

# Transverse profile for the quark distribution: k<sub>t</sub> vs b<sub>t</sub>





Quark distribution calculated from a saturation-inspired model A.Mueller 99, McLerran-Venugopalan 99 GPD fit to the DVCS data from HERA, Kumerick-D.Mueller, 09,10



### Gluon distribution





One of the TMD gluon distributions at small-x

GPD fit to the DVCS data from HERA, Kumerick-Mueller, 09,10



## Deformation when nucleon is transversely polarized





Quark Sivers function fit to the SIDIS Data, Anselmino, et al. 20009

Lattice Calculation of the IP density of Up quark, QCDSF/UKQCD Coll., 2006



## **Generalized Parton Distributions**

Mueller, et al. 1994; Ji, 1996, Radyushkin 1996

Off-diagonal matrix elements of the quark operator (along light-cone)

$$\begin{split} F_q(x,\xi,t) &= \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle P' \left| \overline{\psi}_q \left( -\frac{\lambda}{2} n \right) \not n \mathcal{P} e^{-ig \int_{\lambda/2}^{-\lambda/2} d\alpha \ n \cdot A(\alpha n)} \psi_q \left( \frac{\lambda}{2} n \right) \right| P \right\rangle \\ &= H_q(x,\xi,t) \ \frac{1}{2} \overline{U}(P') \ \not n U(P) + E_q(x,\xi,t) \ \frac{1}{2} \overline{U}(P') \frac{i\sigma^{\mu\nu} n_\mu \Delta_\nu}{2M} U(P) \end{split}$$

It depends on quark momentum fraction x and skewness ξ, and nucleon momentum transfer t

$$\begin{split} \xi &= -n \cdot (P' - P)/2 \\ t &= \Delta^2 \equiv (P - P')^2 \end{split}$$



#### Access the GPDs

 Deeply virtual Compton Scattering (DVCS) and deeply virtual exclusive meson production (DVEM)



In the Bjorken limit:  $Q^2 >> (-t)$ ,  $\Lambda^2_{QCD}$ ,  $M^2$ 



#### DVCS kinematics vs DIS



#### Zoo of TMDs & GPDs

|   | U                | L        | T                   |
|---|------------------|----------|---------------------|
| U | $f_1$            |          | $h_1^\perp$         |
| L |                  | $g_{1L}$ | $h_{1L}^{\perp}$    |
| Т | $f_{1T}^{\perp}$ | $g_{1T}$ | $h_1, h_{1T}^\perp$ |







- NOT directly accessible
- Their extractions require measurements of x-sections and

asymmetries in a large kinematic domain of  $x_B$ , t,  $Q^2$  (GPD) and  $x_B$ ,  $Q^2$ , z (TMD)

#### Example: quark GPDs

#### Unpolarized

$$F^{q} = \frac{1}{2} \int \left. \frac{\mathrm{d}z^{-}}{2\pi} \, \mathrm{e}^{\mathrm{i}xP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle \right|_{z^{+}=0, \mathbf{z}=0}$$
$$= \frac{1}{2P^{+}} \left[ H^{q}(x,\xi,t) \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t) \bar{u}(p') \frac{\mathrm{i}\sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right]$$

Polarized

$$\tilde{F}^{q} = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} \gamma_{5} q(\frac{1}{2}z) | p \rangle \bigg|_{z^{+}=0, \mathbf{z}=0}$$

$$=\frac{1}{2P^{+}}\left[\tilde{H}^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma_{5}u(p)+\tilde{E}^{q}(x,\xi,t)\bar{u}(p')\frac{\gamma_{5}\varDelta^{+}}{2m}u(p)\right]$$



#### **Forward limit**

#### Reduce to the normal PDFs

 $H^{q}(x,0,0) = q(x), \quad \tilde{H}^{q}(x,0,0) = \Delta q(x) \quad \text{for } x > 0$  $H^{q}(x,0,0) = -\bar{q}(-x), \quad \tilde{H}^{q}(x,0,0) = \Delta \bar{q}(-x) \quad \text{for } x < 0$ 



