HERD CALO Trigger Simulation

Zhicheng Tang (唐志成) Ming Xu (徐明) *mingxu@ihep.ac.cn*

Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS

> 6th HERD Workshop IHEP, Beijing, 27th Mar. 2017

Trigger Requirement

HERD science

- High energy CR (tens of GeV PeV)
- DM (photon smoking gun around several hundreds of GeV)
- Gamma-ray survey (> 500 MeV)
- Calibration
 - CALO MIP calibration
 - penetrating charged particles to equalize the response of CALO cells
 - TRD response curve calibration
 - Low energy electrons (0.5-5 GeV)
- Trigger rate should not > 500 Hz, due to limited performance of readout CMOS chip

Trigger Goals

Trigger high energy cosmic-rays

- protons & nuclei
- electrons
- photons
- Trigger low energy photons
- Trigger low energy electrons
 - for TRD calibration
- Trigger MIP events
 - for CALO cell calibration

HERD Trigger System

PSD:

all SiPM signals, energy (absolute charge) information, ~
 100ns delay

TRD & TK:

- ms delay, too slow as trigger signal
- CALO:
 - LYSO + PMT signals, energy information, ~100ns delay

Trigger Strategy

- The global trigger (GT) is obtained by using the logical AND/OR of PSD and CALO particlededicated triggers:
 - TK and TRD do not involved in GT
 - High Energy (HE) CR and photon trigger: high energy deposition CALO trigger
 - Low Energy (LE) photon trigger: low energy deposition CALO trigger AND PSD veto
 - Low Energy electron trigger: low energy deposition CALO trigger
 - Calibration trigger: low energy deposition CALO trigger

CALO – LYSO Array

number of crystals	~7500	
crystal dimension	3cm*3cm*3cm	
readout	3WLSF / crystal	IsCMOS low range, IsCMOS high range, trigger PMTs

CALO Trigger Timing and IsCMOS

IsCMOS Working Mode

CALO Trigger Study

- Trigger threshold (HE & LE)
- Trigger rate
 - signal rate
 - background rate
- Trigger efficiency
- Main background is high flux CR proton. This study is based on the hard radiation environment
 - cosmic-ray (mainly proton) is signal at high energy, and is background at low energy
 - other components do not take into account
- Basic settings:
 - particle rate: AMS02 data of ISS orbit as reference
 - > 2X0 STK, CALO geometry: 63*63*63 cm³
 - Image Intensifier 1% decay time: 1 ms (τ =0.217 ms)

CR Rate vs Time

10

Flux of year 2011 used in this work as an estimation of year 2022

Example of Particle Rate in Different Geomagnetic Region

Particle Rate in Polar and Equator Region

CALO Count Rate vs Proton Energy Deposition

Accumulated Rate by Energy Deposition

14

Trigger Threshold vs Trigger Rate

Trigger threshold (sum of all cell signals)	Trigger rate (Hz) Lat[-45°,-35°]	Trigger rate (Hz) Lat[-5°,5°]
0.5 GeV	10000	600
8 GeV	400	300
10 GeV	250	200
13 GeV	100	100

Event Rate Map (Threshold 0.5 GeV)

max event rate ~ 10000 Hz, average rate ~ 2960 Hz

Event Rate Map (Threshold 5 GeV)

max event rate ~ 1100 Hz, average rate ~ 720 Hz

Event Rate Map (Threshold 15 GeV)

max event rate ~ 60 Hz, average rate ~ 50 Hz

lde(°)		- 51	54	59	55	56	46	54	33	48	52	46	52	53	53	46	49	50	49		60
latitu	40		49	49	44	41	55	47	52	52	49	51	52	50	49	49	57	54	51		
		- 59	54	57	49	46	50	48	54	54	49	50	49	49	52	53	55	56	51	_	50
	20	48	53	56	54	55	53	51	55	50	49	54	52	49	48	50	53	53	55		40
		- 52	54	50	53	54	51	53	53	50	49	48	53	44	47	48	49	48	45		
	0	51	49	54	53	51	51	49	47	53	53	55	53	48	51	51	51	49	50		30
		- 53	52	54	58	49	59	46	50	53	55	52	51	52	48	49	50	55	54		
-2	20	5 1	53	53	53	54			47	55	52	54	53	53	54	51	55	53	52		20
		—49 —	48	53	57	54	53		52	46	48	60	54	51	48	59	54	54	51		
	40	5 4	49	47	57	51	56	45	44	49	55	51	59	62	50	45	47	56	52		10
		- 54	36	48	56	50	52	54	48	58	50	51	38	60	45	46	45	56	44		0
18			-150)	-1	00		-50		()		50		1(00	lo	150 ngitu	de(°)		0

Trigger Rate Estimation

Channel	Threshold	Event Rate					
High energy trigger	5 GeV	200-1000 Hz	OK if increase threshold				
LE photon trigger			OK if veto eff > 99.9%				
LE electron trigger	0.5 GeV	600-10000 Hz	need simple shower shape requirement				
LE MIP trigger			only allow near equator to avoiding peak shift				

