Measurement of m_w at threshold (thoughts)

- A few remarks about the post-LHC context
 - Last measurements and combination:
 - CDF : $\delta m_w \sim 19$ MeV; D0 : $\delta m_w \sim 23$ MeV (Tevatron average : 15 MeV)
 - ATLAS : $\delta m_w \sim 19 \text{ MeV}$
 - New average : $dm_w \sim 11-13$ MeV, depending on uncertainty correlations
 - Foreseen sensitivity : 5-10 MeV, assuming measurements at roots = 5, 7, 8 and 13 TeV.
 - Further improvement might be possible with the upgraded LHC detectors, in the HLLHC era (using dedicated, low pile-up runs)
- To be interesting, the goal at CEPC should be well below 5 MeV

Recent study : arXiv:1703.01626

- Studied the statistical precision on $m_{\rm w}$ from 1-point and 2-point cross section measurements

1-point example :

At 162.3 GeV, the cross section is maximally sensitive to m_w , and insensitive to the width

Statistical uncertainty assuming 15 ab ⁻¹ (one FCC-ee year):	$\delta m_w^{}$ ~ 0.25 MeV
Requirements on systematic uncertaintes:	

Beam energy	dE/E	< 3 10 ⁻⁶	OK?
Luminosity	dL/L	< 10 ⁻⁴	OK?
Cross section prediction	${ m d}\sigma_{_{ m th}}/\sigma_{_{ m th}}$	< 10 ⁻⁴	Limiting

With two-point measurement, achieve $\delta m_w \sim 0.4$ MeV, $\delta \Gamma_w \sim 1$ MeV

Present theoretical uncertainties

Contributions to the NNLO corrections (arXiv:0807.0102):

The authors estimate that the uncertainties from missing NNLO corrections amount to $\delta m_w \sim 3$ MeV. $\delta m_w \sim 1$ MeV is deemed achievable in the mid-term.

Note : the different terms have rather different energy dependence – the theoretical uncertainty is not reduced by measuring at different points

Situation with 3.2 ab⁻¹

- Statistical uncertainty: $\delta m_w \sim 0.6 \text{ MeV}$
- Requirements on systematic uncertaintes:
 - Beam energy dE/E < 10⁻⁵ OK?
 - Luminosity $dL/L < 2 10^{-4}$ OK?
 - Cross section prediction $d\sigma_{th}/\sigma_{th}$ < 2 10⁻⁴ Still limiting
- Although the W width is not too important for BSM, measuring the cross section at at least two points allows to measure both m_w and Γ_w , making the mass measurement less model-dependent
- Brief summary : at present, 3.2 ab⁻¹ is sufficient to make the statistical uncertainty subdominant, for a model-independent measurement at the ~2-3 MeV level.

Further requirements are that

- Complete NNLO corrections become available for ee \rightarrow 4f (\rightarrow dm_w ~ 1 MeV)
- The luminosity can be measured at the 0.02% level
- The beam energy can be measured with a precision of 10-5

Further studies

- Implement realistic running scenarios (ie cross section measurements at 1 / 2 / 5 points in energy, with a total luminosity budget of 3.2 ab⁻¹), detector acceptance, luminosity uncertainties etc, to produce a complete uncertainty table.
- I would be happy to collaborate on these issues, please let me know.

References (for my own record...)

- Beneke et al, arXiv:0707.0773v2, arXiv:0807.0102v1
- Snowmass 2013, arXiv:1310.6708v1
- Jadach et al, arXiv:hep-ph/0103163v3
- Dittmaier et al, arXiv:hep-ph/0505042v3
- FCC study, arXiv:1703.01626v1