#### Sum rules

Г

BERKELEY

#### Integral over x lead to form factors

$$\int_{-1}^{1} \mathrm{d}x H^{q}(x,\xi,t) = F_{1}^{q}(t), \quad \int_{-1}^{1} \mathrm{d}x E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

$$\langle p'|\bar{q}(0)\gamma^{\mu}q(0)|p\rangle = \bar{u}(p')\left[F_1^q(t)\gamma^{\mu} + F_2^q(t)\frac{\mathrm{i}\sigma^{\mu\alpha}\Delta_{\alpha}}{2m}\right]u(p)$$

# Form factors have been used to constrain GPDs:



#### **Polynomiality:**

#### Moments (x) are polynomial in skewness

$$\int_{-1}^{1} \mathrm{d}x \, x^{n} H^{q}(x,\xi,t) = \sum_{\substack{i=0\\\text{even}}}^{n} (2\xi)^{i} A_{n+1,i}^{q}(t) + \mathrm{mod}(n,2) (2\xi)^{n+1} C_{n+1}^{q}(t)$$

$$\int_{-1}^{1} \mathrm{d}x \, x^{n} E^{q}(x,\xi,t) = \sum_{\substack{i=0\\\text{even}}}^{n} (2\xi)^{i} B^{q}_{n+1,i}(t) - \mathrm{mod}(n,2) (2\xi)^{n+1} C^{q}_{n+1}(t)$$



7/16/18

## One particular example: Ji sum rule

$$\int (\mathbf{H} + \mathbf{E}) \mathbf{x} \, d\mathbf{x} = \mathbf{J}_q = \mathbf{1}/2 \, \Delta \Sigma + \mathbf{L}_z \qquad \qquad \mathbf{J}_{i,96}$$
$$A_q(t) + B_q(t) = \int_{-1}^1 dx \, x [H_q(x,\xi,t) + E_q(x,\xi,t)]$$

Define the gravitational form factors

$$\langle p'|T_{q,g}^{\mu\nu}|p\rangle = A_{q,g}(t)\bar{u}P^{(\mu}\gamma^{\nu)}u + B_{q,g}(t)\bar{u}\frac{P^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2m}u$$



7/16/18

#### **Evolutions**





100

#### Example: non-singlet case

$$\frac{D_Q F_{NS}(x,\xi,Q^2)}{D \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{\mathrm{d}y}{y} P_{NS}\left(\frac{x}{y},\frac{\xi}{y},\frac{\epsilon}{y}\right) F_{NS}(y,\xi,Q^2)$$
$$P_{NS}(x,\xi,\epsilon) = C_F \frac{x^2 + 1 - 2\xi^2}{(1-x+i\epsilon)(1-\xi^2)}$$

• Reduces to DGLAP evolution at  $\xi=0$ 



#### **Experiments: DVCS and BH**



## BH amplitude depends on form factors



7/16/18

103

#### Hand-back diagram for DVCS



$$T^{\mu\nu} = g_{\perp}^{\mu\nu} \int_{-1}^{1} dx \left( \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right) \sum_{q} e_{q}^{2} F_{q}(x, \xi, t, Q^{2})$$



7/16/18

104

#### In the end, the differential cross section will depend on the BH, DVCS, and their interference

### $\mathcal{T}^2 = |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{DVCS}\mathcal{T}_{BH}^* + \mathcal{T}_{DVCS}^*\mathcal{T}_{BH}$



