Introduction of HERD proposal

Joint contribution from China and Europe Preliminary version

List of content

1	EXECUTIVE SUMMARY		1	
	1.1 Executive summary		1	
2	SCIENTIFIC OBJECTIVES		3	
	2.1 Measurement of comic electron spectru	m an	d Dark Matter signal Search 3	
	2.2 Origin of Cosmic Ray		10	
	2.3 Gamma Ray Observatory		4.8 Trigger strategy	70
	· · · · · ·		4.9 Structural design	71
3	MISSION PROFILE		4.10 Thermal design	73
	3.1 Chinese Space Station		4.11 Key technologies	74
	3.2 Operational Concept		4.12 Payload Budget	74
	3.3 Overall/System design	5	SYSTEM REQUIREMENTS	77
4	PAYLOAD 4.1 CALOrimeter		5.1 Launching, transportation and installation5.2 Operation5.3 In-orbit replacement	77 78 79
	4.2 Silicon TracKer	6	PROGRAMMATIC AND COLLABORATION	81
	4.3 The scintillating Fiber Tracker (FIT)		6.1 HEPD product tree	Q1
	4.4 Tracker In Calorimeter		6.2 Model philosophy	81
	4.5 Plastic Scintillator Detector		6.3 Project schedule	82
	4.6 Transition Radiation Detector		6.4 Science operation	82
	4.7 In-orbit calibration (CALO calibration)		6.5 Data policy	83
			6.6 Cost budget	83

HERD concept

• Sciences

- Indirect dark matter search with unprecedented sensitivity
- Precise cosmic ray spectrum and composition measurements up to the knee energy
- Gamma-ray monitoring and survey
- HERD: a flagship and landmark scientific experiment onboard the China's Space Station
- Planned launch 2023-2025; 10+ years lifetime

Science requirements

• Functions

- Survey observation of high energy cosmic radiation with large acceptance.
- Measurement of "knee" region cosmic rays, high energy electrons and gammas with high energy resolution.
- Measurement of cosmic rays with high charge resolution.
- High particle discrimination power.
- Real-time identification and measurement of GeV gammas.
- In-orbit instrumental calibration.
- Data acquisition, data management and TC/TM.
- Automatic temperature control.
- Interfaces for arm and manual operation with proper ergonomics design.
- Interfaces for necessary in-orbit maintenance, replacement or upgrade.

Science requirements (need more input from science)

- DM search requires enlarged searching parameter space and increased observation sensitivity.
 - To get a 5 sigma annihilation signal in the diffuse gamma spectrum within 1 year observation, the calorimeter shall has an energy resolution of 1% @100 GeV, a particle discrimination power of 10⁻⁵ and an effective geometric factor of 3 m2Sr.
- "knee" region CR measurement requires large statistics and good energy resolution.
 - A N.I.L. of 2 is required to measure 100 TeV particles.
 - A N.I.L. of 3 guarantees energy resolution of 20% for cosmic rays.

Science requirements on payload

Item	HERD	DAMPE	
Energy range(e/y)	10 GeV - 100 TeV (e/γ) 0.5GeV - 10 GeV(γ)	10 GeV—10 TeV	
Energy range (CR)	30 GeV - PeV	30 GeV-100 TeV	
Angle resolution	0.1 deg.@10 GeV	0.1 deg.@10 GeV	
Charge meas.	0.1-0.15 c.u	0.1-0.15 c.u	
Energy reso.(e)	1%@200 GeV	1%@200 GeV	
Energy reso.(p)	20%@100 GeV-PeV	50%@100GeV-100TeV	
e/p discri.	~10 ⁻⁶	~10 ⁻⁵	
G.F. (e)	>3 m ² sr@200 GeV	0.3 m ² sr@200 GeV	
G.F. (p)	>2 m ² sr@100 TeV	0.12 m ² sr@100 TeV	

Calorimeter – from bars to cubes

Payload configuration

Science requirements on platform

- Large geometric factor requires large FoV.
- Measurement of particle direction requires precise attitude and angular speed measurement.

