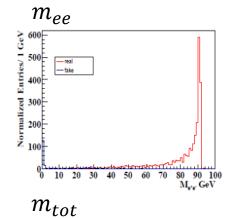
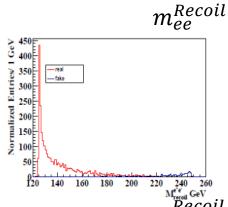
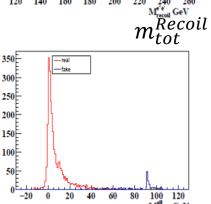


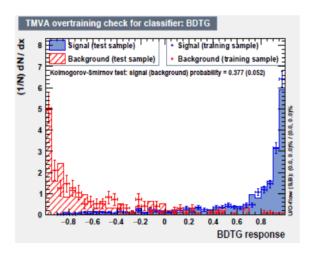
Updates on Higgs Combination


Zhang Kaili, IHEP

Wang Jin, Liu Zhen


ZH->ee $\mu\mu$


300 E


100 120 140 160 180 200 220 240 260 280

ZeeHuu

After the requirement $M_{\mu^+\mu^-}$ within [120-130] GeV, $M_{\mu^+\mu^-}$, M_{recoil_μ} , $E_{\mu^+\mu^-}$, M_{recoil_e} , $M_{e^+e^-}$, $cos_{\mu^+\mu^-}$, $P_{Z_{\mu^+\mu^-}}$, cos_{μ^-} and cos_{μ^+} are used by BDTG

M_recoil_e<150 M_recoil_all>137

Category	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
Preselection	4.7	18	0	9	22672	8.0
$120 < M_{\mu^+\mu^-} < 130$	4.3	0	0	0	747	0.0
$90.5 < M_{recoil_{\mu}} < 92.5$	2.5	0	0	0	34	0.0
$cos_{\mu^+\mu^-}$ < -0.603	2.5	0	0	0	33	0.0
$P_{T_{\mu^{+}\mu^{-}}}$ <62.5	-2.5	0	0	0	31	0.0
$138.5 < E_{\mu^+\mu^-} < 139.7$	2.2	0	0	0	8	0.0
efficiency	46.8%		Sign	ificance=0.	74	

Kinematic limit

Cos_u_u<-0.603	Response<0.5
Pt<62.5	•
E_u_u<140	

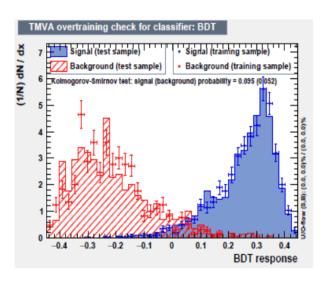
Significance=1.5

$ZH \rightarrow \mu\mu \mu\mu$

Find the minimized fake events

$$\delta = (\frac{pair1.M}{\Delta Z})^2 + (\frac{pair2.M}{\Delta H})^2$$

ΔZ ΔH	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
0.5	12	10	7	6	6	5	5	5	5	6	6	8	9	8	8
0.6	13	12	11	9	7	5	5	5	5	5	5	5	6	6	8
0.7	13	12	12	11	10	7	6	5	5	5	5	5	5	5	6
0.8	13	13	12	12	11	10	8	7	5	6	5	5	5	5	5
0.9	14	13	13	12	12	12	10	9	7	6	5	6	5	5	5
1	14	14	13	13	12	12	12	10	10	7	7	6	5	6	5
1.1	15	14	13	13	13	12	12	12	11	10	8	7	6	5	6
1.2	17	14	14	13	13	13	12	12	12	11	10	9	7	7	6
1.3	17	15	14	14	13	13	12	12	12	12	11	10	9	7	7
1.4	17	16	14	14	13	13	13	12	12	12	12	11	10	10	8


