Updates on Higgs Combination

Zhang Kaili, IHEP

Wang Jin, Liu Zhen

Outline

- Complete bb/cc/gg ZH bkg
- Discussion for fit method
- Correlations
- Explanation for ZZ channel
- Current Fit result
- Fast \& Full comparison in qqyy (delayed to next week)

bb/cc/gg

- Template fit: Flavor tagging algorithm
- For each jet, it has blikeness and clikeness ($0 \sim 1$)
- using $B_{\text {likeness }}=\frac{b_{j 1} b_{j 2}}{b_{j 1} b_{j 2}+\left(1-b_{j 1}\right)\left(1-b_{j 2}\right)} \quad$ We get b / c likeness for two jets.
- $Z \rightarrow e e \mu \mu q q v v, \mathrm{H} \rightarrow b b / c c / g g$ are studied.
- 2D binned(20*20) fit, with dijets' b/c likeness; mass info not used;
- 7 parts, Tot=bb+cc+gg+zh $\mathrm{ww}+\mathrm{zh}_{\mathrm{zz}}+\mathrm{zh}_{\mathrm{tt}}+\mathrm{bkg}_{\mathrm{sm}}$. 6 freedoms
- Build individual pdf by MC, then fit to determine fraction.
- all b/c likeness shape is fixed. (Requirement for Asimov Data)
- Fix sm bkg shape and number means we have a wonderful understanding with bkg, may be more suitable for CEPC.
- For ZH ww/zz/tt bkg event number, fixed or float?

bb/cc/gg

Event numbers in ee/mm/qq are all increased in the new sample.

New result ZH fixed
Old result

Scan	$\mu _$bb	μ_{-}cc	$\mu _g g$	Scan	$\mu _$bb	$\mu _$cc	$\mu _g g$
eeH	$\left\{\begin{array}{l}+0.78 \% \\ -0.77 \%\end{array}\right.$	$\left\{\begin{array}{l}+8.05 \% \\ -7.94 \%\end{array}\right.$	$\left\{\begin{array}{l}+4.04 \% \\ -4.01 \%\end{array}\right.$	eeH	$\left\{\begin{array}{l}+1.27 \% \\ -1.26 \%\end{array}\right.$	$\left\{\begin{array}{l}+15.25 \% \\ -14.98 \%\end{array}\right.$	$\left\{\begin{array}{l}+8.29 \% \\ -8.22 \%\end{array}\right.$
mmH	$\left\{\begin{array}{l}+0.59 \% \\ -0.59 \%\end{array}\right.$	$\left\{\begin{array}{l}+6.58 \% \\ -6.52 \%\end{array}\right.$	$\left\{\begin{array}{l}+3.42 \% \\ -3.40 \%\end{array}\right.$	mmH	$\left\{\begin{array}{l}+1.02 \% \\ -1.01 \%\end{array}\right.$	$\left\{\begin{array}{l} +10.77 \% \\ -10.60 \% \end{array}\right.$	$\left\{\begin{array}{l}+5.48 \% \\ -5.44 \%\end{array}\right.$
qqH	$\left\{\begin{array}{l}+0.49 \% \\ -0.49 \%\end{array}\right.$	$\left\{\begin{array}{l} +19.45 \% \\ -19.43 \% \end{array}\right.$	$\left\{\begin{array}{l}+8.18 \% \\ -8.17 \%\end{array}\right.$	qqH	$\left\{\begin{array}{l}+0.466 \% \\ -0.465 \%\end{array}\right.$	$\left\{\begin{array}{l} +16.66 \% \\ -16.64 \% \end{array}\right.$	$\left\{\begin{array}{l}+7.46 \% \\ -7.46 \%\end{array}\right.$
vvH	$\left\{\begin{array}{l}+0.40 \% \\ -0.40 \%\end{array}\right.$	$\left\{\begin{array}{l}+3.91 \% \\ -3.88 \%\end{array}\right.$	$\left\{\begin{array}{l}+1.55 \% \\ -1.54 \%\end{array}\right.$	vvH	$\left\{\begin{array}{l}+0.402 \% \\ -0.401 \%\end{array}\right.$	$\left\{\begin{array}{l}+3.94 \% \\ -3.91 \%\end{array}\right.$	$\left\{\begin{array}{l}+1.56 \% \\ -1.55 \%\end{array}\right.$
Combined	$\left\{\begin{array}{l} +0.243 \% \\ -0.243 \% \end{array}\right.$	$\left\{\begin{array}{l} +3.028 \% \\ -3.009 \% \end{array}\right.$	$\left\{\begin{array}{l} +1.294 \% \\ -1.290 \% \end{array}\right.$	Combined	$\left\{\begin{array}{l}+0.266 \% \\ -0.266 \%\end{array}\right.$	$\left\{\begin{array}{l} +3.496 \% \\ -3.472 \% \end{array}\right.$	$\left\{\begin{array}{l} +1.443 \% \\ -1.437 \% \end{array}\right.$

