

Updates on Higgs Combination

Zhang Kaili, IHEP

Wang Jin, Liu Zhen

Outline

- Complete bb/cc/gg ZH bkg
 - Discussion for fit method
 - Correlations
- Explanation for ZZ channel
- Current Fit result
- Fast & Full comparison in qqyy (delayed to next week)

bb/cc/gg

- Template fit: Flavor tagging algorithm
 - For each jet, it has blikeness and clikeness (0~1)

• using
$$B_{likeness} = \frac{b_{j_1}b_{j_2}}{b_{j_1}b_{j_2} + (1-b_{j_1})(1-b_{j_2})}$$
 We get b/c likeness for two jets.

•
$$Z \rightarrow ee \ \mu\mu \ qq \ vv$$
, $H \rightarrow bb/cc/gg$ are studied.

- 2D binned(20*20) fit, with dijets' b/c likeness; mass info not used;
- 7 parts, Tot=bb+cc+gg+zh_{ww}+zh_{zz}+zh_{tt}+bkg_{sm}. 6 freedoms
- Build individual pdf by MC, then fit to determine fraction.
- all b/c likeness shape is fixed. (Requirement for Asimov Data)
 - Fix sm bkg shape and number means we have a wonderful understanding with bkg, may be more suitable for CEPC.
- For ZH ww/zz/tt bkg event number, fixed or float?

bb/cc/gg

Event numbers in ee/mm/qq are all increased in the new sample.

New result ZH fixed

Old result

Scan	µ_bb	µ_cc	µ_gg	Scan	µ_bb	µ_cc	µ_gg
eeH	$\begin{cases} +0.78\% \\ -0.77\% \end{cases}$	$\begin{cases} +8.05\% \\ -7.94\% \end{cases}$	$\begin{cases} +4.04\% \\ -4.01\% \end{cases}$	ееН	$\begin{cases} +1.27\% \\ -1.26\% \end{cases}$	$ \begin{cases} +15.25\% \\ -14.98\% \end{cases} $	$\begin{cases} +8.29\% \\ -8.22\% \end{cases}$
mmH	$\begin{cases} +0.59\% \\ -0.59\% \end{cases}$	$\begin{cases} +6.58\% \\ -6.52\% \end{cases}$	$\begin{cases} +3.42\% \\ -3.40\% \end{cases}$	mmH	$\begin{cases} +1.02\% \\ -1.01\% \end{cases}$	$ \begin{cases} +10.77\% \\ -10.60\% \end{cases} $	$\begin{cases} +5.48\% \\ -5.44\% \end{cases}$
qqH	$\begin{cases} +0.49\% \\ -0.49\% \end{cases}$	$ \begin{cases} +19.45\% \\ -19.43\% \end{cases} $	$\begin{cases} +8.18\% \\ -8.17\% \end{cases}$	qqH	$ \begin{cases} +0.466\% \\ -0.465\% \end{cases} $	$ \begin{cases} +16.66\% \\ -16.64\% \end{cases} $	$\begin{cases} +7.46\% \\ -7.46\% \end{cases}$
vvH	$\begin{cases} +0.40\% \\ -0.40\% \end{cases}$	$\begin{cases} +3.91\% \\ -3.88\% \end{cases}$	$\begin{cases} +1.55\% \\ -1.54\% \end{cases}$	vvH	$ \begin{cases} +0.402\% \\ -0.401\% \end{cases} $	$\begin{cases} +3.94\% \\ -3.91\% \end{cases}$	$\begin{cases} +1.56\% \\ -1.55\% \end{cases}$
Combined	$ \begin{cases} +0.243\% \\ -0.243\% \end{cases} $	$\begin{cases} +3.028\% \\ -3.009\% \end{cases}$	$ \begin{cases} +1.294\% \\ -1.290\% \end{cases} $	Combined	$ \begin{cases} +0.266\% \\ -0.266\% \end{cases} $	$\begin{cases} +3.496\% \\ -3.472\% \end{cases}$	$\begin{cases} +1.443\% \\ -1.437\% \end{cases}$

bb/cc/gg

	WW	ZZ	WW fusion bb	Cł
with bcg's ww/zz/tt:	$\{^{+1.29\%}_{-1.27\%}$	$\{^{+5.06\%}_{-4.93\%}$	$\{^{+3.01\%}_{-3.00\%}$	
w/o bcg's ww/zz/tt:	$\{^{+1.38\%}_{-1.36\%}$	$\{^{+5.20\%}_{-5.06\%}$	$\{^{+3.00\%}_{-2.98\%}$	

Seems float zz/ww/tt affects bb/cc/gg a little. But it can increase ww/zz precision ~0.15%.

