Latest results from CaloCube beam-test &

Alternative crystals' readout approach

O.Adriani (INFN Florence) On behalf of the Calocube collaboration

layers

CaloCube

> The concept

- Large acceptance
 - Cubic geometry, 5-facet detection
- Good energy resolution
 - Active absorber
- Shower imaging
 - 3D segmentation → isotropic response
- The prototype implementation
 - Scintillating crystals (CsI(Tl))
 - Two-PD readout

Scintillating material

• CsI(Tl) crystals

Density	$4.51 { m g/cm^3}$
Wavelength @max	550 nm
Light output	54 ph/keV (45 % of NaI(Tl))
Primary decay time	1 ms

70 CsI(TI) amplitude (∝ photons/nm) 0 05 05 05 05 05 Amerys Type: M.CT/03-36.36.36 SN: 067 04.14 Code: CC-10 ಷ 10 0 400 200 300 500 600 700 800 Wavelenath (nm)

- Produced by Amcrys
- ▶ **3.6 cm** side (~1 Molière radius)
- Expected optical signal
 - ▶ 1MIP \rightarrow ~ 20 MeV ~ 10⁶ ph/facet
 - (assuming 80% collection efficiency on one facet a from ray-tracing simulation with diffusive surface)

Sensors

- Detector requirements:
 - Sensible to MIPs
 - Shower reconstruction capabilities up to 1PeV
 - From MC, up to 10% of incident energy deposited on a single crystal
- \rightarrow Dynamic range (0.5÷5·10⁶ MIP) ~ 10⁷ MIP
- > At least 2 Photo-Diodes necessary for each crystal
 - Large-area PD for small signals
 - VTH2090 (Excelitas)
 - Expected electrical signal
 - $\square 1 \text{MIP} \sim 4 \cdot 10^4 \text{ e}^- \sim 7 \text{ fC}$
 - \square Max signal ~ 2.10¹¹ e⁻ ~ 30nC
 - Small-area PD for large signals
 - T.b.d. (VTP9412H, VTP3310H,...)
 - With GF ~ 600 times lower \rightarrow Max.signal ~ 50pC

Two-sensor readout

- Relative gain studied with signal induced by atmospheric muons
- Setup:
 - Single cube coupled to both PDs
 - Readout by low-noise CSA and DPA modules (Amptek)
- Measured ratio ~ 55 (expected ~ 49)

	VTH2090	VTP9412H
Active area (mm ²)	84.6	1.6
Sp.response range/peak (nm)	400÷1100 / 960	400÷1150 / 925
C _J (pF)	70 @30V	6 @15V

Front-end electronics

- CASIS/HIDRA chip
 - R&D project by INFN
 - Designed for Si-calorimetry in space
 - > 28 independent analog channels
 - ► CSA
 - Correlated double sampling system
 - Double gain (1:20) with automatic gain control
 - Characteristics:
 - Dynamic range ~ 52.2 pC
 - ► ENC ~ $2280e^{-} + 7.6e^{-}/pF$
 - ▶ 2.8 mW/ch

• FE electronics: INFN Trieste

INFN

New HIDRA2 chip (just submitted)

- Number of channels: 16
- Automatic double-gain pulse reset Charge Sensitive Amplifier (CSA), calibration circuitry (registers and capacitors), Correlated double sampling, Self-triggering circuitry, and output multiplexer
- Power consumption: 3.75 mW/ch
- Dynamic range:
 - High gain: $\approx 2.7 \text{ pC}$ (560 MIP on 380 µm Si sensors)
 - Low gain: \approx 52.6 pC (11000 MIP on 380 µm Si sensors)
- Linearity
 - High gain: $\pm 0.3 \%$
 - Low gain: $\pm 0.6 \%$
- Equivalent noise charge: 2280 e- + 7.5 e-/pF RMS (CDS time constant of 10 us)
- Self-trigger gain: ×10
- Self-trigger threshold: set by an external resistor, 2 adjustment bits (≈ ×1, ×1.5, ×2, and ×2.5)
- Self-trigger comparator hysteresis: $16 \text{ mV} \pm 2.3 \text{ mV}$ r.m.s.
- Self-trigger response time: ≤ 500 ns for signals 10 mV larger than the effective threshold

INFN

1: Latest results from Calocube test beams

Prototype upgrade (v2)

Prototype upgrade (v2)

• Data analysis: INFN Florence+Pisa, CIEMATMadrid

- First version of HIDRA chip (28 channels)
- Two-PD redout
- V2.0 \rightarrow 5×5×18 instrumented elements