 $Delta_Z=1.5$, $Delta_H=0.75$

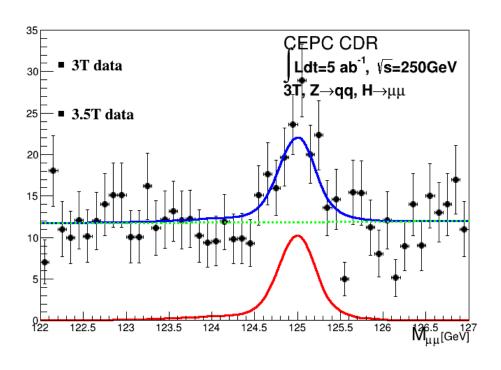
Category	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
Preselection	6.6	17631.0	0	0	0	0.0
$120 < E_{\mu^+\mu^-} < 130$	6.0	1685.2	0	0	0	0.0
$90.6 < M_{recoil_{\mu}} < 93.4$	3.9	128.8	0	0	0	0.0
$90.2 < M_{\mu^+\mu^-}(Z) < 92.8$	3.2	58.1	0	0	0	0.0
$cos_{\mu^+\mu^-}(H) < -0.603$	3.2	50.0	0	0	0	0.0
$cos_{\mu^+\mu^-}(Z) < -0.364$	3.2	47.0	0	0	0	0.0
$138.0 < E_{\mu^+\mu^-}(H) < 139.8$	3.0	15.5	0	0	0	0.0
$P_{T_{\mu^{+}\mu^{-}}}(H) < 62.5$	3.0	14.7	0	0	0	0.0
efficiency	45.5%					

Significance=1.2

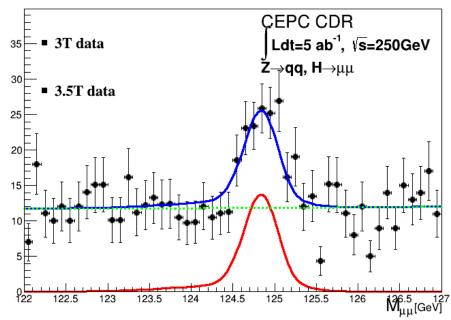
ZuuHuu

After the requirement $M_{\mu^+\mu^-}$ within [120-130] GeV, $M_{\mu^+\mu^-}(H)$, $M_{recoil_\mu}(H), M_{\mu^+\mu^-}(Z)$, $M_{recoil_\mu}(Z)$, $E_{\mu^+\mu^-}(H)$, $cos_{\mu^+\mu^-}$ are used by BDT method. The significance is 1.5σ

Cos_u_u<-0.603 Pt<62.5 138<E_u_u<140


Response<0.2

Significance=1.5

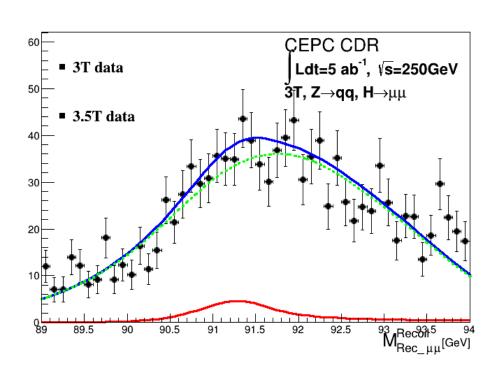

Z o qq , $H o \mu\mu$ Remove Z mass window:

3T: 21.6%

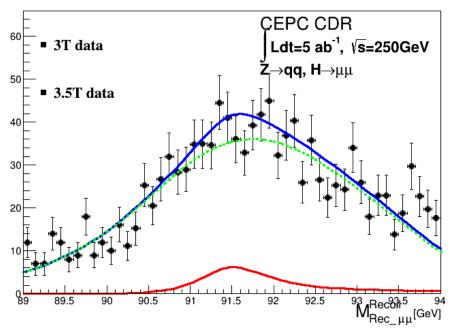
3.5T: 17.6%

Combined $H \rightarrow \mu\mu$: 16.3%

Previous with Z mass window: 16.5%


(CEPC v1)

Combined, with Z mass window: 15.4%


Remove Z mass window:

3T

3.5T

bb/cc/gg, vvH->bb:

- Current Z->vv, H->bb work by Baiyu contains vvH->bb;
- So mu_bb 0.29%
 - Using ZH->vvbb 0.40%
 - not all from ZH processes, multi counting;
 - didn't include correlation with vvH.
- When fit vvH->bb 3.11%, we also have ZH->bb 0.33%
 - ee/mm/qq same as Yu's, vv come from the vvH channel ZH part;
 - Here ZH->vvbb 0.56%
 - Anti-correlated with vvH, -46%;
- Use 0.29% or 0.33% for ZH, H->bb?
 - Or --0.3%?