bb/cc/gg

	WW	ZZ	WW fusion bb
with bcg's ww/zz/tt:	$\left\{\begin{array}{l}+1.29 \% \\ -1.27 \%\end{array}\right.$	$\left\{\begin{array}{l}+4.93 \% \\ -5.93 \%\end{array}\right.$	$\left\{_{-3.00 \%}^{+3.01 \%}\right.$
w/o bcg's ww/zz/tt:	$\left\{\begin{array}{l}+1.38 \% \\ -1.36 \%\end{array}\right.$	$\left\{\begin{array}{l}+5.20 \% \% \\ -5.06 \%\end{array}\right.$	$\left\{_{-2.98 \%}^{+3.00 \%}\right.$

Seems float zz/ww/tt affects bb/cc/gg a little.
But it can increase ww/zz precision $\sim 0.15 \%$.

Scan	$\mu _b b$	$\mu _c c$	$\mu _g g$		$\mu _z z$	$\mu _w w$	$\mu _t t$
eeH	$\left\{\begin{array}{l} +0.83 \% \\ -0.83 \% \end{array}\right.$	$\left\{\begin{array}{l} +9.93 \% \\ -9.80 \% \end{array}\right.$	$\left\{\begin{array}{l} +8.46 \% \\ -8.48 \% \end{array}\right.$	precision	44\%	86\%	>100\%
				events	483	2386	26
mmH	$\left\{\begin{array}{l}+0.65 \% \\ -0.65 \%\end{array}\right.$	$\left\{\begin{array}{l}+8.92 \% \\ -8.86 \%\end{array}\right.$	$\left\{\begin{array}{l}+7.51 \% \\ -7.52 \%\end{array}\right.$	precision	38\%	71\%	>100\%
				events	887	4515	34
qqH	$\left\{\begin{array}{l}+1.04 \% \\ -1.04 \%\end{array}\right.$	$\left\{\begin{array}{l}+34.95 \% \\ -34.94 \%\end{array}\right.$	$\left\{\begin{array}{l}+22.07 \% \\ -22.08 \%\end{array}\right.$	precision	95\%	22\%	>100\%
				events	5963	43173	1635
vvH	$\left\{\begin{array}{l} +0.47 \% \\ -0.47 \% \end{array}\right.$	$\left\{\begin{array}{l} +4.61 \% \\ -4.58 \% \end{array}\right.$	$\left\{\begin{array}{l}+2.71 \% \\ -2.71 \%\end{array}\right.$	precision	62\%	20\%	>100\%
				events	612	1573	108
Combined	$\left\{\begin{array}{l}+0.246 \% \\ -0.246 \%\end{array}\right.$	$\left\{\begin{array}{l} +3.075 \% \\ -3.057 \% \end{array}\right.$	$\left\{\begin{array}{l} +1.389 \% \\ -1.388 \% \end{array}\right.$				

As bb/cc/gg result changed, WW fusion bb is also changed due to the correlation. 3.1\%->3.0\%

Correlations in Z->ee channel

When we float $\mathrm{ww} / \mathrm{zz} / \mathrm{tt}$, now we have 6 free parameters in 1 single pdf. It seems the correlation in bb/cc/gg in converted. (from negative to positive)

$Z \rightarrow \mu \mu$ channel

$Z \rightarrow q q$ channel

$Z \rightarrow \nu v$ channel

ZZ, Z->ee, H->ZZ->\|qq:

Bkg of these 2 channels are mainly sze_sl And it seems share the same shape with signal:

Now with bb/cc/gg ZH contribution, ZZ precision reach 5.0\%

ZZ, Z->ee, H->ZZ->llqq:

The bkg is the cutted tail from a long smooth shape; Yuqian doesn't give the details about how he get this.

So it looks their shape is similar.

Channels Table

Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab ${ }^{-1}$.

