

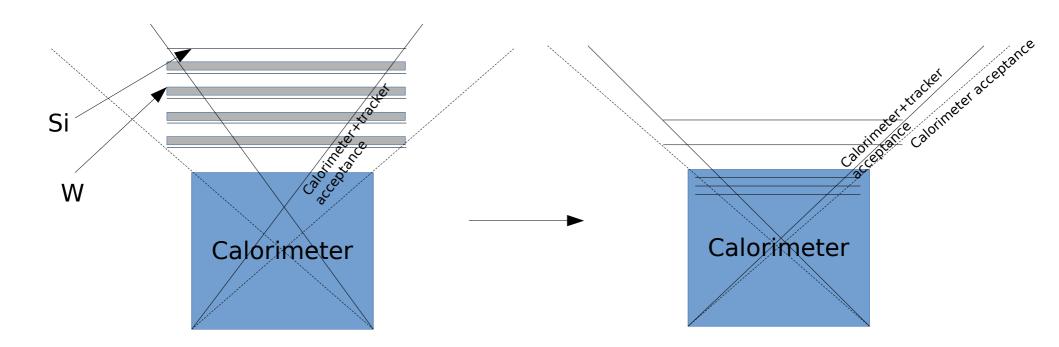
# Update on the status of the TIC project

Nicola Mori

**INFN Florence** 

6<sup>th</sup> HERD workshop – Beijing (CN), 27<sup>th</sup> March 2018

## Topics

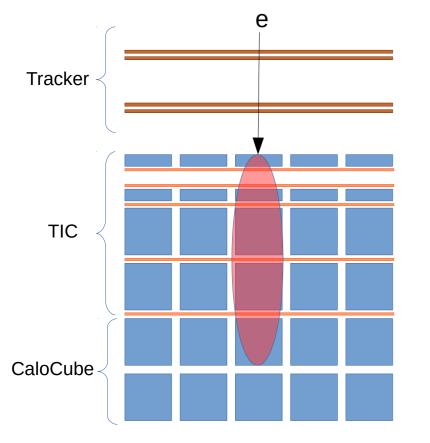

- The TIC project
  - Brief overview
- The TIC prototype
  - Overview
  - Prototype and beam test
- Optimization studies
  - Alternative design
  - Improvements of the tracking algorithm

- Optimization of the HERD design
  - Science objectives: charged CRs, gamma rays
  - Charged: large acceptance, thin tracker
    - Statistics at high energy, particle ID
  - Gamma: tall and ~thick tracker
    - Angular resolution, conversion efficiency
  - Need a different approach than the classic one (pair-production telescope + calorimeter) to satisfy the requirements for both species

• The TIC idea:

1)Use the LYSO as an active converter  $\rightarrow$  remove W

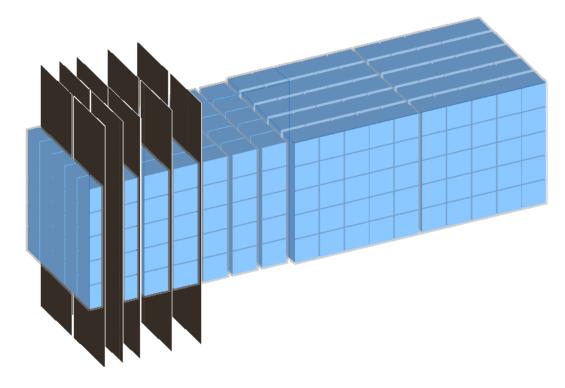
- 2)Sample the e.m. shower of the gamma with Si microstrips to reconstruct the track  $\rightarrow$  low-profile
- 3)Track charged particles with a Si/fiber tracker  $\rightarrow$  low-profile



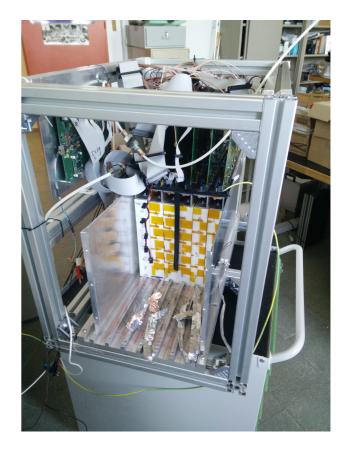

- Less passive material  $\rightarrow$  Better particle ID
- Lower profile  $\rightarrow$  Higher acceptance
- Overall improvement for charged

- Preliminary estimates already presented
  - 4<sup>th</sup> and 5<sup>th</sup> HERD workshops
- New results and developments (see later)
- Realization of a prototype demonstrator
  - Financed by INFN
  - Goal: prove the measurement principle and validate MC simulation
- Test beam in May-June 2018 at PS and SPS
  - 0.5 100 GeV electrons
  - Shower tracking  $\rightarrow e = \gamma$
  - Can be tracked upstream to obtain a reference track

# The TIC prototype


- Built upon the CaloCube prototype by adding spare DAMPE ladders
  - Plus upstream tracker (spare AMS ladders)