Sep 2016	v2.0	μ,π,e 50÷200 GeV
Oct 2016	v2.0	(3÷40000) e 300MeV
Aug 2017	v2.1	μ,π,e 50÷279 GeV
Nov 2017	v2.1	Ions (Xe+CH2) 300-360 GeV

e^{-} 50 GeV

INFN

e⁻ 200 GeV

π^{-} 150 GeV

INFN

Single-crystal performances

- Prototype v2 affected by larger noise than v1
 - Large common mode component
 - Effective noise reduction by subtracting eventby-event the common level (CN)

$\frac{RMS(ADC - PED)_i}{RMS(ADC - PED - CN)_i}$

Single-crystal calibration (L-PD)

- Signal induced by MIPs used to equalize crystal L-PD responses
 - ► V2 setup:
 - □ Gain dispersion ~19%
 - $\Box \ \left< S/N \right>_{1MIP} \sim 4 \div 11$

Energy resolution – e.m. showers

Energy resolution for em showers:

- 0.8% in the range 100÷150 GeV Better than 1.5% in the range 50÷300 GeV
- Small-PD performances better Large-PD above 150 GeV
- Linearity within ~1.25%

2: Alternative crystals' readout approach

Main ideas and motivations

The success of a 'calorimetric only' space experiment relies on the best possible control of the systematics

The electron spectrum measured by different experiments above ~100 GeV is certainly dominated by systematics

I N F N

The 'around knee' region for nuclei is really a challenge since the hadronic models are very poorly known

Main source of systematics in HERD \ddot{c}

- Absolute energy calibration of the calorimetric part
 - Maximum test beam energies ~ 300 GeV
 - Very large extrapolation
 - Critical mainly for hadron spectra (but $\sim 30\%$ energy resolution)
 - Hadronic high energy models very poorly known
 - Less important for e.m. spectra (but $\sim 1\%$ energy resolution)
- Not stability in time of the calorimetric response
 - Possible deterioration of the response of the fiber readout system
 - Radiation damage
 - Change of the IsCMOS system after few years of operation
- Transition region between the low and high gain operation
- Efficiency estimations based on simulation only

Our proposal

- Readout with Photodiodes ('a la Calocube') a subsample of LYSO crystals
- ▶ 1 cube / n cubes, with n to be optimized
 - n too small:
 - Larger power consumption
 - Complexity of the system
 - n too big:
 - Poor energy resolution
 - Not effective in case of huge problems with standard readout
- ▶ $n=2x^2=2^2=4$
- $n=2x2x2=2^3=8$
- $n = 3x 3x 3 = 3^3 = 27$

Advantages of this proposal

- Cross calibration of light measurement with IsCMOS fibers technology for a subset of crystals
 - Many crystals will be readout at the same time with 2 different systems
- □ Monitor the stability in time of the overall calorimeter
- Alternative (almost, but not completely, independent) particle energy measurement with reduced performance
- Cross calibration of different systems in the energy regions where there is a gain change

The alternative system is used to readout a not homogeneous ('sampling') calorimeter

Redundancy

- Redundancy is certainly a great bonus for a space experiment
 - Redundancy in energy measurement
 - Redundancy in the readout system
 - Redundancy in the trigger system (new HIDRA2 chip)
 - Eventually a 'cold redundancy' system can be adopted

Simulation studies for the $n=2^3$ option

Fluka-based MC simulation

- Scintillating crystals de/dx->Scintillation Light collection efficiency and PD quantum efficiency.
- support structure (filling the gaps between crystals)
- > 5 mm gaps btw crystals

Reconstruction tools

- □ Shower axis reconstructed by fit
- Lateral and longitudinal profiles respect to axis
- Point of first interaction along axis
- Length from first interaction to end of calorimeter

noise

calocube concept

photodiode

Protons/Nuclei analysis

Leakage is always important for Hadrons ! The Signal/Energy depends on the <u>shower length</u> inside the CALORIMETER (from the first interaction point to the end)

INFN

The standard ICCD readout will contribute

1 TeV proton energy reconstruction

Proton 1 TeV - Signal versus lenght

INFN

Protons' energy resolution

mech. structure

Please note: the important message is the relative change of resolution from n=1 to n=8

Effective Geometric Factor (5 sides) [m² sr]

