6TH HERD INTERNATIONAL WORKSHOP

R&D activities on Fiber Tracker (FIT)

STATUS AND PLAN

27th March 2018

Philipp Azzarello, Frank Cadoux, Daniel La Marra, Chiara Perrina, Junjing Wang, Xin Wu

University of Geneva

Introduction

- Scintillating fiber tracker has been used in space
 - CALET: 1 mm²x44.8 cm, 7168 fibers, 8 x-y layers, 64-ch MAPMT readout
- Large area high precision SciFi trackers in HEP
 - UA2: ø=1 mm, 62k fibers, CHORUS: ø=0.5 mm, 1.3M fiber, D0: ø=0.835 mm, 80k fibers, K2K: ø=0.692, 275 K fibers, ...
 - Mu3e: small SciFi tracker/TOF being produced in Geneva
 - LHCb SciFi for run 3 upgrade (installation Dec. 2018)
 - ø=0.25 mm, SiPM readout, 560 m² detector surface, 590 k channels, 10,000 km fibers, 1300 fiber mats (13 cm x 2.5 m)
 - 4 mat winding centers, including one in at EPF Lausanne
- HERD fiber tracker (FIT) can profit the synergy with LHCb and Mu3e
 - Technology is mature for space application
 - Production capability easily available

- Depending on applications, the spatial resolution is similar to the one of silicon strip detectors.
- Simpler to build long detector (of e.g. 1 m).
- FEE can be placed on one side of the detector module, even if it is long.
- Simpler to place the FEE outside of the support tray.
- Reduced dead area (no gap between sensors, no dead area on the silicon detector, FEE placed outside of support tray).
- No wire bonds on the detectors, thus the distance between support trays can be smaller than for silicon detectors.
- Lighter trays.
- Still the design needs to go through the space qualification process. 6th HERD workshop 27.03.2018

Fiber Tracker proposal

- Proposal to use scintillating fibers on the four lateral sides of the tracker detector.
 - Based on the silicon strip tracker design

Detailed description in the presentation on mechanical design

Using Scintillating Fibers for the side tracker

- Sensitive area ~ 100 cm x 70 cm: can fit this size with 3-MPPC array fiber mats
 - Fiber mat width: 97.8 mm
 - MPPC array size 32.54 mm, gap between chips 0.11 mm, gaps between mat: 0.15 mm: 3x(32.54 +0.11) = 97.8+0.15 = 97.95 mm
 - Panel size
 - xy: width (7 mats) = 685.65 mm, length = 100 cm (long)
 - z: width (10 mats) = 979.5 mm, length = 70 cm (short)
 - Fiber mat thickness: 6 layers of 250 μ m fibers + glue, ~1.7 mm
- Layout
 - Minimal: 4 x-y, 22 mm layer spacing, 272 mats (112/160 long/short)
 - 816 MPPC arrays, ~104k channels
 - 560 km fiber (assume 2.5 km for 1m of mat)
 - Robust: 5 x-y, 22 mm layer spacing, 340 mats (140/200)
 - 1020 MPPC arrays, ~130k channels, 700 km fibers

Fiber mats

- HERD mat: 97.80 mm width + 200 μm inter-mat gap to match for 3 SiPM
 - MPPC size 32.54 ± 0.05 mm, gap between chips $110 \ \mu m \Longrightarrow 97.84$ mm

- Production of test modules.
 - Two modules assembled in 2017, more will be produced in 2018.
- Performance tests.
 - Beam tests, cosmics, LED, radioactive source...
- Mechanical design studies.
 - Production of test trays.
 - FEA simulations.
- Design and production of test front-end electronics.
 - Two types of ASICs are used: VATA HDR 64 and SIPHRA.
- Space qualification tests.
 - Thermal, thermal-vacuum tests, vibration tests foreseen in 2018.
 - A thermal vacuum setup is under development at UniGE.
- Detector simulations.

SIPHRA ASIC

- SIPHRA = "Silicon Photomultiplier Readout ASIC"
- New ASIC from IDEAS for space applications
- The circuit has been designed under contract from the ESA with support from the Norwegian Space Center and the University of Geneva.
- 16 input channels, designed for PMT or MPPCs.
- Possibility to readout positive or negative charges
 - More functionalities for negative charges
- 12-bits ADC included.
- One line to readout and digitize one PT100 temperature sensor.
- One single power voltage of 3.3 V.
- 16 mW power consumption, i.e. 1 mW per channel.

SIPHRA ASIC: block diagram

9

SIPHRA test board

- Test board allows to test all functionalities of the SIPHRA chip.
- The SIPHRA needs to be bonded either for negative input charge, or for positive input charge.
- DAQ board developed at UniGE.
- IDEAS has implemented a ZIF connector for our MPPC board.
 - We can use the test board as a front-end development board.

SIPHRA tests: gain calibration

- Gain calibration tests have been done to study the various gain and shaping time settings of the SIPHRA.
 - A test charge is sent to one of the 16 channels, and the time response of the channel is recorded during a 10 μs time interval (25 ns sampling).
 - The maximum values as well as the peaking time are computed.

SIPHRA tests: signal sampling with SiPM

- A SiPM array is connected to the test board.
- The time response of a selected channel is recorded during 10 µs with 25 ns sampling.
- Maximum value of signal is recorded.

Next steps:

- Beam test from April 11th to April 18th
 - First tests with SIPHRA ASIC, in parallel with VATA front-end.
 - Various SIPHRA configurations will be tested, in particular the internal ADC mode will be studied.
- Production of new modules, to prepare the space qualification of the design.
- Prepare a front-end with 6 VATA HDR 64 (to readout three SiPM arrays).
- Prepare a front-end with 6 SIPHRAs (to readout 96 channels).

6th HERD workshop 27.03.2018