Silicon TracKer in HERD and the ion beam test result of ladder with IDE1162 chips

Gong Ke IHEP 03/27/2018

Silicon TracKer for HERD
New ladder with IDE1162 chips
Ion beam test and preliminary result
Summary

Silicon TracKer for HERD

Main function of STK

I. Particle tracking II. Gamma-ray converter&imaging III. Charge measurement

STK	Specification		
FOV Coverage (ECAL)	>80%		
Charge measurement	Z=1~20 (26) (charge resolution <10%@Z=1)		
Layers	6 (X, Y) for both Top_STK and 3(X,Y) for Lateral_STK		
Angular resolution	~0.1 deg@10GeV		
Gamma pair-production Material	LYSO crystals or Tungsten layers (55% pair production @10GeV gamma-ray)		
Dead time	<2ms		
Operating mode	External trigger (Internal trigger for calibration)		

Silicon TracKer for HERD STK Layout and configuration

Silicon TracKer for HERD

STK Layout and configuration

Top_STK
 6 Layers of X&Y SSDs with LYSO
 133cm*133cm (active area)
 28 ladders on each X or Y plane and each ladder has 7 SSDs

 4*Lateral_STK
 3 Layers of X&Z or Y&Z SSD 95cm*66.5cm (active area)
 *10 ladders on X or Y plane and each ladder has 7 SSDs
 *14 ladders on Z plane and each ladder has 5 SSDs

ladder layout on the Silicon Plane

Top_STK: 14*14 SSDs /each X or Y layer

	Top_STK	Lateral_STK
ladders	336	72*4=288
Sum up	624	

Silicon TracKer for HERD

STK Design – inherit from DAMPE STK, but more challenge!

	DAMPE STK	HERD STK
Single-sided Silicon mirco- strip Detector (SSD)	Size:95 x 95 x 0.320 mm ³ Pitch: 121 um	the same
Ladder	4*SSDs in a daisy chain	7*SSDs and 5*SSDs
Tracker Front- end Hybrid (TFH)	6*IDE1140 chips (0~200fC,Z=1~6) Analog output	New ASIC: Much higher dynamic range for charge measurement(Z=1~26) if needed, Digitalization, Zero compression; HCC-ASCI control chip
Tracker Readout Borad(TRB)	ADC board, FPGA control board, (ASIC control, Data compression) Power supply board	FPGA control board (configure HCC, Data storage and transimission, more simple than DAMPE) Power supply board
Mechanism	Plane: CFRP+HoneyComb	Bigger plane
Thermal issue	85W , easy for sun synchronous orbit	? W (depend on power consumption of ASIC chips) Complicate thermal environment for space station

Silicon TracKer for HERD

new ASIC

Large Dynamic range (0~5.6pC) for charge measurement(Z=1~26), low noise (rms<0.3fC) for Z=1(MIPs)

Digitalization and zero compression

Low power consumption

Radiation hardening (similar to IDE1140)

We should customize a new ASIC!

New ladder with IDE1162 chips

We chose IDE1162 to test the high-Z response of SSD

	IDE1140(VA140)	IDE1162
Number of inputs	64	32
Input charge range	±200fC (Z<6 r/o, ,Z<10 float)	±1.5 pC (Z<14 r/o, Z<24 float) Z>1
Shaping time	5 µs to 8 µs	2 µs to 2.5 µs
Equivalent Noise Charge (ENC)	98e ⁻ + 6.5e/pF	1900e ⁻ + 2e/pF
Outputs	Multiplexed pulse height	Multiplexed pulse height
Test and calibration	Internal calibration circuit	Internal calibration circuit
Other function	1	1
Power consumption	0.29mW/channel	1.78mW/channel

Compared with VA140, IDE1162 has a large dynamic range but higher noise.

New ladder with IDE1162 chips TFH design and production

We made a TFH hybird board with 12 IDE1162 chips connected in a daisy chain

Flex Board for silicon microstrip detectors mounting and High Voltage (9.5 x 9.5 cm² from 6 inch wafer, 320µm thick from Hamamatsu) IDE1162 ASIC *12

New ladder with IDE1162 chips ASIC and SSD assemble

Silicon micro-strip detectors gluing

Sense assembly

Many thanks to Giovanni and other colleagues in Perugia University!

New ladder with IDE1162 chips **TFH design and production**

IDE1162 readout circuit inherit Mini_TRB with FPGA code modified.

New ladder with IDE1162 chipsPedestal and noise

Pedestal and RMS after common noise subtraction

RMS =0.78fC (0.58fC per ADC)

New ladder with IDE1162 DAC Calibration

DAC calibration by charge injection

<1.6 pC is linear
1% integral linearity for positive charge</pre>

New ladder with IDE1162 Ladder test with Laser (in Perugia University)

Hard to accurately measure the linearity of the entire Ladder with laser.

Ion beam test preliminary result Trigger system setup

Ion beam test preliminary result Result from Beam Test

Ion beam test preliminary result ADC Charge spectrum

- r/o strip/float cluster ADC charge spectrum
- Preliminary analysis results
- When the r/o strip is hit, the lowest case is Z=1 can be detected
- When the float strip is hit, can only detect Z>=2
- Up to Z=16 (in linear) or higher 2 particles

Charge response linearity and resolution

Compared with DAMPE-STK

Hit bar saturation (Z>5)

Interval of one channel

Ladder test with cosmic ray after BT

ADCSpec_read

Summary

- A customized ASIC is needed for STK to measure high-Z(1~26) Cosmic-rays.
- We design and produce a new ladder with higher dynamic-range ASIC – IDE1162(~1.6pC).
- The beam test result of new ladder showed that the charge response was linear up to Z=16, but the noise was higher than expected.

