

WW Threshold scan runs and Z pole runs in CEPC

Zhijun Liang

IHEP,CAS

中國科學院為能物理研究所 Institute of High Energy Thysics

Introduction

- Some discussion about CEPC Z pole running .
 - http://indico.ihep.ac.cn/event/7709/
 - Two possibility:
 - L=1.6 X 10³⁵ cm⁻²s⁻¹, solenoid field = 3T
 - L=3.2 X 1035 cm⁻²s⁻¹, solenoid field = 2T
 - Two year running proposed by accelerator team
- WW threshold scan
 - Proposal from accelerator team
 - One year running, Total luminosity 3.2 ab⁻¹

WW threshold scan Vs luminosity

- WW threshold scan need to scan 3~5 mass points
 - Especially need to cover 158.5GeV, 161.2GeV, 162.4 GeV
- In CEPC Pre-CDR, we assume 0.5ab⁻¹ for W threshold scan
 - W width measurement is totally limited by statistics
 - W mass measurement suffers a bit from statistics
- Assume we run one year WW threshold to collect 3.2 ab⁻¹ data.
 - W width measurement is still limited by statistics, but much better than pre-CDR
- If running for two years with 6.4 fb⁻¹
 - W width measurement is not limited by statistics any more

Observable	Systematics	L=0.5 ab ⁻¹ (3 points scan, 0.16 ab ⁻¹ per run)	L=3.2 ab ⁻¹ (3 points scan, 1 ab ⁻¹ per run)	L=6.4 ab ⁻¹ (3 points scan, 2 ab ⁻¹ per run)	Major uncertainty
M_{w}	2 MeV	2 MeV	0.8 MeV	0.6 MeV	E beam cali. ∆E < 1 MeV
Γ_{W}	2 MeV	6 MeV	2.4 MeV	1.7 MeV	Statistics

The parameters of CEPC

Institute of High Energy Physics

Z pole electroweak physics Vs lumiosity

- Assuming Z pole runs last for 180 days, Z cross section 60 nb
- **3T, L=1.6e**³⁵ **Observable Systematics** $L=1e^{34}$ L=3.2e³⁵ Kev (stat unc.) (stat unc.) (stat unc.) $M_7 \Gamma_7$ 0.05 MeV 0.035 MeV 0.5 MeV 0.2MeV E beam cali. $\Delta E < 500 \text{keV}$ $R_1 = \Gamma_b / \Gamma_1$ 0.01% 0.01% 0.0025% 0.0018% **Statistics** R_b 0.05% 0.04% 0.01% 0.007% Statistics + small Rin NA NA NA NA Beam polarization A_{IR} A_{FB} lept. 0.1% 0.08% 0.02% 0.014% Forward acceptance
- L=1e³⁴, about 10¹⁰ Z

- From 1e³⁴ to 1.6e³⁵, large improvement in stat. uncertainty
- From 1.6e³⁵ to 3.2 e³⁵, improvement is not big
- From 3T to 2T, Momentum resolution degraded to 50%, higher BkG. (no major impact)
- Key issue for Z pole physics, beam momentum systematics need to be smaller than 500keV
- Beam polarization is needed for beam momentum measurement and ALR

中國科學院為能物昭納完施 Institute of High Energy Biysics

Cross section Vs W mass or W width

Figure 16. W-pair production cross section as a function of the e^+e^- collision energy $E_{\rm CM}$. The central curve corresponds to the predictions obtained with $m_{\rm W} = 80.385$ GeV and $\Gamma_{\rm W} = 2.085$ GeV. Purple and green bands show the cross section curves obtained varying the W mass and width by ± 1 GeV.

中國科學院為能物現研究所 Institute of High Energy Physics

W mass stat uncertainty single energy point (500 fb⁻¹)

 $\Delta \sigma_{W^+W^-}, \Delta M_W, \Delta \Gamma_W$ (Stat.)

► With
$$\mathcal{L} = 500 \text{ fb}^{-1}$$
, $\epsilon = 0.8$, $P = 0.9$:

$$\Delta M_W = \left(\frac{\partial \sigma_{W^+W^-}}{\partial M_W}\right)^{-1} \times \sqrt{\frac{\sigma_{W^+W^-}}{\mathcal{L}\epsilon P}} \approx 1.5 \text{MeV}.$$

From Peixun and Gang

Max stat. sensitivity at $\sqrt{s} \sim 2m_W + 0.4$ GeV

中國科學院為能物現研究所 Institute of High Energy Biysics

W width stat uncertainty single energy point (500 fb⁻¹)

 $\Delta \sigma_{W^+W^-}, \Delta M_W, \Delta \Gamma_W$ (Stat.)

► With
$$\mathcal{L} = 500 \text{ fb}^{-1}$$
, $\epsilon = 0.8$, $P = 0.9$:

$$\Delta \Gamma_W = \left(\frac{\partial \sigma_{W^+W^-}}{\partial \Gamma_W}\right)^{-1} \times \sqrt{\frac{\sigma_{W^+W^-}}{\mathcal{L}\epsilon P}} \approx 3.5 \text{ MeV}.$$

From Peixun and Gang

Max stat. sensitivity at $\sqrt{s} \sim 2m_W - 3.3$ GeV

中國科學院為能物現為完所 Institute of High Energy Biysics

Start from detector solenoid 3.0T

From Chenghui

中國科學院為能物理研究所 Institute of High Energy Physics

中國科學院為能物招研究所 Institute of High Energy Physics