Photons' energy resolution

Gamma 10 GeV 1/8 crystals readout Histo h Entries 6512 h Mean 2.024e+07 5211 Entries RMS 1.042e+06 Mean 2.506e+06 35 RMS 2.075e+06 χ^2 / ndf 96.93 / 106 40% χ^2 / ndf 182.1 / 102 109.7 ± 1.9 Constant Prob 1.859e-06 30 Constant 27.5 ± 0.8 2.049e+07 ± 7.836e+03 Mean Mean 8.222e+05 ± 1.188e+04 Sigma 5.233e+05 ± 6.810e+03 Sigma 3.444e+05 ± 1.001e+04 25 20 15 10 5 00¹ $\times 10^3$ ×10° nênîn dire ci 10000 2000 4000 6000 8000 20 22 24 2 8 10 12 14 16 18 6 Total Signal [p.e.] Total signal [p.e.] All crystals read 1 crystal in 8

Gamma 10 GeV – Total signal distribution

INFN

e.m. showers are much more compact and can not be well sampled with 1/8 ratio

Some technical details

Power consumption

- Assume n=8
- Total crystals ~7500, number of PD readout crystals ~ 900
- Number of channels: 1800 (2 PD/crystal)
- ▶ Additional power consumption ~ 3mW*1800= 5 W for Front End only

Mechanical and assembly complexity

- A simplified flat kapton cable should be realized to bring outside the PD signals
- Interference with the fibers should be studied but it could be feasible
- We can provide to Chinese colleagues all the necessary parts (PD, Kapton cables, glue, assembly procedures, electronic board, etc.)
- A full redundant 'cold system' can eventually be studied
 - Instrument all the cubes with PD
 - Assemble the full electronics to readout all the system
 - Switch on only a subset of the electronics, leaving the possibility to switch on the full system in case of major problems or for cross calibration periods

Conclusion

- As a proof-test of the CaloCube concept, a prototype made of CsI(Tl) and readout by PDs has been constructed and tested, in several versions, with particle beams.
 - Better than 40% energy resolution for ions up to 30 GeV/n (with 3×3×15 detector matrix)
 - Better than 1.5% energy resolution for **electrons** up to 300 GeV
 - Two-sensor readout successfully tested
- We are proposing to readout 1/n crystals with PhotoDiodes
 - Better control of the systematics
 - Cross check of the energy calibrations
 - Monitor the light reduction of the IsCMOS as function of time
 - Redundancy
 - Almost independent energy measurement
 - n and the readout pattern should be optimized as a s compromise btw effectivness, simplicity, performances and power consumption

Spares

INFN

Expected CaloCube performances for e.m.-showers

•Isotropic flux of electrons 100GeV÷1TeV

(CR-like)

Comparative study of scintillating crystals

- Wrapping: Teflon+Vkuiti+Tedlar
- Sensor: VTH2090 PD placed laterally

- Samples exposed to ion beams (Z=1÷18) of 19 GeV/n (Feb-2015 @CERN-SPS)
- Characterization of the response to signals induced by ionizing nuclei

		Z=2 measured	
	Size (cm)	ADC counts	err
CsI TI	3,6	2427	3,4
LYSO	2	724	2,4
BGO	2	309	1,3
Csl Na	3,6	1376	2,5
LuAG	2,1	710	1,1
BaF2	3,1	77	0,38
YAP	2,2	295	1,5
YAG	2,5	615	1,5

Readout scheme

Oscar Adriani @ HERD meeting March 2018

INFN

π^{-} 150 GeV

INFN (____

Common-noise model

Common-noise model

			Γ χ ² / ndf 9.542e+06 / 2273
HYDRA	PD		p0 2.18 ± 0.01168
Channel			
	1	\frown	
	2	CNa	$CN_a = (ADC - PED)_a$ \longrightarrow $\omega \sim 2$
	3	V6a	
	4	V5a	
	5	V4a	$CN_{Va} = \langle ADC - PED \rangle_{Va}$
	0	V Sa	
	/	V2a V1a	-500 Large PD
	0	V1a S1a	$CN_{m} - \alpha_{m} \cdot CN_{m}$
	2 10	51a \$20	$c_{IV}v_a - a_V c_{IV}a$
	10	52a \$3a	CN = (ADC DED)
	12	55a 84a	$CN_{Sa} - (ADC - PED)_{Sa}$
	13	S5a	-400 -200 = 0.00 + 0.
	14	S6a	χ^2 / Hol 2.3648+05 / 1886
	15	S1b	$p_0 = 0.9659 \pm 0.002391$
	16	S2b	$\alpha_{S} \sim 1$
	17	S3b	200 — — — — — — — — — — — — — — — — — —
	18	S4b	
	19	S5b	
	20	S6b	
	21	CNb	
	22	V6b	
	23	V5b	-100 - Small PD
	24	V4b	
	25	V3b	$CN_{Sa} = \alpha_{S} \cdot CN_{a}$
	26	V2b	
	27	V1b	
	28	-	-300 -200 -100 0 100 200 300