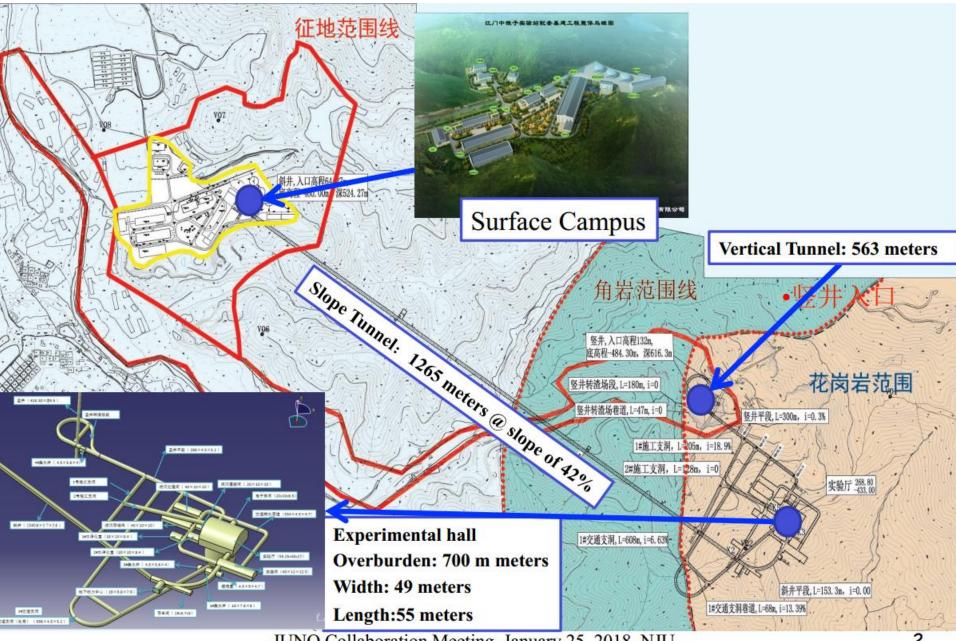

Ground

Model Used:	WMM2015						
Latitude:	22.125° N						
Longitude:	112.508° E						•
Elevation:	70.0 m Mean Sea	Level					
Date	Declination (+E -W)	Inclination (+D -U)	Horizontal Intensity	North Comp (+ N - S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field
2018-01-24	-2.5761°	33.1985°	37,927.4 nT	37,889.1 nT	-1,704.7 nT	24,817.6 nT	45,325.5 nT
Change/year	-0.0584°/yr	0.1473°/yr	-21.2 nT/yr	-22.9 nT/yr	-37.7 nT/yr	125.4 nT/yr	51.0 nT/yr
Uncertainty	0.28°	0.22°	133 nT	138 nT	89 nT	165 nT	152 nT

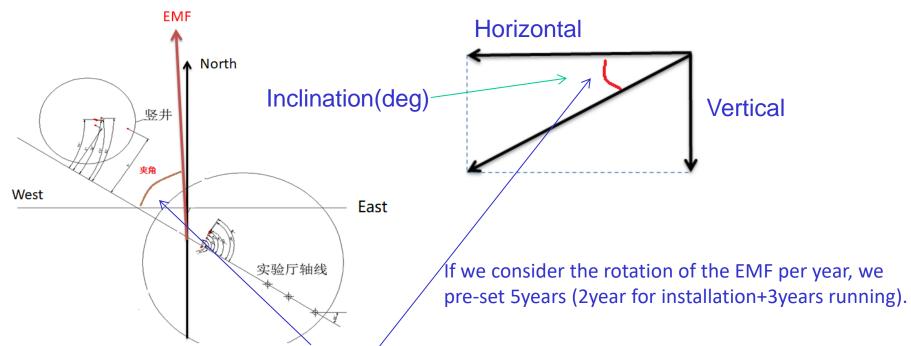

There are no big difference between underground and ground.

Results(I)

	Declination(d eg) (+East -West)	Inclination(d eg) (+Down +Up)	Horizontal intensity(uT)	Vertical intensity(uT)	Total intensity(uT)
Underground	-1.97±0.56	33.07±0.32	37.89±0.08	24.67±0.07	45.21±0.11
Ground	-2.93±0.52	33.40±0.38	37.70±0.19	24.85±0.18	45.21±0.26
DocDB2599 first Measure.	-4.9±1.4	32.4±1.0	36.6±0.9	23.3±0.7	43.39±1.14
Calculation by WMM eclination(deg)	-2.58±0.28	33.20±0.22	37.93±0.14	24.82±0.16	45.34±0.16

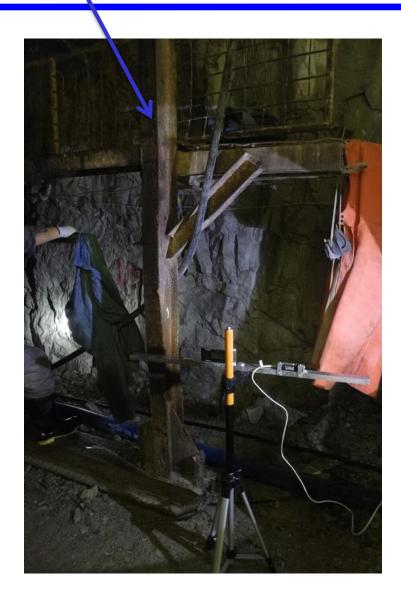


Summary



- Earth magnetic field(EMF) measurement on JUNO site
 - The measurement results are consist with the Model calculation.
 - There are no big difference between ground and under ground.
 - The measurement error is well controlled within 1 degree, which can satisfy our requirement.
 - The direction change(inclination) in time can't be neglected.
 We may need a pre-setting value to compensation this effect.

	Angle between EMF and hall axis	Declination(de g) (+East -West)	Inclination(deg) (+Down +Up)	Horizontal intensity(u T)	Vertical intensity(u T)	Total intensity(uT)
Underground	54.75±0.5 6	-1.97±0.56	33.07±0.32	37.89±0.0 8	24.67±0.0 7	45.21±0.11
Ground	53.79±0.5 2	-2.93±0.52	33.40±0.38	37.70±0.1 9	24.85±0.1 8	45.21±0.26
Calculation by WMM	54.14±0.2 8	-2.58±0.28	33.20±0.22	37.93±0.1 4	24.82±0.1 6	45.34±0.16
Change/year(d	-0.0583	-0.058	0.147			25



Angle between EMF and hall axis

	与实验厅轴线夹角	Inclination(deg)(朝下角度) (+Down +Up)		
Underground	54.75±0.56	33.03±0.32		
Ground	53.79±0.52	33.40 ± 0.38		
Average value	54.27	33.22		
Change/year(deg)	-0.0584	0.147		
Consider the EMF rotation and compensation	54.0	34.0		

Steel influence on the magnetic intensity

- If sensor is too close to the big steel structure, it will have obvious influence on the EMF intensity.
- We do a simple measurement of the intensity verse distance from the steel structure.

DocDB3241

Result for Secular Change in EMF

$$B_{res}^{\text{max}} = \left(\frac{B - EMF}{EMF}\right)_{\text{max}} \times 100\%$$

Φ (m)	Perfect	1	-1	2	-2	3	-3	5	-5
39.5	5.22	5.70	5.65	6.77	6.69	8.10	8.05	11.27	11.18
41.5	21.62	21.95	21.98	22.98	22.95	24.27	24.16	27.35	27.28

Secular change in EMF gives small change in residual-B within 20 years (<10%)