New result ww zz tt float

Scan	µ_bb	µ_cc	µ_gg		μ_zz	µ_ww	μ_tt
ooH	∫+0.83%	∫+9.93%	∫+8.46%	precision	44%	86%	>100%
een	(-0.83%	(-9.80%	(−8.48%	events	483	2386	26
ma ma LI	$ \begin{cases} +0.65\% \\ -0.65\% \end{cases} $	(+8.92%	(+7.51%	precision	38%	71%	>100%
MMH		(-8.86%	(-7.52%	events	887	4515	34
aall	(+1.04%	(+34.95%	(+22.07%)	precision	95%	22%	>100%
qqп	(-1.04%	(−34.94%	(−22.08%	events	5963	43173	1635
· · · · I I	(+0.47%	(+4.61%	(+2.71%)	precision	62%	20%	>100%
vvH	(-0.47%)	(-4.58%	(-2.71%	events	612	1573	108
Combined	$\begin{cases} +0.246\% \\ -0.246\% \end{cases}$	$\begin{cases} +3.075\% \\ -3.057\% \end{cases}$	$\begin{cases} +1.389\% \\ -1.388\% \end{cases}$				

As bb/cc/gg result changed, WW fusion bb is also changed due to the correlation. 3.1%->3.0%

Correlations in Z->ee channel

When we float ww/zz/tt, now we have 6 free parameters in 1 single pdf. It seems the correlation in bb/cc/gg in converted. (from negative to positive)

 $Z \rightarrow \mu \mu$ channel

$Z \rightarrow qq$ channel

$Z \rightarrow \nu \nu$ channel

ZZ, Z->ee, H->ZZ->llqq:

Bkg of these 2 channels are mainly sze_sl And it seems share the same shape with signal: Now with bb/cc/gg ZH contribution, ZZ precision reach 5.0%

Z→ee, H→ZZ→µµqq

ZZ, Z->ee, H->ZZ->llqq:

The bkg is the cutted tail from a long smooth shape; Yuqian doesn't give the details about how he get this.

So it looks their shape is similar.

Channels Table

Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab⁻¹.

Signal		Obse	erved	Who takes	Drocision	Sig	nal	Observed	Who takes	Drocision		
Z	Н	Eve	ents	charge	Precision	Z	H	Events	charge	Precision		
		H->In	clusive			H->WW						
vv	Inclusive	e 164	170				μνμν	52				
μμ	Inclusive	29	552	Liao Libo	\		evev	36				
ee	Inclusive	e 222	200			μμ	evµv	105		2.6%		
H->qq							evqq	663				
	bb	7655	18742	2			μνqq	717				
ee	сс	351	838				μνμν	44	Liao Libo			
	gg	1058	2563				evev	22				
	bb	11108	33253	3		ee	evµv	81	-	2.8%		
μμ	сс	567	1537				evqq	612				
	gg	1762	4473				μνqq	684				
	bb	176542	19076	8 Bai tu		vv	qqqq	10793		1.9%		
qq	сс	8272	9521					H->ZZ				
	gg	25293	32048	3		vv	μμϳϳ	179		8.2%		
	bb	70608	70608	3		vv	eejj	64		35.2%		
vv	сс	3061	3061			μμ	vvjj	200	Wei Yuqian	7.3%		
	gg	9633	9633			ee	eejj	55		35.1%		
		H→	γγ,Ζγ			ee	μμϳϳ	81		23.0%		
		9	3	Wang Fong	24.8%			Η→ττ				
vv	. γγ	30	309 wang reng	11.7%	ee		\		3.0%			
qq		8	22	Sun Yitian	13.0%	μμ		2135	Vu Dan	2.7%		
qq	Zγ	2	19	Yao Weimin	21.0%	qq	L L	23168	Tu Dan	1.9%		
	H->	Invisible			Br, Upper	vv		8809		3.7%		
qq		20	02		0.3%			Н→µµ				
ee	vvvv		8	Mo Xin	1.1%	qq		71				
μμ		1	.8		0.7%	ee		1		1 5 / 0/		
		vvH(WV	V fusior	ו)		μμ	μμ	4		15.470		
vv	bb	102	256	Liang Hao	3.0%	vv		14				

Channels Table

Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab⁻¹.