#### Azimuthal angular distribution

$$\begin{aligned} |\mathcal{T}_{\rm BH}|^2 &= \frac{e^6}{x_{\rm B}^2 y^2 (1+\epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \\ &\times \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos\left(n\phi\right) + s_1^{\rm BH} \sin\left(\phi\right) \right\}, \\ |\mathcal{T}_{\rm DVCS}|^2 &= \frac{e^6}{y^2 \mathcal{Q}^2} \left\{ c_0^{\rm DVCS} + \sum_{n=1}^2 [c_n^{\rm DVCS} \cos(n\phi) + s_n^{\rm DVCS} \sin(n\phi)] \right\} \\ \mathcal{I} &= \frac{\pm e^6}{x_{\rm B} y^3 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \Delta^2} \left\{ c_0^{\mathcal{I}} + \sum_{n=1}^3 [c_n^{\mathcal{I}} \cos(n\phi) + s_n^{\mathcal{I}} \sin(n\phi)] \right\}, \end{aligned}$$

BERKELEY L



## Extract the GPDs

- The theoretical framework has been well established
  - Perturbative QCD corrections at NLO
  - However, GPDs depend on x,ξ,t, it is much more difficult than PDFs (only depends on x)
  - There will be model dependence at the beginning



## One example: H(x,x,t)



D. Mueller, et al, 09, 10

log(x

Small-x range constrained by HERA, uncertainties at large-x shall be very much reduced with Jlab 12 GeV COMPASS, and the planed EIC

Of course, there are also other GPDs, in particular, the GPD E 0.

b[fm]

#### Power counting of Large x structure

- Drell-Yan-West (1970)  $F_1(q^2) \xrightarrow[q^2 \to -\infty]{} (-1/q^2)^n \longrightarrow \nu W_2(x) \xrightarrow[x \to 1]{} (1-x)^{2n-1}$
- Farrar-Jackson (1975)

$$\nu W_2^{\pi} \sim (1-x)^2$$
 and  $\nu W_2^{\mu} \sim (1-x)^3$ 

Brodsky-Lepage (1979)

$$G_{q^{+}/p^{+}} \sim (1-x)^{3}$$
;  $G_{q^{+}/p^{+}} \sim (1-x)^{5}$ 

Brodsky-Burkardt-Shmidt (1995) fit the polarized structure functions.



## Large-x power counting for the GPDs





#### Where is the *t*-dependence



- In the leading order, there is no t-dependence
- Any t-dependence is suppressed by a factor (1-x)<sup>2</sup>



# Power counting results for pion GPD

• in the limit of  $x \rightarrow 1$ ,

$$H_q^{\pi}(x,\xi,t) \propto \frac{(1-x)^2}{1-\xi^2}$$

$$H_{q}^{\pi}(x,\xi,t) = \frac{1}{1-\xi^{2}}q^{\pi}(x)$$

#### We can approximate the GPD with forward PDF at large x,



#### GPDs for nucleon





### Helicity non-flip amplitude

#### The propagator

$$\frac{1}{2P \cdot (k_1 + k_2)} = \frac{1 - x}{\langle \vec{k}_{\perp}^2 \rangle (1 + \xi)} \left[ 1 + \mathcal{O}((1 - x)^2) \frac{t}{\langle \vec{k}_{\perp}^2 \rangle} + \cdots \right]$$

Forward PDF

#### Power behavior

$$\mathcal{H}_{11} = \frac{1}{(1-\xi^2)^2} q(x) \sim \frac{(1-x)^3}{(1-\xi^2)^2}$$



## Helicity flip amplitude

• Since hard scattering conserves quark helicity, to get the helicity flip amplitude, one needs to consider the hadron wave function with one-unit of orbital angular momentum



 In the expansion of the amplitude at small transverse momentum I<sub>2</sub>, additional suppression of (1-x)<sup>2</sup> will arise

$$\frac{1}{(k_2 - x_3 P - l_\perp)^2} = \frac{1}{(k_2 - x_3 P)^2} \left[ 1 - \frac{\beta (1 - x)^2 \vec{\Delta}_\perp \cdot \vec{l}_\perp}{(1 + \xi)^2 \vec{k}_{2\perp}^2} \right]$$



