SEARCH FOR TTH(BB) @ CMS

WUMING LUO

WHAT IS IT?

I learned very early the difference between knowing the name of something and knowing something.

— Richard P. Feynman —

AZQUOTES

WHAT IS IT REALLY?

Mr. Somebody

Mr. Nobody

Where do the masses of particles come from?
 Have been searching for the Higgs Boson for many years

WHERE DOES IT COME FROM: HIGGS PRODUCTION

☆ At 125.7 GeV, H→bb dominates.
☆ Huge background makes direct search difficult.

HIGGS BOSON DISCOVERY

We found "A" Higgs boson!
Is it truly "The" SM Higgs Boson???

WHY TTH?

 Complementary to other H searches
 Directly probes the top-Higgs Yukawa coupling(Yt)
 Key component to evaluate the consistency of the new boson with SM expectations

It could be sensitive to Beyond SM physics

TTH @ CMS

	Decay Mode	No. of Institutes	Paper	Data(fb ⁻¹)
7TeV	bb	3	X	5
8TeV	bb/ ττ/WW/ZZ/γγ	<mark>3(bb)</mark> ≥4(non-bb)	1 bb* 1 combination	19.5
13TeV(2016)	bb/ ττ/WW/ZZ/γγ	<mark>11(bb)</mark> ≥7(non-bb)	1 bb 1 ττ/WW/ZZ 1 comb.	35.9

※13TeV paper in preparation, huge ttH groups
※ This talk will focus on the ttH (H→bb) analysis

ттн(вв)

* Advantage:
* Highest branching fraction
* Challenges:
* Tiny production cross section
* Higgs invariant mass hard to reconstruct
* Difficult irreducible

background ttbb

OVERVIEW

Split channels by top pair decay % Lepton + jets (e, μ): LJ channel Dilepton: DIL channel For each channel, separate events into categories #Use MVA* to separate S/B and fit simultaneously all categories to data to extract signal

*MVA: Multi-Variate-Analysis method using various machine learning techniques

COMPACT MUON SOLENOID

Tracker, ECAL, HCAL, Magnet, Muon Chamber

11

DETECTOR SIGNATURES

Particle Flow: combine the info in different subdetectors to identify particle types

SAMPLES AND SELECTION

DATA SAMPLES

% Full 2016 Data, √s = 13TeV

The total integrated luminosity is: L = 35.9/fb

lepton+jets triggers

Dataset	Trigger Name
SingleMu	HLT_IsoMu22_v*
SingleMu	HLT_IsoTkMu22_v*
SingleEle	HLT_Ele27_eta2p1_WPTight_Gsf_v*

dilepton triggers

Channel	Trigger Name
$\mu^+\mu^-$	HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*
$\mu^+\mu^-$	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*
e+e-	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
$\mu^{\pm} e^{\mp}$	HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*
$\mu^{\pm} e^{\mp}$	HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v*

SIGNAL AND BACKGROUND

Signal ttH samples # All Higgs and top decays allowed # ttH(bb) sample and ttH(non-bb) sample #tt+Jets is the main background Dedicated samples by ttbar decay mode Separated by extra jet content: tt+lf/bb/b/B/cc Other relevant bkg MC # tt+Z/W, WJets, ZJets, WW, WZ, ZZ, single top

SELECTION: LEPTON

Muons	Single Muon	Leading ID	Sub-Leading Dilepton ID
	Channel ID	Dilpeton	Veto ID for Single Muon
<i>p</i> _T [GeV] >	25	25	15
$ \eta <$	2.1	2.4	2.4
ID	tight	tight	tight
${ m Iso}_{\deltaeta}/p_T <$	0.15	0.25	0.25
Electrons	Single Electron	Leading ID	Sub-Leading Dilepton ID
	Channel ID	Dilpeton	Veto ID for Single Electron
<i>p</i> _T [GeV] >	30	25	15
$ \eta <$	2.1	2.4	2.4
ID	80% eff. non-trig. MVA ID	80% eff. non-trig. MVA ID	80% eff. non-trig. MVA ID
$\mathrm{Iso}_{ ho A}/p_T <$	0.15	0.15	0.15

 $\mu^+\mu^-$ and e^+e^- Channel: $m_{\ell\ell} > 20 \text{ GeV}$ $m_{\ell\ell} < 76 \text{ GeV}$ or $m_{\ell\ell} > 106 \text{ GeV}$ MET > 40 GeV Lepton Pt > trigger thresholds
Tight ID and isolation to suppress multi-jet events
Veto Z+jets events for DL

SELECTION: JETS

Jets	Single Lepton Channel	Dilepton Channel
	Leading 2 Jets Dilepton	Subleading Jets Dilepton
Туре	PFJets, CHS	PFJets, CHS
Algorithm	anti- k_T 0.4	anti- <i>k</i> _T
p_T [GeV] $>$	30	20
$ \eta <$	2.4	2.4
Lepton cleaning	Require $\Delta R(\ell,j) > 0.4$	Require $\Delta R(\ell,j) > 0.4$