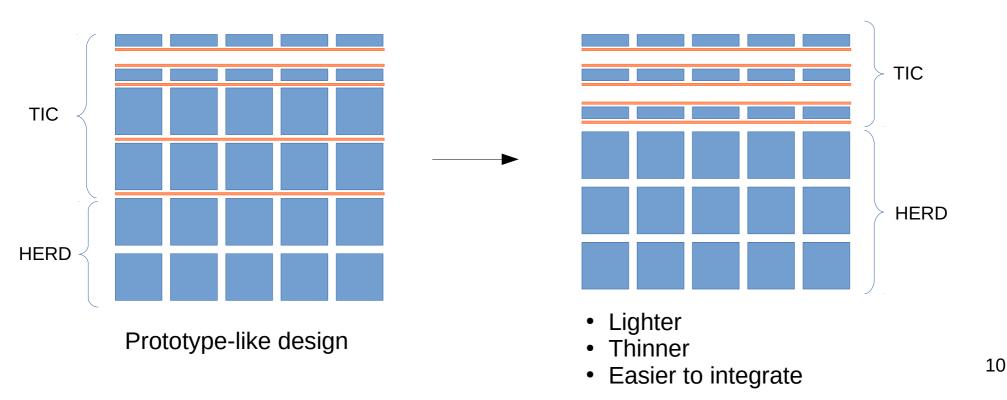



#### Csl crystals

- Front: 3.6x3.6x1.8 cm<sup>3</sup>
  - Thin layers to reduce MS  $\rightarrow$  low energies
- Back: 3.6x3.6x3.6 cm<sup>3</sup>
- Layer: 5x5 crystals
- Photodiodes readout
- Si microstrip detectors
  - Pitch: 240 µm
  - Thickness: 320 µm
  - Length: 38 cm
  - Width: 9.5 cm
  - One sided
  - Layer: 2 sensors
    - Segmentation only along X
    - Lack of availability

#### The TIC prototype

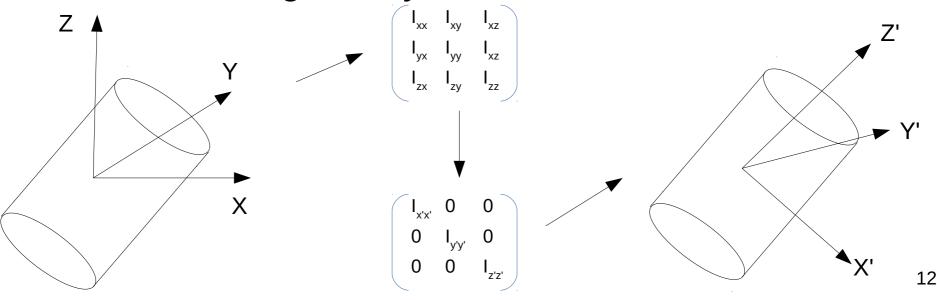







# The TIC prototype

- Current status and schedule:
  - Thin crystals: ~ ready
  - Installation of photodiodes and wrapping in vikuiti: next week
  - Adjustment of front trays (longitudinal  $\rightarrow$  transversal): in progress
  - Supports for Si ladders: in progress
  - Integration: ~ mid of April


- Add more thin crystals to improve performance at low energy
  - more "tracker with active converter"-like



- Iterative reconstruction algorithm:
  - 1) Track using only crystals
    - 1) Find "points" by mean of COG-like algorithm and fit track
    - 2) Obtain position resolution of crystal track on each Si layer
  - 2) Track using weighted Si signals
    - 1) For each event estimate the shower impact point by using scint. track
    - 2) Weight Si energy deposits with position resolution function for scint. track to suppress outliers
    - 3) Find points (COG of weighted releases) and fit track
    - 4) Obtain position resolution of Si track on each Si layer
  - 3) Iterate tracking with Si

But using Si tracks and resolution from previous steps instead of scint. ones

- Alternative tracking algorithm:
  - Still rely on Si hits weighting and iterations
  - Find track by diagonalizing the matrix of the momenta of weighted hits
  - Mechanical analogy: finding the principal axes of inertia of a rigid body



- For showers, use energy deposits instead of masses to build the "inertia tensor"
- Diagonalize the tensor
- The eigenvector corresponding to the minimum eigenvalue is the direction of the shower axis
  - Like the momentum of inertia of a long cylinder along the main axis is less than those along the other axes
- Stick the axis to the 3D COG of the shower
- Less sensitive to track inclination
- Currently under study

### Summary

- TIC might be of valuable help in balancing the HERD performance
  - Detect and track gamma rays without sacrificing geometric factor and PID for charged particles
  - A prototype of TIC is currently being built
    - Validate the measurement principle and MC results
    - Test beam in May-June at CERN (PS and SPS)
  - Optimization studies are ongoing
    - Simpler, lighter design for integration in HERD
    - New tracking algorithm