Item	Value
Pointing	Zenith
Field of View	+/- 70 deg
Measurement accuracy of attitude	$0.1 \deg$
Measurement accuracy of angular speed	0.005 deg/s
Lifetime	>10 years

The CMSP and CSS

HERD mission profile

- HERD will be launched in a cargo ship at Wenchang Launching Site by CZ-7.
- After docking, HERD will be transported by the enhanced robotic arm to the dedicated mounting point of Experiment Module I.
- With the assist of astronauts, HERD is mechanically installed and electrically connected with the CSS.
- HERD will be working continuously.
- Payload data is processed by ISSU and downloaded through T/C to ground stations with the help of relay satellites.
- All science data go through the Payload Operation and Application Center (POAC) and then finally accumulated at the Science Data Center (SDC).
- Some key devices of HERD are planned to be upgraded regularly or to be replaced.

Cargo ship

HERD

Payload

ISSU

site

T/C

Robot arm

Astronaut

Exp.

modul

Payload design - CALO

- CALOrimeter (3 N.I.L. and 55 R.L.)
 - A 3-d crystal array (~7500 LYSO)
 - IsCMOS camera
 - Trigger sub-system
- Novel readout method
 - WLSF + IsCMOS
 - Linearity of LYSO+WLSF is verified.
 - Energy measurement of WLSF + IsCMOS is verified.

Photo diode readout is under study.

Payload design - STK

- CR/e trajectory
- Gamma ray conversion & tracking

Item	Value		
Coverage ratio	>80%		
Angle resolution	0.1 deg.@10 GeV		
Layers of SSD	6 X/Y (top);3/6 X/Y (Lateral)		
Active converter	1 R.L.		
Dead time	<2 ms		
Working mode	External trigger		
Eff. Area (top)	~133 cm*133 cm		
Eff. Area (lateral)	~114 cm*66.5 cm		
Channels	~240,000/368,000		

Fiber tracker (FIT) and Tracker In Calorimeter (TIC) are also under study.

Payload design - PSD

- Low energy gamma identification
- Charge measurement

Item	Value	
Coverage ratio	>99.9%	
Layers	1 layer of PS bars	
Charge measurement	1-20 (26)	
Veto time	<100 ns	
Dead time	<10 µs	
Working mode	External trigger; real-time veto	
Eff. Area (top)	1.6m*1.6m	
Eff. Area (lateral)	1.6m*1.2m	
Channels	<1k	

PSD in different geometry is under study.

Payload design - TRD

- Energy calibration of TeV protons and other nuclei
- A complete calibration in 2-3 months in-orbit operation

to [2.25, 2.5] TeV protons

observation, ~6300cm² TRD.

Large area MWPC

TPC readout scheme is under study.

Trigger strategy

- Normal mode
 - HE particle (>10 GeV)
 - LE gamma (0.5 10 GeV)
 - LE electron (0.5 5 GeV)
- Calibration mode
 - MIP proton

Payload budget

- Mass <4000 kg
- Power < 1200 W
- Envelope < 2400*2400 mm3

Name	Quantity	Envelope	Mass(Kg)	Power(W)
Crystal	7497	/	1500	0
CFRP	21	798*792*792	210	0
Epoxy	/	/	50	0
Fiber	22491	/	20	0
IsCMOS	4	300*300*400	60	428
Trigger	2	200*200*100	20	24
Top Tracker	1	1490*1490*304	390	70.5
Side Tracker	4	1050*823*138	208	43.6
STK EBX	8	370*235*178	52	180
STK EBX2	1	200*150*100	15	20
Top PSD	1	1750*1750*60	80	12
Side PSD	4	1600*1157*60	240	49
PSD EBX	2	250*160*90	15	28
TRD	1	560*480*228	20	10
TRD EBX	1	250*160*90	5	20
PSU	1	500*400*300	15	176
PDHU	1	500*400*300	15	30
Star tracker	2	340*358*440	10	10
Arm adapter	7	/	45	0
Thermal control	/	/	80	20
Harness	/	/	40	0
Screws	/	/	10	0
CALO structure	1	973*973*823	TBD	0
STK&PSD structure	1	1750*1750*1187	TBD	0
Main structure	1	2200*1800*797	TBD	0
Bridge structure	1	2350*600*540	110	0
Sum		<2400*2400*2400	<4000	<1200