Proposal

- Use outer 3 layers as "shell" part and the rest as "core" part
 - LE electron and photon only fires shell
 - CR events fires both shell and core
- In practice there are 6 shell units and 1 core unit
- Each unit connect to PMTs for trigger
- Careful design of connection map and redundancy setup

Trigger Pattern

- The outmost 3 layer "shell" cells to several PMTs, serve as LE trigger
 - >85% trigger efficiency for 500MeV photon
 - LE electron simple shower selection
 - MIP events selection
- The rest of the "core" cells to several PMTs serves as HE trigger, and as VETO for LE trigger
- Chessboard readout pattern for both shell and core cells

CALO Global Trigger (GT)

- GT is a combination (logical OR) of individual trigger channels
 - HE trigger channel
 - LE photon trigger channel
 - LE electron trigger channel
 - Unbiased (Etot > 0.5 GeV with 1000 pre-scale)
- Stand alone calibration trigger channel

HE Trigger Rate Map

Ecore threshold 10 GeV, max trigger rate 140 Hz, average rate 110 Hz atitude(°) -110 -119 -107 -20 -40-150-50 -100

longitude(°)

HE Trigger Efficiency for Proton

LE photon trigger

- CALO trigger threshold 0.5 GeV, max rate around 10000 Hz
- Roughly PSD geometry 1.6m*1.6m, count rate 30 times bigger than CALO
- PSD veto efficiency > 99.95%
- Trigger rate ~ 30*10000*0.05% = 150 Hz
- Or at least veto efficiency > 99.9% to ensure trigger rate < 500 Hz, the veto efficiency including:</p>
 - PSD charged particle detection efficiency
 - Charged particle leakage(coverage) efficiency
- Trigger timing under study

LE Photon Trigger: Event Rate Map

Eshell threshold 0.35 GeV, veto efficiency not included

Photon HE+LE Trigger Efficiency

LE Electron Trigger

▶ 0.5 – 5 GeV electron is needed for TRD calibration

- most energy deposited in the shell unit
- only use shell unit near where TRD mounted to select electron passing through TRD firstly
- (Eshell > 0.35 GeV AND Ecore < 0.06 GeV)</p>

OR (Eshell > 1 GeV AND Ecore> 0.6 GeV)

TODO: electron rate per day per channel in TRD
improvements on threshold

HE Trigger + LE Electron Trigger Rate

Ecore > 10 GeV + Eshell selection, max rate 340 Hz, average rate 140, Note that electron rate not included

\sim			ιαιι			aic			lucu	•											500
de(°		-216	331	402	428	479	483	398	320	236	212	215	227	200	187	174	172	171	170		000
atitu	40		154	188	276	331	288	195	150	139	142	137	136	135	140	129	135	126	137		450
_		— —131	139	146	139	172	161	131	127	129	122	123	126	122	120	119	126	127	127		400
	20		128	134	131	137	134	122	121	119	115	117	109	109	106	112	115	121	124	_	350
			127	122	129	126	126	123	122	123	114	123	117	105	103	104	106	115	116		300
	0	— — 12 1	123	128	128	126	124	122	120	125	123	122	123	108	104	108	107	113	113		250
		 122	125	127	137	131	221	230	134	125	130	119	120	115	109	114	118	115	120		200
-	-20		131	125	122	135			125	131	129	133	132	131	128	131	126	129	124	_	150
		124	122	133	132	129	173		139	133	132	148	152	150	153	164	159	146	133		100
-	-40	18 8	151	139	135	133	143	136	152	197	226	235	287	317	337	342	327	314	234		50
		-363	264	178	153	145	142	165	194	285	359	388	430	491	416	440	456	43 1	467		50
29	I		-150)	-1	00		-50	1	()	1 1	50		1(00	loi	150 ngitu	de(°)		0

latitude(°)

Electron Trigger Efficiency

Calibration Trigger Mode

- Stand alone calibration runs
- 0.1 < Eshell < 0.8 GeV AND Ecore > 0.5 GeV
- AND geo latitude [-20°, 20°]
- AND exclude SAA

Calibration Mode Trigger Rate Map

Ecore > 0.5 GeV + Eshell selection, average rate 300 Hz near equator

32

Accumulated Pile-up Backgrounds

33

Event rate(Hz)	Efficiency(%) dead time= 2 ms	Efficiency(%) dead time= 1 ms
50	92	95
100	85	92
200	73	84
300	64	78
400	57	72
500	51	68

Faster I.I. (10-100 us) will be necessary to kill pile up and increase efficiency

Summary

- Science data taking mode
 - HE trigger
 - 110 Hz trigger rate
 - Trigger efficiency > 90%, for proton > 50 GeV
 - HE + Low energy electron threshold
 - 130 Hz trigger rate
 - Trigger efficiency > 90%, for electron > 30 GeV
 - LE trigger with CALO shell threshold beyond 0.35 GeV and AND PSD veto
 - Trigger rate depends on veto efficiency
 - Trigger efficiency > 80%, for photon > 0.5 GeV
 - Unbiased with pre-scale
 - < 10Hz

Calibration mode

- CALO core trigger threshold > 0.5 GeV and CALO shell threshold to discard shower events
- 300 Hz trigger rate near earth equator (-20°, 20°) and SAA exclude