Channels Table

Done/Almost Done:

Signal

H->Invisible

VV

qq ee

<u>μμ</u> νν

qq

ee

μμ

vvH(WW fusion)

Rare Decays H→μμ

μμ

ZZ(vvvv)

Precision

3.1%

15.4%

Br, Upper 0.3%

1.1%

0.7%

Signal		Drocision	Sig	nal	Precision
Z	Н	Precision	Z	Н	Precision
	H->qq			H->WW	
	bb	1.6%		μνμν	
ee	СС	23.6%		evev	7.3%
	gg	13.3%	μμ	evμv	
	bb	1.1%		evqq	4.0%
μμ	СС	14.8%		μνqq	4.0%
	gg	8.0%	,	μνμν	
	bb	0.5%		evev	9.2%
qq	СС	11.9%	ee	evμv	
	gg	3.9%		evqq	4.6%
	bb	0.4%		μνqq	3.9%
VV	СС	3.9%		qqqq	2.0%
	gg	1.5%	VV	evqq	4.7%
	Η→ττ			μνqq	4.2%
ee		3.0%	qq	lvqq	2.2%(ILC)
μμ		2.8%	ZH bkg co	ntribution	3.0%
qq	ττ	1.9%		H->ZZ	
VV		3.7%	VV	μμαα	8.2%
	H → γγ, Ζγ		VV	eeqq	35.2%
μμ+ττ		24.8%	μμ	vvqq	7.3%
VV	γγ	11.7%	ee	eeqq	35.1%
qq		12.8%	ee	μμαα	23.0%
VV	Ζγ(qqγ)	21.2%	ZH bkg co	ntribution	19.4%

Need to be done:					
Z	Н				
ττ	Anything				
qq	WW				
	ZZ				
ee	γγ				
ee	ττ				

Unfinished channels

Implement this table in the draft?

	Z	ee	μμ	VV	qq	ττ
WW	ev+ev					
	μν+μν					
	ev+μv					
	ev+qq					
	μν+qq					
	qq+qq					
	ev+τv					
	μν+τν					
	τν+τν					
	τν+qq					
	Z	ee	μμ	VV	qq	ττ
ZZ	ee+qq					
	μμ+qq					
	vv+qq					
	+					
(Invi)	vv+vv					
	qq+qq					
	II+vv					

Need to be done:					
Z	Н				
ττ	Anything				
qq	WW				
	ZZ				
ee	γγ				
ee	ττ				

For WW and ZZ:

Green: done

Yellow: Extrapolated Gray: undertaking by Xianke

Blue: studied as ZH bkg

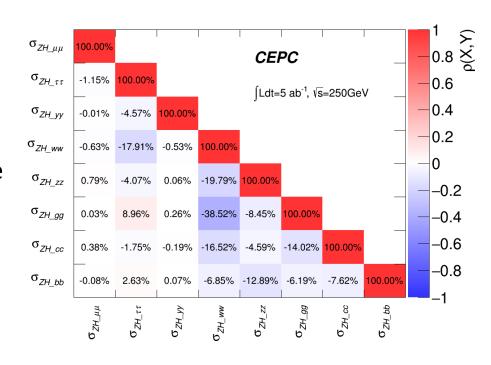
For $Z \rightarrow vv$, $WW \rightarrow lvlv$, Preliminary result from Xianke gives 1012 signal and 38054 bkg. Update soon.

Prof. Shih-Chieh is studying the ZZ channel.

Fit results

Standalone: Regardless any ZH bkg contribution; Different impact on w/z and b/c/g/ τ .