• Two kinds of expansions Propagator:  $(1-x)^5(1+\xi^2)/(1-\xi^2)^4$ Wave function:  $(1-x)^5/(1-\xi^2)^4$ 

• The power behavior for the helicity flip amplitude

$$\mathcal{H}_{\downarrow\downarrow} \sim (\Delta_{\perp}^{x} + i\Delta_{\perp}^{y}) \frac{(1-x)^{5}}{(1-\xi^{2})^{4}} f(\xi)$$

• GPD E

$$E_q(x,\xi,t) \sim \frac{(1-x)^{\circ}}{(1-\xi^2)^3} f(\xi)$$

Forward PDF

• GPD H

$$H_q(x,\xi,t) = \frac{1}{(1-\xi^2)^2}q(x)$$



# Summary for the GPDs' power prediction

No *t*-dependence at leading order
Power behavior at large x

$$H_{q}^{\pi}(x,\xi,t) = \frac{1}{1-\xi^{2}}q^{\pi}(x) \sim (1-x)^{2}$$
  
Forward PDF  
$$H_{q}(x,\xi,t) = \frac{1}{(1-\xi^{2})^{2}}q^{\pi}(x) \sim (1-x)^{3}$$

$$E_q(x,\xi,t) = \frac{(1-x)^5}{(1-\xi^2)^3} f(\xi)$$

BERKELEY LAB

Log(1-x) should also show up

## **TMD** Parton Distributions

The definition contains explicitly the gauge links

Collins-Soper 1981, Collins 2002, Belitsky-Ji-Yuan 2002

$$f(x,k_{\perp}) = \frac{1}{2} \int \frac{d\xi^{-}d^{2}\xi_{\perp}}{(2\pi)^{3}} e^{-i(\xi^{-}k^{+}-\vec{\xi}_{\perp}\cdot\vec{k}_{\perp})} \\ \times \langle PS|\overline{\psi}(\xi^{-},\xi_{\perp})L_{\xi_{\perp}}^{\dagger}(\xi^{-})\gamma^{+}L_{0}(0)\psi(0)|PS\rangle$$

The polarization and kt dependence provide rich structure in the quark and gluon distributions

□ Mulders-Tangerman 95, Boer-Mulders 98



#### Transverse-momentum-dependent (TMD) Parton distributions

- Generalize Feynman parton distribution q(x)by including the transverse momentum.  $q(x,k_T)$
- At small k<sub>T</sub>, the transverse-momentum dependence is generated by soft nonperturbative physics.
- At large  $k_T$ , the k-dependence can be calculated in perturbative QCD and falls like powers of  $1/k_T^2$



## Transverse momentum dependent parton distribution

- Straightforward extension
  - Spin average, helicity, and transversity distributions
- Transverse momentum-spin correlations
   Nontrivial distributions, S<sub>T</sub>XP<sub>T</sub>
   In quark model, depends on S- and P-wave interference



## Transverse momentum dependent parton distribution

Leading Twist TMDs

Straightforward extension

- Spin average, helicity, and transversity distributions
- $P_{T}$ -spin correlations

 Nontrivial distributions, S<sub>T</sub>XP<sub>T</sub>

In quark model, depends on S- and P-wave



: Nucleon Spin

: Quark Spin



Quark Sivers function leads to an azimuthal asymmetric distribution of quark in the transverse plane



## Where can we learn TMDs

- Semi-inclusive hadron production in deep inelastic scattering (SIDIS)
- Drell-Yan lepton pair, photon pair productions in pp scattering
- Dijet correlation in DIS
- Relevant e+e- annihilation processes



#### Semi-inclusive DIS $\Phi_{S}$ Novel Single Spin Asymmetries $A_{UT}^{\sin(\phi+\phi_S)} \propto S_{\perp} \frac{\sum_{q,\bar{q}} e_q^2 \delta_q(x) H_1^{\perp}(z)}{\sum_{q,\bar{q}} e_q^2 q(x) D_1(z)}$ $z \stackrel{lab}{=} \frac{E_h}{\nu}$ Collins: U: unpolarized beam $A_{UT}^{\sin(\phi-\phi_S)} \propto S_{\perp} \frac{\sum_{q,\bar{q}} e_q^2 f_{1T}^{\perp,q}(x) \cdot D_1(z)}{\sum_{q,\bar{q}} e_q^2 q(x) D_1(z)}$ Sivers: T: transversely polarized target

125

7/15/18

.....

