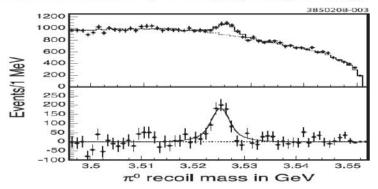

hc(1P) at BESIII

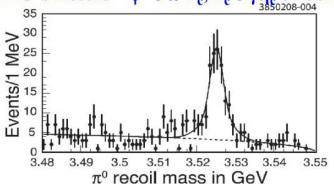
Liu Kai

hc(1P) in the charmonium family

P-wave singlet


 in this plot, hc is the last charmonium resonance confirmed experimentally.

 By now, the only known process of producing hc is psi(2S) -> pi0 hc(1P)


studies at CLEOc

PRL101,182003(2008)

CLEO's Result $-\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ E1 tagged

CLEO's Result – $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c exclusive$

CLEOc obtained:

	Inclusive	Exclusive	
Counts	1146 ± 118	136 ± 14	
Significance	10.0σ	13.2σ	
$M(h_c)$ (MeV)	$3525.35 \pm 0.23 \pm 0.15$	$3525.21 \pm 0.27 \pm 0.14$	
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^4$	$4.22 \pm 0.44 \pm 0.52$	$4.15 \pm 0.48 \pm 0.77$	

$$M(h_c) = 3525.28 \pm 0.19(\text{stat.}) \pm 0.12(\text{syst.}) \text{ MeV},$$

$$\mathcal{B}(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}(h_c \to \gamma \eta_c) = (4.19 \pm 0.32 \pm 0.45) \times 10^{-4}$$

 $B(\psi' \rightarrow \pi^0 h_c)$ and the width of h_c have not been measured

Some studies at BESIII

DATA Sample:

• ~106M $\psi(2S)$ events collected by BES-III at BEPC-II in March and April 2009

E1-tagged analysis of $\psi(2S) \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

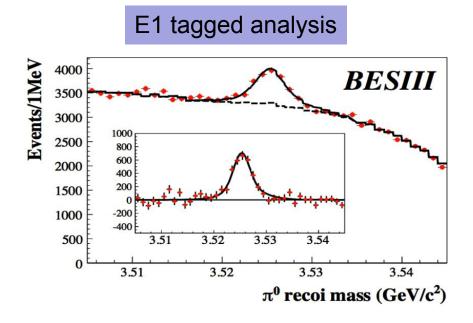
• Tag the E1 photon(~503MeV) emitted in $h_c \rightarrow \gamma_{E1} \eta_c$. No further constrains on the final states of the h_c are imposed. The h_c signal in π^0 recoil mass spectrum will be improved significantly.

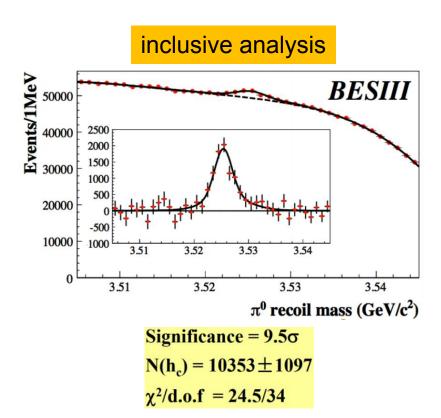
Inclusive analysis of $\psi(2S) \rightarrow \pi^0 h_c$

• Identify the h_c signal by searching for an enhancement in the inclusive recoiling mass spectrum of π^0

Study of $\psi(3686) \to \pi^0 h_c, h_c \to \gamma \eta_c$ via η_c exclusive decays

first PRL paper at BESIII


PRL 104, 132002 (2010)


PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2010

Measurements of $h_c(^1P_1)$ in ψ' Decays

M. Ablikim, M. N. Achasov, L. An, Q. An, Z. H. An, J. Z. Bai, Y. Ban, N. Berger, J. M. Bian, I. Boyko,

 $N(hc) = 3679 \pm 319$

exclusive study

PHYSICAL REVIEW D 86, 092009 (2012)

Study of $\psi(3686) \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ via η_c exclusive decays

M. Ablikim, M. N. Achasov, O. Albayrak, D. J. Ambrose, F. F. An, Q. An, Q. An, L. Z. Bai, Y. Ban, J. Becker, J. V. Bennett, M. Bertani, L. M. Bian, E. Boger, O. Bondarenko, L. Boyko, R. A. Briere, V. Bytev, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov, C. Chen, G. Chen, L. Chen, L.

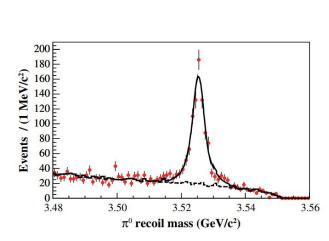


FIG. 1 (color online). The π^0 recoil mass spectrum in $\psi(3686) \to \pi^0 h_c$, $h_c \to \gamma \eta_c$, $\eta_c \to X_i$ summed over the 16 final states X_i . The dots with error bars represent the π^0 recoil mass spectrum in data. The solid line shows the total fit function and the dashed line is the background component of the fit.

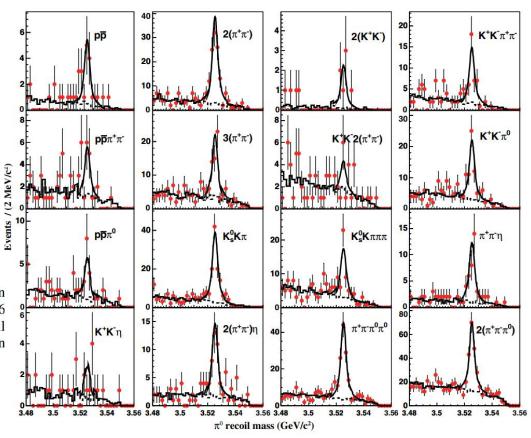


FIG. 2 (color online). The simultaneously fitted π^0 recoil mass spectra in $\psi(3686) \to \pi^0 h_c$, $h_c \to \gamma \eta_c$, $\eta_c \to X_i$ for the 16 final states X_i .

BESIII data taking status & plan (run ~ 8-10 years)

	Previous data	BESIII present & future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ ψ(4160)	0.5/fb @ ψ(4040) 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420 Scan from 4.19 – 4.28, 10 MeV step, 500 pb ⁻¹ /point, 7 points	5-10 /fb
R scan & Tau	BESII	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		100 pb ⁻¹	
ψ(4160)		3 fb ⁻¹	
J/ ψ		6 – 8 Billion	

borrowed from Shen Xiaoyan's slide

Summary

 three ways to study hc at BESIII with psi(2S) data sample

 larger sample already have and more data is on the way.

THANKS