Máníi Ruan
(Mandkruan@ihep.ac.cn)

On behavior of the CEPC Study Group

Reducing B from 3T -> 2T

- Tracking: ~30\%
- Momentum resolution degraded up-to 50\%.
- Low momentum track eff. Improves.
- Leptons: No impact
- Kaons: No impact (actually marginally benefit from better tracking efficiency)
- Photon: No impact
- Tau: 5\%
- Separation marginally degraded: as the closest distance set by pi_0
- Jet: < 5\%
- Jet Flavor: ~ 10\%
- If the inner radius increased by 50% (as proportional to the $1 / B$)

JET: characterized by Higgs mass resolution at $\mathrm{vvH}, \mathrm{H}->g l_{\text {luons events }}$

Figure 5.10: The invariant mass resolution of $250 \mathrm{GeV} \nu \nu g g$ events in CEPC for different number of HCAL layers.

We have not yet scanned the BMR at 2 Tesla. However I assume the relative difference 06/18/smaller than 5\%

Zhigang. Wu: Flavor Tagging at different B, Almost flat

(a)

(b)

Figure 12: BROC (a) and CROC (b) curve versus magnetic field.

Figure 13: The purity of bjet as function of magnetic field when befficiency is 80% at Z and Higgs decay (a), the purity of cjet as function of magnetic field for different c efficiency at Z and Higgs decay (b).

Zhigang. Wu: Flavor Tagging at different R in

(a)

(b)

Figure 9: BROC (a) and CROC (b) curve versus inner radius.

Figure 11: The purity of cjet as function of inner radius for different cefficiency at Z (a) and Higgs (b) decay.

At Z pole

Purity $_{Z->\bar{c}}=\left(1-0.076 \frac{\Delta x_{\text {material }}}{x_{\text {material }}}\right)\left(1-0.114 \frac{\Delta x_{\text {resolution }}}{x_{\text {resolution }}}\right)\left(1-0.187 \frac{\Delta x_{\text {radius }}}{x_{\text {radius }}}\right)\left(1.369-1.135 \varepsilon-\frac{0.05355}{\varepsilon}\right)$

If the R _in scales as $1 / B$:
At same efficiency:
Purity of c-jets could be degraded by 10\%;
Purity of b-jets could be degraded by 6%
Overall, the performance degrading is smaller than 10\%

Conclusion

- A equal-weight average degrading $\sim 7 \%$, thus could be compensated by 15% more luminosity
- Tracks: 30\%
- Lepton: 0
- Kaon: 0
- Photon: 0
- Tau: 5\%
- Jet: 5\%
- Flavor: 10\%
- High Lumi: Appreciated by exotic searches
- The impact on systematic \& noise should be further evaluated
- A priori: Recommendation 2-Tesla, High Lumi operation for Z pole (As it doubles the luminosity)

Back up

For Higgs, reduce the B-Field

Increase the inner radius would severely reduce the c-tagging performance,
Making extremely difficult for $\mathrm{g}(\mathrm{Hcc})$, an already very difficult measurement
Reducing the B-Field also degrade the H ->mumu measurement.

Purity $_{H \rightarrow>c \bar{c}}=\frac{0.092\left(1-0.10 \frac{\Delta x_{\text {material }}}{x_{\text {material }}}\right)\left(1-0.21 \frac{\Delta x_{\text {resolution }}}{x_{\text {resolution }}}\right)\left(1-0.33 \frac{\Delta x_{\text {radius }}}{x_{\text {radius }}}\right)}{\varepsilon}$

Gut feeling: at Higgs, if the B-Field is reduced by 50%, the luminosity needs to be increased by 50% to compensate its lose in these two channels (but others will benifit)