#### Two major contributions

Sivers effect in the distribution



 $S_T \rightarrow P S_T (PXk_T)$ 



Other contributions...



## Universality of the Collins Fragmentation







 $P_A, S_\perp$ 

ep--> e Pi X ete

e⁺e⁻--> Pi Pi X

pp--> jet(->Pi) X

Metz 02, Collins-Metz 02, Yuan 07,

Gamberg-Mukherjee-Mulders 08,10 Meissner-Metz 0812.3783 Vuan-Zhou, 0903.4680 Exps: BELLE, BESIII, HERMES, JLab STAR at RHIC 127

#### Collins asymmetries in SIDIS



#### Summarized in the EIC Write-up



7/16/18

#### Collins effects in e<sup>+</sup>e<sup>-</sup>



#### Sivers effect is different

- It is the final state interaction providing the phase to a nonzero SSA
- Non-universality in general
- Only in special case, we have "Special Universality"

Brodsky,Hwang,Schmidt 02 Collins, 02; Ji,Yuan,02; Belitsky,Ji,Yuan,02





### **TMD** Parton Distributions

The gauge invariant definition

$$f(x,k_{\perp}) = \frac{1}{2} \int \frac{d\xi^{-}d^{2}\xi_{\perp}}{(2\pi)^{3}} e^{-i(\xi^{-}k^{+}-\vec{\xi}_{\perp}\cdot\vec{k}_{\perp})} \\ \times \langle PS|\overline{\psi}(\xi^{-},\xi_{\perp})L_{\xi_{\perp}}^{\dagger}(\xi^{-})\gamma^{+}L_{0}(0)\psi(0)|PS\rangle$$

In Feynman gauge





## Where does the gauge link come from?

Factorizable multiple gluon interactions





## Example: FSI in DIS



 $\underline{k} \qquad \int \frac{d^4 k_g}{(2\pi)^4} \overline{u}(k) (-ig\gamma^{\alpha}T_a) \frac{i(\not k - \not k_g)}{(k - k_g)^2 + i\epsilon} \Gamma \\ \times \langle n|\psi(0)A_{a\alpha}(k_g)|P \rangle$ 

The leading contribution comes from  $A^+$ , and taking the leading term with  $k^- \to \infty$ , we have

$$\int_{-\infty}^{+\infty} dk_g^+ \frac{i}{-k_g^+ + i\epsilon} A^+(k_g) = \int_0^\infty d\xi^- A^+(\xi^-)$$

This is just the leading order expansion of the exponential gauge link

Summing all final state gluon interactions will lead to the final gauge link in the parton distribution definition



#### Initial state interaction in Drell-Yan



$$\int \frac{d^4k_g}{(2\pi)^4} \bar{v}(k) (-ig\gamma^{\alpha}T_a) \frac{-i(\not k + \not k_g)}{(k+k_g)^2 + i\epsilon} \Gamma \times \langle n|\psi(0)A_{a\alpha}(k_g)|P \rangle$$

The leading contribution comes from  $A^+$ , and taking the leading term with  $k^- \to \infty$ , we have

$$\int_{-\infty}^{+\infty} dk_g^+ \frac{i}{-k_g^+ - i\epsilon} A^+(k_g) = \int_0^{-\infty} d\xi^- A^+(\xi^-)$$

 This leads to the gauge link in Drell-Yan process goes to -1, instead of +1 in DIS
 Consequence is the Sivers functions change sign for these two processes