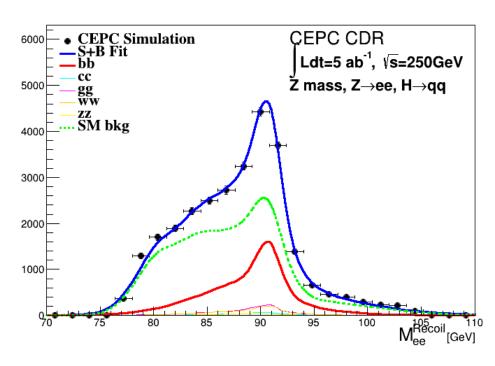
(5ab ⁻¹)	Pre_CDR	Combined	Standalone	
$\sigma(ZH)$	0.51%	0.50%		
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.29%	0.28%	
$\sigma(ZH) * Br(H \rightarrow cc)$	2.20%	3.53%	3.52%	
$\sigma(ZH) * Br(H \rightarrow gg)$	1.60%	1.42%	1.36%	
$\sigma(ZH) * Br(H \to WW)$	1.50%	1.02%	1.16%	
$\sigma(ZH) * Br(H \to ZZ)$	4.30%	5.03%	5.20%	
$\sigma(ZH) * Br(H \to \tau\tau)$	1.20%	1.35%	1.32%	
$\sigma(ZH) * Br(H \to \gamma \gamma)$	9.00%	8.08%	8.15%	
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	15.40%	15.40%	
$\sigma(vvH) * Br(H \rightarrow bb)$	2.80%	3.11%	3.11%	
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.24%	0.24%	
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	\	4σ(21.2%)	4σ(21.2%)	


Universally show results with one digit after decimal point?

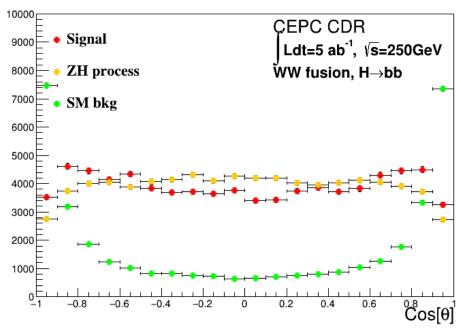
Correlations in channel

- Correlation for yy and $\mu\mu$ are from $\tau\tau$ MC truth pdg id.
- We didn't actually detect these bkg. Should remove?
- gg and ww: in bb/cc/gg flavor template fit, gg and ww share the similar shape.(Both b likeness and c likeness are small.)
- $\tau\tau$ and ww: $\tau\tau$ channel's main bkg.

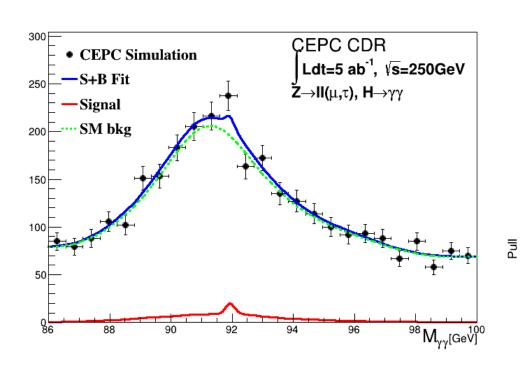
Combined measurement

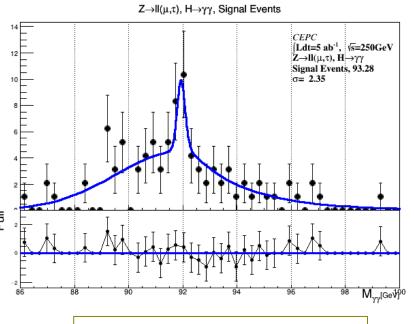


Esp., $vvH \rightarrow bb$ and $ZH \rightarrow bb$ is -46%.


Plot

Use bigger label/legend;




Polar angle distribution for vvH->bb

Recoil Mass of llyy

Shape may not be good......