※ Jet multiplicity: ※ ≥4 jets in LJ channel ※ ≥2 jets in DL channel ※ b-tags: jets originating

* b-tags: jets originating from b quarks
* use CSV(Combined Secondary Vertex) algorithm
* identify as b-jets if passing Medium working point
1(2) b-tags for DL(LJ) inclusive selection

EVENT CATEGORIZATION

Different channels based on top pair decay
LJ channel and DIL channel

% For each channel, categorize events based on number of jets and number of b-tags (alternative scheme later*)

Lepton + Jets(LJ)				
	4jets 5jets ≥6jets			
2tags	X	X	X	
3tags	X	X	V	
≥Átags	\checkmark	V	V	

Dilepton(DIL)			
	3jets ≥4jets		
2tags	X	X	
3tags	3tags x		
≥4tags	V	\checkmark	

CATEGORIZATION

BACKGROUND MODELING

CORRECTIONS TO MC

- MC samples were created based on certain theory assumptions
 Need corrections to match Data
 Pileup vertex reweighting

 Reproduce number of PU interactions
 Jet energy calibration: jet energy resolution/scale
 Lepton data/MC scale factor

 Based on lepton P_T and η

 B-tag CSV reweighting
 - Correct MC b-tag efficiency as a function of the CSV discriminator

B-TAG CSV RE

We need to model CSV b-tag
Use CSV medium working pr
Use CSV distributions to separate signal from background
We require corrections to CSV shape bin-by-bin
We derive a reweighting of CSV discriminant shape for both light and heavy flavor jets

18000 F

16000

14000

12000

10000

🗕 Data

PtBin1_EtaBin0

— HF

- I F

16000

14000

12000

10000

TAG AND PROBE

* Use Tag-and-Probe method to calculate CSV scale factors bin-

CSV SF

Apply the CSV Scale Factors(SFs) based on jet flavor:

- % for b jets, assign heavy flavor SF
- # for light jets, assign light flavor SF
- % for c jets, no correction
- ** Final scale factor for each event is: SF_{total} = SF_{jet1} * SF_{jet2} * ...
 ** Significant improvement for CSV shapes

DATA/MC AGREEMENT: LJ

All corrections to MC applied Good agreement between Data and MC

5.5

DATA/MC AGREEMENT: DIL

** All corrections to MC applied** Good agreement between Data and MC

SIGNAL EXTRACTION

MULTIVARIATE ANALYSIS

- [&] Can't use Higgs invariant mass as discriminant like other analyses (H→γγ or H→ZZ→4l).
- Background very similar to Signal
- Multi-Variate Analysis:
 - Combine several variables' discriminating power
 Use Boosted Decision Tree (BDT) or Deep Neural
 - Source Source (BDT) or Deep Neura Network(DNN)
- Train separate BDT/DNN for each category
 Fit BDT/DNN discriminators from all categories simultaneously to extract signal

BDT EXAMPLE

flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

BDT

BDT training is a machine learning process
Aim to classify/separate signal or background
For the BDT training in each jet/tag category
ttH as signal(S) and ttjets as background(B)
Input variables: CSV tagging, invariant mass, angular correlations, event shapes, and jet Pt variables

BDT INPUT/OUTPUT

12.9 fb⁻¹ (13 TeV)

tt+cc

• data

🔲 tī+lf

ttH x 93

2200

CMS Preliminary

Output variable

DEEP NEURAL NETWORKS

Deep Neural Networks(DNNs) is very good at multi-classification:

** split dominant bkg ttjets into all components

BDT only separates ttH from INCLUSIVE ttjets

Use DNN for alternative categorization, instead of the nJet-nTag scheme Use DNN output as final fit discriminant

DNN WORKFLOW

TTBAR+HF

MATRIX ELEMENT METHOD

% Irreducible background ttbb

Use Matrix Element Method(MEM) to further distinguish ttbb from ttH

BDT/MEM 2D APPROACH

split category at the median of ttH BDT output

ADDITIONAL TT+HF UNCERTAINTY

Contribution from tt+HF very similar to signal
uncertainty on rate/shape has a big impact on our search
Due to lack of more accurate higher order theory predictions, we obtained tt+HF estimate and uncertainty based on the inclusive ttbar sample
On top of other uncertainty, assign an extra 50% rate uncertainty for tt+bb/b/B/cc independently

RESULTS

FINAL STRATEGY

Categorization

Discriminant

nJet-nTag nJet-DNN_process

* Various strategies when combining the above steps
* Choose the one with the best sensitivity and robustness
* Use the other strategies as cross-checks

