Science of CR electron measurement at HERD

Xiao-Jun Bi

2018/3/26

6th HERD international workshop, IHEP, Beijing

Outline

• Status of cosmic electron spectrum measurement and explanation

• Scientific objectives at HERD

• Summary

Measurement of cosmic electron and positron spectra by AMS-02

Positron/electron excess from DM annihilation or nearby pulsars

Lin SJ et al. PRD91.063508, 2015

Remind: in some cases the two spectra can be nearly identical ; the DM spectrum refers the one by muon in the following.

Conclusions of the quantitative study II

Both astrophysical sources, like pulsars, or dark matter can give good fit the AMS-02 data. AMS02 data can not distinguish the two scenarios.

_		$\frac{\chi^2}{\text{d.o.f.}}$	χ^2	$\frac{e^+}{e^+ + e^-}$	e^-	e^+
	PSR	0.92	175.4	42.95	54.22	78.26
\mathbf{DR}	μ	0.89	171.6	39.94	55.36	76.26
	au	0.91	175.2	42.72	55.21	77.24
	PSR	0.47	88.99	51.87	14.77	22.35
DC	μ	1.16	223.1	88.7	46.95	87.45
	au	0.62	118.0	59.5	21.52	37.02

DAMPE result –4.6TeV+ features

An interpretation of the DAMPE and AMS-02 data

SNRs are generally believed the sources of cosmic rays, the maximal energy from SNR(acce and loss balan) $E_{\text{max}}^{(\text{synchrotron})} \sim 23 \text{ TeV} \frac{u_1}{c} \frac{1}{\sqrt{B}}$ u1~5*10⁸cm/s, B~10-30µG, Emax ~ 100TeV -> crab observation

A possible model for CR injection:

Fang K. et al. APJ 854 (2018) 57

- CR (electrons) are only released at the late time of SNR evolution when the shock waves become weak (~10^5yr); confinement of electrons leads to cooling and a low energy cutoff (dominant pop A)
- Only a small part of electrons from upstream can escape when SNR is young; the spectrum at the upstream is hard and lead to a hard component at high energy (pop B).

U1 vel of shock, B is downstream mag

V. N. Zirakashvili & F. Aharonian 2007

result1

model1: pulsar J0940-5428, no Pop B

Best fit t_end 0.94x10^5 yr, typical age of SNR

Blue component can also be a DM contribution; it's contributio is submerged under the primary electron component. Diff origins lead to a fine structure.

result2

model2: pulsar J0940-5428, with Pop B

Best fit t_end为0.89x10^5 yr

Pop B injection 10^33 /GeV/s, for a source of 10^4yr like Vela, the hard component take <u>10^-5</u> total energy of SNR

summary of present status

- Positron excess at AMS-02 can be explained by both DM and pulsar well; no distinction
- Measurements of cosmic e+- spectrum is not consistent
- A natural model to explain the 'break' of electron spectrum is due to cutoff of primary electron spectrum; DM or pulsar component to e+/e- is submerged under the background.

Scientific objectives at HERD

1, Measure the total e+- spectrum

- This is an obvious objective since the present measurements are not consistent
- To test the sharp peak at the DAMPE spectrum which is about 3σ and induces a lot of interests

2, fine structure at the spectrum

Positrons by DM annihilation

Positrons by a pulsar

Simulation to find such feature

• A fast simulation shows that HERD can find such a feature by 1 year and determine the cutoff energy. DM mass is determined then.

3, hard component from nearby sources – features at spectrum and anisotropy

e⁺⁻ Propagation distance

High energy e⁺⁻ can only come from nearby sources – the nearby SNR or pulsar induce large anisotropy, DM not If coming from nearby pulsar or SNR they may have possible features at higher energies, DM not

Parameters of SNRs

Source	Other Name	$B_r^{\rm 1GHz}[\rm Jy]$	α_r	Size[arcmin]	r[kpc]	t[kyr]	Ref.
G065.3+05.7	-	52	0.58	310×240	0.9	26	[21-24]
G074.0-08.5	Cygnus Loop	175	0.4	230×160	0.54	10	[21, 25, 26]
G114.3+00.3	-	6.4	0.49	90×55	0.7	7.7	[21, 27 – 29]
G127.1+00.5	R5	12	0.43	45	1	[20, 30]	[21, 27, 28, 30, 31]
G156.2 + 05.7	-	5	0.53	110	1.0	[15, 26]	[21, 28, 32 - 35]
G160.9+02.6	HB9	88	0.59	140×120	0.8	[4, 7]	[21, 27, 28, 36, 37]
G203.0+12.0	Monogem Ring	-	-	-	0.3	86	[38, 39]
G263.9-03.3	Vela YZ	varies	varies	255	0.29	11.3	[21, 40 - 43]
G266.2-01.2	Vela Jr.	50	0.3	120	0.75	[1.7, 4.3]	[21, 44 – 47]
G328.3+17.6	Loop I (NPS)	-	-	-	0.1	200	[48, 49]
G347.3–00.5	RXJ1713.7-3946	4	0.3	65×55	1	1.6	[21, 50, 51]

We examined the nearby sources (SNRs and pulsars)- left table. The relative importance of nearby sources are shown below.

Distance (pc)

Fitting to AMS-02 lepton data by Vela XY and constraint by Fermi anisotropy limit and HERD sensitivity

Fitting to present data by several nearby sources implies constraint from HERD

Spectra and anisotropy of nearby sources : Vela-X, Cygnus loop

HERD can probe the bump above 10s TeV from the local sources. If this bump is detected it favors a pulsar origin of positron excess

Summary of scientific objectives

- To give an independent measurement and test the sharp peak at DAMPE spectrum.
- To distinguish DM anni a nation from fine structures at the stru
- Possible features at high energies and anisotropy measurement can help to identify the local contribution.