Rb measurement at CEPC MC Level

Bo Li

• MC samples:Zbb,Zcc,Zll

- 1. Produced from FSClasser with command : "Marlin *.xml"
- 2. The Z boson hadronic events root file:

Double_t	JetMcPxP1; Including the final particle information:
Double_t	JetMcPyP1; Such as the lenter Dt ist Dt ist tes
Double_t	JetMcPzP1; Such as the lepton Pt, jet Pt, jet tag
Double_t	JetMcEnP1; prob
Double_t	JetAngleRecMcP1;
Double_t	JetVtxRP2;
Double_t	JetVtxZP2;
Double_t	JetVtxSigRP2; ~140.000 events are produced
Double_t	JetVtxSigZP2;
Double_t	JetBtagP2;
Double_t	JetCtagP2;

Outline

• Jet1/jet2

Jet Energy

Jet Pt

Outline

• Jet1/jet2

Jet BtagProb

Rb method

Introduction

Following this procedure, we can measured the R_b , ε_b

The Z hadronic '**DATA**' is mixed by MC samples: Zbb **sample1**, Zcc **sample1**, Zll sample1 We set Rb=0.3, Rb=0.5, Rb=0.7 as the Input Rb to mix the 'DATA'

The R_c , ε_c , C_b , C_c , C_{uds} is gotten by MC samples: Zbb sample2, Zcc sample2, Zlsample2 So if sample1≠ sample2, which means the MC R_c , ε_c , C_b , C_c , C_{uds} are different from the Truth in 'DATA'

Input Rb=0.3, Four BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9

Input Rb=0.5, Four BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9

Result

the measured Rb and effb in DATA are different from the Input Truth Rb and effb at Prob>0.9

The R_c , ε_c , C_b , C_c , C_{uds} is got by MC samples: Zbb sample2, Zcc sample2, Zllsample2 So if DATA sample1≠ sample2, which means the MC R_c , ε_c , C_b , C_c , C_{uds} is different from the 'DATA'

The difference as a Ratio: Eff in 'DATA'/ Eff in MC

1. ε_b difference between DATA and MC are very small

- *2.* ε_c and ε_{uds} differences are big at Prob>0.9 :
 - which may come from the very low statistics after Btagging
 - which will lead to the difference in the IO test
- 3. ε_{uds} effect is very small, as The Zll rejction at four work point are ~100%

- The IO test shows Analysis code worked as expected.
- Increase the statistics of 'DATA' and MC.
- Study the FSClasser: know well about the procedure at event reconstruction level.

backup

Outline

• Basic information

• Btag performance

Method

- The BtagProb are different for Zbb, Zcc and Zll
- Four BtagProb Work Point are used :
 - The BtagProb>0.6, BtagProb>0.7, BtagProb>0.8, BtagProb>0.9

JetBtag Prob

JetPt

Jet1 vs jet2

Input Rb=0.7, Four BtagProb work point: Prob>0.6, >0.7, >0.8, >0.9

Result

We can see the measured Rb and effb in DATA are different

Truth Rb and effb

2, Zcc sample2, Zllsample2

 C_{uds} is different from the

10k events in the pas The R_c , ε_c , C_b , C_c , C_{uds} is got by MC sample So if **sample1** \neq sample2, which means the *M* 'DATA'

The difference as a Ratio: Eff in ' MC

 ε_{h} difference between DATA and MC are

2. ε_c and ε_{uds} difference are very big:

 C_c ,

- which may come from the very low statistics after Btagging
- which will lead to the difference in the IO test
- *3.* ε_{uds} effect is very small, as **The Zll rejction** at four work point are ~100%

Check

We can see the differences of measured Rb and effb between DATA and MC are smaller

Check

Input Rb=0.5

Check

backup

'DATA' and MC all are used the same sample