### In light-cone gauge

Additional gauge link is needed to ensure the gauge invariance of the definition

$$\Delta L = P \exp\left(-ig \int_0^\infty d\xi_\perp \cdot A_\perp(\xi^- = \infty, \xi_\perp)\right)$$

Which can also be derived from the previous diagrams



#### Sivers asymmetries in SIDIS



BERKELEY

Jlab Hall A <sup>3</sup>He dat

Non-zero Sivers ( Observed in SIDI

136

### **DIS and Drell-Yan**

Initial state vs. final state interactions





#### TMD predictions rely on

- Non-perturbative TMDs constrained from experiments
- QCD evolutions, in particular, respect to the hard momentum scale Q
  - Strong theory/phenomenological efforts in the last few years
  - Need more exp. data/lattice calculations



#### **Collins-Soper-Sterman Resummation**

Large Logs are resummed by solving the energy evolution equation of the TMDs

$$\frac{\partial}{\partial \ln Q} f(k_{\perp}, Q) = (K(q_{\perp}, \mu) + G(Q, \mu)) \otimes f(k_{\perp}, Q)$$

K and G obey the renormalization group eq.

$$\frac{\partial}{\partial \ln \mu} K = -\gamma_K = \frac{\partial}{\partial \ln \mu} G$$



Collins-Soper 81, Collins-Soper-Sterman 85

### Solving the evolution equations

$$\begin{split} \widetilde{f}_{q}^{(sub.)}(x,b,\zeta^{2}=\rho Q^{2};\mu_{F}=Q) &= e^{-S_{pert}^{q}(Q,b_{*})-S_{NP}^{q}(Q,b)}\widetilde{\mathcal{F}}_{q}\left(\alpha_{s}(Q);\rho\right)\\ \text{Sudakov form factor (perturbative)} &\times \sum_{i} C_{q/i}(\mu_{b}/\mu)\otimes f_{i}(x,\mu) \ ,\\ \text{Non-perturbative input} &= \text{Universal C-function}\\ & C_{q/q'}(x) = \delta_{qq'}\left[\delta(1-x) + \frac{\alpha_{s}}{2\pi}C_{F}(1-x)\right]\\ \text{ scheme-dept.} & \widetilde{\mathcal{F}}_{q}^{\text{JCC}}\left(\alpha_{s}(Q)\right) = 1 + \mathcal{O}(\alpha_{s}^{2})\\ & \widetilde{\mathcal{F}}_{q}^{\text{JMY}}\left(\alpha_{s}(Q);\rho\right) = 1 + \frac{\alpha_{s}}{2\pi}C_{F}\left(\ln\rho - \frac{\ln^{2}\rho}{2} - \frac{\pi^{2}}{2} - 2\right)\\ & \widetilde{\mathcal{F}}_{q}^{\text{Lat.}}\left(\alpha_{s}(Q)\right) = 1 + \frac{\alpha_{s}}{2\pi}C_{F}\left(-2\right) \end{split}$$



#### Unpolarized quark distribution



BERKELEY LAD

#### Describe well the exp. data

Sun-Issacson-Yuan-Yuan, 2014



#### Sivers asymetries in SIDIS with Evolution Sun, Yuan, PRD 2013 Prokudin-Sun-Yuan, in progress



#### **Predictions at RHIC**



7/16/18

Sun, Yuan, PRD 2013

Additional theory uncertainties: x-dependence of the TMDs comes from a fit to fixed target drell-yan and w/z production at Tevatron ---Nadolsky et al.

144



#### Transition from Perturbative region to Nonperturbative region

#### Compare different region of P<sub>T</sub>





#### Perturbative tail is calculable

#### Transverse momentum dependence



### A unified picture (leading pt/Q)



# Compared to the collinear factorization

#### Simplification

Of the cross section in the region of pt<<Q, only keep the leading term

#### Extension

To the small pt region, where the collinear factorization suffer large logarithms

Resummation can be done