 Table 4.4
 HERD payload budget (To be updated)

System requirement – Launch, transportation and installation

- 4 tons; envelope <2400*2400*2400 mm³
- Requirements
 - Full-open ship
 - Docking at the front docking point (for manned space ship)
 - Two neighbor mounting points
 - Large FoV not blocked by other devices

System requirement - operation

- Two star trackers installed on HERD
- High measurement accuracy, no strong requirement on stabilization or pointing accuracy
- ~1200 W power supply and liquid coolant.
- Data processing in ISSU (event selection, shower discrimination, tracker identification, data compression, etc.)
- Relay satellite and/or global ground stations for continuous telemetry data rate (equivalent to 100 Mbps in average)

System requirement - replacement

- Upgrade of IsCMOS
- Possible replacement of IsCMOS and TRD.

Programmatic issues – product tree

- HERD is an international cooperative project with hardware contribution from Europe (Italy) and a international consortium for joint science study.
- The HERD mission is jointly led by CSU and IHEP, who take responsibilities at engineering level and science level respectively.

Model philosophy and project schedule

- Model matrix (to be discussed and tailored)
 - The engineering/electrical model (EM). For some devices, Dummy Model (DM) or Bread Board Model (BBM) may be used instead.
 - The Structural-Thermal model (STM).
 - The Qualification model (QM).
 - The Flight Model (FM).
 - The Flight Spare (FS). Redundancy detectors with a few channels can be used as FS.
- Project schedule (Launch time before 2025)
 - Phase A, 2018.01 2019.06 (18 months)
 - Phase B, 2019.06 2020.10 (16 months)
 - Phase C, 2020.10 2022.02 (16 months)
 - Phase D, 2022.02 2023.10 (20 months)

Operation

- A HERD Joint Science Working Group (JSWG) will be formed and be co-chaired by one Chinese representative and one European representative.
 - This Group will be responsible for the joint science management of the HERD mission.
 - In particular, the group will be responsible for management of calibration and validation of the Payload Instrument Data.
- Two science data centers shall be established, one in China and one in a European country
 - All data are stored in both centers supported with the same or similar analysis software.
 - JSWG is responsible for overseeing both centers.
 - The data shall be stored and maintained during the whole mission life time of HERD and at least 10 years after the mission ends.

Data policy

- All data and data products generated by HERD are jointly owned by China and the European consortium and are intended for scientific research only;
- Any other use of HERD data and/or data products will have to be negotiated and agreed by all parties of the HERD collaboration.
- It is anticipated that the HERD raw data will not be made public beyond the HERD collaboration. However, high level science data products shall be made public at certain stages (the specific conditions may be determined later by JSWG) in order to maximize the scientific returns of HERD.
- All major technical and scientific publications on HERD and HERD results shall include all members of HERD collaboration working on HERD and HERD data. The ordering of the authorship should reflect the contributions of the individual authors and his/her institutions. The detailed rules shall be determined later by JSWG.

Cost budget

- In the baseline design, the Cost at Completion of HERD payload module on China side is about 800M RMB.
- The costs of rocket, launching, cargo ship, SDC, etc. are not calculated.
- Budget from Italy (Europe) strongly relies on the selection of technical scheme for tracker and calorimeter. TBD.

Summary

- HERD, as a China-led mission with a large international collaboration, is a flagship and landmark scientific experiment onboard China's Space Station
 - Advanced scientific objectives in DM search, CR
 - observation and gammarity astronomy
 - measured at AMS-02
- Novel design of 3-D calorimeter, verified in CERN beam test
- Expected launch time before 2025