

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Bo Liu, ²Man-Qi Ruan, ²Gang Li, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China Electroweak Measurement Meeting Feb 12, 2018

- Introduction
- Event selections
- W, Z, and Higgs boson mass distribution with dijet final state
 - * Mass of dijet
 - ***** Mass of all reconstructed final state particles
- Boson mass resolution
- Summary

- Mainly, I studied the dijet energy resolution with ee->ZZ->vvqq process. On the detector part, jet energy resolution is about 4% and 5% for leading jet and sub-leading jet respectively.
- **Studied the Z, W, and Higgs boson mass resolution and performances.**
 - ***** Studied Z boson mass resolution by ee->ZZ->vvqq process.
 - * Studied W boson mass resolution by ee->WW->lvqq process.
 - ***** Studied H boson mass resolution by ee->ZH->vvH(->qq) process.
- Extracted the boson mass resolution by double-sided crystal ball function(DBCB).

	ee->ZZ->vvqq	ee->WW->lvqq	ee->ZH->vvH(->qq)
Gen jet $\theta < 3.1$	\checkmark	×	×
∆R(Reco-MCP) < 1	\checkmark	\checkmark	\checkmark

A peak in the region Gen jet θ greater than 3.1 was caused a bug in simulation software. Thus, this region was excluded in the study.

Definition of
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Event Selections (take ZZ for expamle)

Feb 12, 2018

Bosons Mass Distribution(dijet)

W, Z, and Higgs bosons mass scale are calibrated by W boson. (Multiplied W_{true}/W_{dijet})
The W, Z, and Higgs bosons reconstructed by dijet (reco jet) can be well separated in CEPC.

Bosons Mass Distribution (All reconstructed particles)

W, Z, and Higgs bosons mass scale are calibrated by W boson. (Multiplied W_{true}/W_{dijet})
By reconstructed all final state particles, it teaches us what the perfect jet clustering should be and the pure detector performance impacts on boson mass resolution.

Pei-Zhu Lai (NCU, Taiwan)

Compare Two Ways of Reconstruction(take H for example)

Reconstruct all final state particles can avoid losing particles by construction. It brings the less low energy tail and RMS.

 $C \mathcal{E} \mathcal{P}$

Compare Two Ways of Reconstruction

(250 GeV)

(250 GeV)

- The W, Z, and Higgs bosons reconstructed by dijet (reco jet) can be well separated in CEPC.
- By reconstructing two dijet, W boson mass resolution is about 4, Z boson is about 3.8, and Higgs boson is about 4.6.

To do:

- **■** Quantify the W, Z, and Higgs boson mass separation.
- We interested in what kinds of particle will usually be excluded in jet clustering(->study the jet algorithm).
- **A** data driven calibration

Thank for your attention

- Nominal dijet mass distribution
- After flavor and energy depend calibration dijet mass distribution
- Flavor and energy dependence of JER and JES
- **MAIL PFO VS. MAIL Visible MC particles**
- The detail of selection
- △R selection efficiency in ee->ZZ->vvqq
- △**R** as the function of the relative difference
- JER and JES

Bosons Mass Distribution

Bosons Mass Distribution

Pei-Zhu Lai (NCU, Taiwan)

Feb 12, 2018

JER & JES(Reco-Gen)

■ JER/JES of heavy flavor quark are worse than light flavor one about 0.5%.

Pei-Zhu Lai (NCU, Taiwan)

mail pfo VS. $\cos\theta < 0.99$ mail Vis MC

CFI

mail pfo VS. $\cos\theta < 0.99$ mail Vis MC

mail pfo VS. $\cos\theta < 0.99$ mail Vis MC

Jets (a) ZZ, Z->dijet

Pei-Zhu Lai (NCU, Taiwan)

Feb 02, 2018

All PFO (a) ZZ, Z->dijet

Pei-Zhu Lai (NCU, Taiwan)

Overall = 62.88% 20

Jets lijet

Pei-Zhu Lai (NCU, Taiwan)

Feb 02, 2018

All PF 11et

Pei-Zhu Lai (NCU, Taiwan)

Jets a vvH, H->gluons

Pei-Zhu Lai (NCU, Taiwan)

Feb 02, 2018

All PFO (a) vvH, H->gluons

Pei-Zhu Lai (NCU, Taiwan)

Items	JER/JES(Reco-Gen)	JER/JES(Gen-MCP)
Gen jet theta < 3.1	\checkmark	\checkmark
∆R(Reco-MCP) < 0.1	\checkmark	×

The Reason for ΔR Cut

The jet clustering bring a significant uncertainty.

Pei-Zhu Lai (NCU, Taiwan)

26

CEPC Workshop, Nov 06~08, 2017

Leading JER & JES

Reco-MCP

■ JER/JES between reco jet and MCP would MCP Genjet combine the effects of two previous stages. Parton level T.K...

MCP Gen jet Reco jet Parton level r.K... 9,9 ee_kt Particle Jet Energy depositions in calorimeters CEPC Workshop, Nov 06~08, 2017

CEP

Entries / 0.005

Gen-MCP

Sub-leading JER & JES

Gen-MCP

CEP

Reco-MCP

■ JER/JES between reco jet and MCP would MCP G combine the effects of two previous stages. Parton level

