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Introduction

• Measurements of branching ratios of resonances are essential in high 
energy physics experiments.

• Usually, for a particular decay channel of a resonance, different 
experiments may carry out their respective measurements of its 
branching ratio. 

• Combining these results of a branching ratio based on certain 
statistical methods will usually lead to a better precision than any 
individual measurement. 

• Then, how?

2



Introduction

For multi-measurements for a branching ratio, measurements are 
expressed as .

Assuming the measurements follow the normal distribution, the 
combined estimate of these I independent measurements for the 
quantity can be expressed as , where
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Introduction  ---- Example
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Introduction  ---- Example
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Individual observed spectra 
as function of a same kinematic variable
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• Histograms with same binning

Number of events in bin j is:

Number of events in the ith experiments is:

Total number of events of the I experiments is:
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Individual observed spectra 
as function of a same kinematic variable
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Joint likelihood function of observing nj is:

where λj is:

λ is the expectation of total number of events N: 

Combined pdf f(m|θ) is:
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Individual observed spectra 
as function of a same kinematic variable
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Total number of signal events is:

and , so 

then
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Individual observed spectra 
as function of a same kinematic variable
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Log function is:  

Likelihood equation is:  

Parameter θ in the joint likelihood function contain: 
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Individual observed spectra 
as function of different kinematic variable
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• Histograms with different binning

Number of events in bin ji is:

Joint likelihood function of observing niji is:

where λiji is:

λi is the expectation of the number of events Ni  : 
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Individual observed spectra 
as function of different kinematic variable
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Pdf of variable mi is:

Parameter θ in the joint likelihood function contain: 
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Individual observed spectra 
as function of different kinematic variable
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Joint likelihood function for I experiments is: 

Log function is:  

In iterative procedure of the maximum lnL calculation, initial value of 
can be taken as , initial value of B 

can be the weighted average of all individual results Bi, while the initial 
values of θs and θb use the resultant values from each individual 
experiment.
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Some other parts in this paper
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• Method to deal with unbinned case for both a same kinematic 
variable and different kinematic variables

• Method to deal with credible interval and upper limit with or 
without inclusion of systematic error

• Test with Toy Monte Carlo data