RESULTS SUMMARY

Channel	Analysis	Expected Limit	Best-fit μ	Significance
dilepton	MEM+BLR	$2.93^{+3.44}_{-1.46}$	$1.0^{+1.33}_{-1.50}$	
dilepton	2D BDT+MEM	$2.02^{+0.96}_{-0.61}$	$1.0^{+1.06}_{-0.97}$	1.02
dilepton	DNN	$2.59^{+1.12}_{-0.77}$	$1.0^{+1.34}_{-0.69}$	0.92
single lepton	MEM+BLR	$1.71^{+1.72}_{-0.96}$	$1.0\substack{+0.86 \\ -0.90}$	
single lepton	2D BDT+MEM	$1.29\substack{+0.55\\-0.36}$	$1.0\substack{+0.67 \\ -0.66}$	1.49
single lepton	DNN	$1.14\substack{+0.48\\-0.33}$	$1.0\substack{+0.61 \\ -0.57}$	1.77
combined	MEM+BLR	$1.43^{+1.43}_{-0.68}$	$1.0\substack{+0.73 \\ -0.76}$	1.38
combined	2D BDT+MEM	$1.07\substack{+0.45 \\ -0.3}$	$1.0^{+0.57}_{-0.55}$	1.8
combined	DNN	$1.04\substack{+0.44 \\ -0.3}$	$1.0\substack{+0.56 \\ -0.53}$	1.99
single-lepton DN	IN + dilepton 2D BDT+MEM	$0.97\substack{+0.41 \\ -0.28}$	$1.0\substack{+0.53 \\ -0.5}$	2.04

4 6

LIMIT Best fit u = 0/0 at m = 125 GeVAL STRENGTH

2

0

Binded

TTH@LHC

• Most recent $t\bar{t}H$ results by ATLAS and CMS (significance, $\mu_{t\bar{t}H} = \sigma_{t\bar{t}H}/\sigma_{SM}$)

	36.1 fb ⁻¹	CMS	
Run-1 combination	JHEP 1608 (2016) 045 4.4 σ (exp: 2.0 σ) $\mu_{t\bar{t}H} = 2.3^{+0.7}_{-0.6}$		
tīH(bb)	ATLAS-CONF-2017-076	CMS-PAS-HIG-16-038 (13 fb ⁻¹) $\mu_{t\bar{t}H} = -0.19 \pm 0.8$	
<i>tī</i> H multilepton	$\mu = 0.84^{+0.64}_{-0.61}$ ATLAS-CONF-2017-077 4.1 σ $\mu = 1.6^{+0.5}_{-0.4}$	CMS-PAS-HIG-17-004 (ℓ only) 3.3 σ (exp: 2.5 σ) $\mu_{t\bar{t}H} = 1.5 \pm 0.5$ CMS-PAS-HIG-17-003 (τ_{had}) 1.4 σ (exp: 1.8 σ) $\mu_{t\bar{t}H} = 0.72^{+0.62}_{-0.53}$	
$t\bar{t}H(ZZ \rightarrow 4\ell)$	ATLAS-CONF-2017-043 $\mu_{t\bar{t}H} < 7.7$	arXiv:1706.09936 $\mu_{t\bar{t}H} < 1.18$	
$t\overline{t}H(\gamma\gamma)$	ATLAS-CONF-2017-045 1.8 σ (exp: 1.0 σ) $\mu_{t\bar{t}H} = 0.5 \pm 0.6$	CMS-PAS-HIG-16-040 3.3 σ (exp: 1.5 σ) $\mu_{t\bar{t}H} = 2.2^{+0.9}_{-0.8}$	

#ttH(bb) directly probes directly top-Higgs coupling
It also has a few challenges:

- Small production XS: split events to channels/categories
- # Higgs invariant mass not applicable: use BDT/MEM to extract signal
- Difficult tt+HF bkg: MEM, extra uncertainty
- Latest results are approaching SM sensitivity
- Expecting '5 σ ' significance for combined 13TeV ttH searches with both 2016 and 2017 data

BACK UP

BDT TRAINING

BDT training is a machine learning process
Aim to classify/separate signal or background
For the BDT training in each jet/tag category
ttH as signal(S) and ttjets as background(B)
events split in half: one for training and one for testing of overtraining

OUTLOOK

Wpdated ttH(bb) results with 36/fb data come out soon
 Combined 13 TeV ttH searches(all decay modes) might yield interesting findings

SEARCH CHANNELS

Different channels based on top pair decay(number of leptons) and Higgs decay(number of b-jets)

III: Matrix Element

$$\mathbf{v}_{s/b} = \frac{w(\vec{y} | \vec{t}\mathbf{H})}{w(\vec{y} | \vec{t}\mathbf{H}) + k_{s/b}w(\vec{y} | \vec{t}\mathbf{H} + b\overline{b})}$$

Construct per-event signal/background probability using full kinematic information in an analytical approach

Ideal for final states with many reconstructed objects.

Built for ttH(bb) vs ttbb

SYSTEMATIC UNCERTAINTIES

* PileUp re-weighting: use 69.4 mb ± 7% Lepton SF independently vary id and HLT efficiency **%b-tag SF** % top Pt reweighting **#JER and JES** # JER has a negligible effect on shape or normalization Luminosity: 4.4% Cross section Use CMS standard model cross section uncertainties **MC** statistics [™] Q² scale for MadGraph ttjets # extra 50% rate uncertainty for tt+HF * Tau efficiency, Tau fake-rate and Tau energy scale

DATA/MC AGREEMENT: LJ

** All corrections to MC applied** Good agreement between Data and MC

Wuming Luo

52