Signal		Observed Events	Who takes charge	Precision	Signal		Observed Events	Who takes charge	Precision
Z	H				Z	H			
H ->Inclusive					H->WW				
vv	Inclusive	164170	Liao Libo	\backslash	$\mu \mu$	$\mu \mathrm{v} \mu \mathrm{v}$	52	Liao Libo	2.6\%
$\mu \mu$	Inclusive	29552				evev	36		
ee	Inclusive	22200				evpr	105		
H->q9						evqq	663		
ee	bb	7655 18742	Bai Yu			$\mu \mathrm{vqq}$	717		
	cc	351			ee	$\mu \mathrm{v} \mu \mathrm{v}$	44		2.8\%
	gg	1058 2563				evev	22		
$\mu \mu$	bb	11108 33253				ev $\mu \mathrm{v}$	81		
	cc	567 1537 1762 4473				evqq	612		
	gg	17624473				$\mu \mathrm{vqq}$	684		
qq	bb	176542190768			vv	qq9q	10793		1.9\%
	cc	882729521			H->ZZ				
	gg	2529332048			vv	$\mu \mu \mathrm{j}$	179	Wei Yuqian	8.2\%
vV	bb	70608780608			vv	eejj	64		35.2\%
	cc	3061			$\mu \mu$	vvjj	200		7.3\%
	gg	9633 9633			ee	eejj	55		35.1\%
$H \rightarrow \gamma \gamma, Z \nu$					ee	$\mu \mu \mathrm{j} ~$	81		23.0\%
11	YY	93	Wang Feng	24.8\%	H $\mathrm{H} \rightarrow \pi$				
vv		309		11.7\%	ee	TT	\backslash	Yu Dan	3.0\%
qq		822	Sun Yitian	13.0\%	$\mu \mu$		2135		2.7\%
qq	Z γ	219	Yao Weimin	21.0\%	qq		23168		1.9\%
H->Invisible				Br, Upper	vv		8809		3.7\%
qq	vvvv	202	Mo Xin	0.3\%	$\mathrm{H} \rightarrow \mu \mu$				
ee		8		1.1\%	qq	$\mu \mu$	71	Cui Zhenwei	15.4\%
$\mu \mu$		18		0.7\%	ee		1		
vvH(WW fusion)					$\mu \mu$		4		
vv	bb	10256	Liang Hao	3.0\%	vv		14		

Channels Table

Signal		Observed Events	Who takes charge	Precision	Signal		Observed Events	Who takes charge	Precision
Z	H				Z	H			
H ->Inclusive					H->WW				
vv	Inclusive	164170	Liao Libo	\backslash	$\mu \mu$	$\mu \mathrm{v} \mu \mathrm{v}$	52		2.6\%
$\mu \mu$	Inclusive	29552				evev	36		
ee	Inclusive	22200				$e v \mu v$	105		
H->qq						evqq	663		
	bb	655							

ee	bb	7655	18742	Bai Yu		Z->vv, H->WW->4q, Current sample allows more ZZ events in. We found previously we multiused $3 k$ sign events two times, so the real precision is 1.9%, not 1.3\%. (WW from 1.2\% to 1.3\%)				
	CC	351	838							
	gg	1058	2563							
$\mu \mu$	bb	11108	33253							
	cc	567	1537							
	gg	1762	4473							
qq	bb	176542	190768			vv	q9q9	10793		1.9\%
	cc	8272	9521					H->ZZ		
	gg	25293	32048			vv	$\mu \mu \mathrm{j}$	179	Wei Yuqian	8.2\%
vv	bb	70608	70608			VV	eejj	64		35.2\%
	cc	3061	3061			$\mu \mu$	vvjj	200		7.3\%
	gg	9633	9633			ee	eejj	55		35.1\%
$H \rightarrow \gamma \gamma, Z \gamma$						ee	$\mu \mu \mathrm{j} j$	81		23.0\%
II	YY	93		Wang Feng	24.8\%	$\mathrm{H} \rightarrow \pi$				
vv		30			11.7\%	ee	TT	\}	Yu Dan	3.0\%
qq		82		Sun Yitian	13.0\%	$\mu \mu$		2135		2.7\%
qq	Z γ	21		Yao Weimin	21.0\%	qq		23168		1.9\%
H ->Invisible					Br, Upper	vv		8809		3.7\%
qq	vVVV	20		Mo Xin	0.3\%			$\mathrm{H} \rightarrow \mu \mu$		
ee		8			1.1\%	qq	$\mu \mu$	71	Cui Zhenwei	15.4\%
$\mu \mu$		18	8		0.7\%	ee		1		
$\mathrm{vvH}(\mathrm{WW}$ fusion)						$\mu \mu$		4		
vv	bb	102	56	Liang Hao	3.0\%	vv		14		

Fit results

$\left.\begin{array}{ccccccc}\hline\left(5 \mathrm{ab}^{-1}\right) & \text { Pre_CDR } & \text { Previous version } & \text { Current } & & & \\ \hline \sigma(Z H) & 0.51 \% & & 0.50 \%\end{array}\right)$

$\operatorname{Br}_{\text {upper }}(\mathrm{H} \rightarrow$ inv. $)$	0.28%	0.24%
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow Z \gamma)$	\backslash	$4 \sigma\left(\left\{\begin{array}{l}\left\{_{-2 \mathbf{2 1 . 4 \%}}^{+21.0 \%}\right)\end{array}\right.\right.$

10 kappa result, and Higgs width, wait Zhen to update.
Numbers are updated in git but not the text.

Correlations in channel

New

Old

Fremework on Git

- Now the data seems complete
- I also migrating all my fit framework from ROOT5 to 6.
- a repository on
http://cepcgit.ihep.ac.cn/zhangkl/HiggsCombination
- Including all the data used and codes for building workspace, fitting and plotting.