Signal		Obse	erved	Who takes	Procision		Sig	nal	Observed	Who takes	Drocision		
Z	Н	Eve	ents	charge	Precision	1	Z	Н	Events	charge	Precision		
		H->In	clusive						H->WW				
vv	Inclusive	e 164	170					μνμν	52				
μμ	Inclusive	29	552	Liao Libo	\			evev	36				
ee	Inclusive	e 22	200				μμ	evμv	105		2.6%		
		H->	>qq					evqq	663				
	bb	7655	18742	2		7			· · · · · · · · · · · · · · · · · · ·				
ee	сс	351	838			ζ.	->vv, H->v	/w->4q, C	urrent san	nple allows	s more ZZ		
	gg	1058	2563			e	vents in. V	Ve found p	previously	we multius	sed 3k sign	al	
	bb	11108	33253	3		e	vents two	times. so t	the real pr	ecision is	1.9%. not		
μμ	сс	567	1537	_		1	2% (\\\\\\	from 1 2%	(to 1 2%)				
	gg	1762	4473	Bai Yu	1.3%. (W			5%. (VV VV 110111 1.2% LO 1.5%)					
	bb	176542	19076	8			VV	qqqq	10793		1.9%		
qq	СС	8272	9521						H->ZZ	1			
	gg	25293	32048	3			VV	μμϳϳ	179		8.2%		
	bb	70608	70608	3			VV	eejj	64		35.2%		
vv	сс	3061	3061				μμ	vvjj	200	Wei Yuqian	7.3%		
	gg	9633	9633				ee	eejj	55		35.1%		
		H→	γγ,Ζγ				ee	μμϳϳ	81		23.0%		
		9	3	Wang Feng	24.8%				Η→ττ				
vv	. γγ	3	09	wang reng	11.7%		ee		\		3.0%		
qq		8	22	Sun Yitian	13.0%		μμ		2135	Vu Dan	2.7%		
qq	Zγ	2	19	Yao Weimin	21.0%		qq	· · ·	23168		1.9%		
	H->	Invisible			Br, Upper		VV		8809		3.7%		
qq		2	02		0.3%				Η→μμ				
ee	vvvv		8	Mo Xin	1.1%		qq		71]	Τ		
μμ		1	.8		0.7%		ee		1		15 /0/		
		vvH(WV	V fusior	n)			μμ	μμ	4		13.470		
vv	bb	10	256	Liang Hao	3.0%		VV		14				

Fit results

(<mark>5</mark> ab ⁻¹)	Pre_CDR	Previous version	Current				
$\sigma(ZH)$	0.51%		0.50%				
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	{+0.27% -0.27%	$\{ ^{+0.246\%}_{-0.246\%}$		7κ	Pre_CDR	
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	$\{^{+3.46\%}_{-3.44\%}$	$\{^{+3.08\%}_{-3.06\%}$		1.2%	1.2%	
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	$\{^{+1.44\%}_{-1.44\%}$	$\{^{+1.39\%}_{-1.39\%}$		2.0%	1.6%	
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	$\{^{+1.20\%}_{-1.20\%}$	$\{^{+1.29\%}_{-1.27\%}$		1.5%	1.5%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	$\{^{+5.25\%}_{-5.10\%}$	$\{^{+5.06\%}_{-4.93\%}$		4.3%	4.7%	
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.2%		$\{^{+1.34\%}_{-1.34\%}$		1.4%	1.3%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	$\{ ^{+8.20\%}_{-8.12\%}$	{+8.21% -8.07%		0.12%	0.16%	
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%		$\{^{+15.8\%}_{-15.0\%}$		1.2%	1.2%	
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	$\{^{+3.12\%}_{-3.11\%}$	$\{^{+3.01\%}_{-3.00\%}$		1.2,0	11270	
$Br_{upper}(H \rightarrow inv.)$	0.28%		0.24%	10 kappa update.	result, and H	Higgs width, w	ait Zhen to
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	١		$4\sigma(\{^{+21.0\%}_{-21.4\%})$	Numbers	s are updated	i in git but not	the text.

Correlations in channel

New

Old

Fremework on Git

- Now the data seems complete
- I also migrating all my fit framework from ROOT5 to 6.
- a repository on <u>http://cepcgit.ihep.ac.cn/zhangkl/HiggsCombination</u>
- Including all the data used and codes for building workspace, fitting and plotting.