Standard Parton Physics

Feng Yuan Lawrence Berkeley National Laboratory

7/14/18

1

量子色动力学与有效理论暑期学校

2018.7.3-7.20, 上海交通大学

	上午 9:00-11:30	下午 2:00-4:30	下午 4:30-6:00
7.3 星期二	马建平 量子色动力学基础 1	冯旭 格点QCD基础 1	
7.4 星期三	马建平 量子色动力学基础 2	冯旭格点QCD基础 2	
7.5 星期四	马建平 量子色动力学基础 3	冯旭格点QCD基础 3	
7.6 星期五	曹庆宏 对撞机物理导论 1	L. Maiani, TBA 1	马建平 量子色动力学基础 4
7.7 星期六	曹庆宏 对撞机物理导论 2	马建平 量子色动力学基础 5	
7.8 星期日			
7.9 星期一	冯旭 格点QCD基础 4	季向东 TBA 1	
7.10 星期二	冯旭格点QCD基础 5	L. Maiani, TBA 2	季向东 TBA 2
7.11 星期三	贾宇 NRQCD 1	季向东 TBA 3	
7.12 星期四	季向东 TBA 4	L. Maiani, TBA 3	
7.13 星期五	贾宇 NRQCD 2	贾宇 NRQCD 3	
7.14 星期六			
7.15 星期日			
7.16 星期一	袁烽 Hadron&GPD 1	朱华星 QCD@LHC 1	
7.17 星期二	袁烽 Hadron&GPD 2	袁烽 Hadron&GPD 3	
7.18 星期三	朱华星 QCD@LHC 2	朱华星 QCD@LHC 3	
7.19 星期四	王玉明 Frontier of B-physics 1	王玉明 Frontier of B-physics 2	
7.20 星期五	袁烽 Hadron&GPD 4	王玉明 Frontier of B-physics 3	

Outline

- Review earlier lectures (in particular, by JP Ma) and introduction
- Introduce GPDs, connection to TMDs, and Wigner Distribution
- Small-x physics

Content: 1. QCD Lagrangian 2. Divergences in QCD and ete -> hadrons 3. DIS and QCD Faderization 4. QCD Factorization in et e -> h + x 5. TMD Factorization for SIDIS 6. SCET

Parton Physics

- G. Sterman, Partons, Factorization and Resummation, hep-ph/9606312
- John Collins, *The Foundations of Perturbative QCD*, published by Cambridge, 2011
- CTEQ, Handbook of perturbative QCD, Rev. Mod. Phys. 67, 157 (1995).
- General references
 - □ CTEQ web site:

http://www.phys.psu.edu/~cteq/

7/14/18

BERKELEY LAI

6

- EM interaction perturbation, leading order dominance, potential~1/r
- Point-like structure
- Powerful tool to study inner structure

Basic idea of nuclear science

Since the α and β particles traverse the atom, it should be possible from a close study of the nature of the deflexion to form some idea of the constitution of the atom to produce the effects observed. In fact, the scattering of high-speed charged particles by the atoms of matter is one of the most promising methods of attack of this problem. The develop-

Rutherford, 1911

Finite size of nucleon (charge radius)

Hofstadter

Rutherford scattering with electron

Renewed interest on proton radius: µ-Atom vs e-Atom (EM-form factor)

7/14/18

RevModPhys.28.214

Quark model

- Gell-Man
- Nucleons, and other hadrons are not fundamental particles, they have constituents
- Gell-Man Quark Model
 - Quark: spin 1/2
 - Charges: up (2/3), down (-1/3), strange (-1/3)
 - Flavor symmetry to classify the hadrons
 - Mesons: quark-antiquark
 - Baryons: three-quark
 - Gell-Man-Okubo Formula

Deep Inelastic Scattering Discovery of Quarks

Bjorken Scaling: Q²→Infinity **Feynman Parton Model: Point-like structure in Nucleon**

Understanding the scaling

- Weak interactions at high momentum transfer
 - Rutherford formula rules
- Strong interaction at long distance
 - □ Form factors behavior
 - No free constituent found in experiment
- Strong interaction dynamics is different from previous theory

QCD and Strong-Interactions

- QCD: Non-Abelian gauge theory
 - Building blocks: quarks (spin¹/₂, m_a, 3 colors; gluons: spin 1, massless, 3²-1 colors)

$$L = \overline{\psi}(i\gamma \cdot \partial - m_q)\psi - \frac{1}{4}F^{\mu\nu a}F_{\mu\nu a} - g_s\overline{\psi}\gamma \cdot A\psi$$

Asymptotic freedom and confinement

Long distance:? Soft, non-perturbative

Clay Mathematics Institute Millennium Prize Problem

Quantum Chromodynamics

- There is no doubt that QCD is the right theory for hadron physics
- However, many fundamental questions...
- How does the nucleon mass?
- Why quarks and gluons are confined inside the nucleon?
- How do the fundamental nuclear forces arise from QCD?
- We don't have a comprehensive picture of the nucleon structure as we don't have an approximate QCD nucleon wave function

Feynman's parton language and QCD Factorization

- If a hadron is involved in high-energy scattering, the physics simplifies in the infinite momentum frame (Feynman's Parton Picture)
- The scattering can be decomposed into a convolution of parton scattering and parton density (distribution), or wave function or correlations
 - □QCD Factorization!

 \sim / Parton Distributions \otimes Hard Partonic Cross Section

High energy scattering as a probe to the nucleon structure

- Many processes: Deep Inelastic Scattering, Deeply-virtual compton scattering, Drell-Yan lepton pair production, pp→jet+X
 - □ Momentum distribution: Parton Distribution
 - □ Spin density: polarized parton distribution
 - Wave function in infinite momentum frame: Generalized Parton Distributions

Perturbative Computations

- Singularities in higher order calculations
- Dimension regularization
 - □ n<4 for UV divergence
 - □ n>4 for IR divergence

$$\int \frac{d^n k}{k^4} \to \int \frac{dk}{k} k^{n-4}$$

- □ MS (MS) scheme for UV divergence
- pQCD predictions rely on Infrared safety of the particular calculation

pQCD predictions

- Infrared safe observables
 □ Total cross section in e+e-→hadrons
 □ EW decays, tau, Z, …
- Factorizable hard processes: parton distributions/fragmentation functions
 - Deep Inelastic Scattering
 - Drell-Yan Lepton pair production
 - Inclusive process in ep, ee, pp scattering, W, Higgs, jets, hadrons, …

Infrared safe: e⁺e⁻→hadrons

Leading order

Electron-positron annihilate into virtual photon, and decays into quark-antiquark pair, or muon pair

Quark-antiquark pair hadronize

Long distance physics (factorization)

- Not every quantities calculated in perturbative QCD are infrared safe
 Hadrons in the initial/final states, e.g.
- Factorization guarantee that we can safely separate the long distance physics from short one
- There are counter examples where the factorization does not work

Naïve Parton Model

$$d\sigma^{(\ell N)}(p,q) = \sum_{f} \int_0^1 d\xi \ d\sigma_{\text{Born}}{}^{(\ell f)}(\xi p,q) \phi_{f/N}(\xi)$$

• $\phi_{f/N}(\xi)$ the parton distribution describes the probability that the quark carries nucleon momentum fraction

Factorization formula

$$F_{2}^{(h)}(x,Q^{2}) = \sum_{i=f,\bar{f},G} \int_{x}^{1} d\xi \ C_{2}^{(i)}\left(\frac{x}{\xi},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) \phi_{i/h}(\xi,\mu^{2})$$

$$F_{1}^{(h)}(x,Q^{2}) = \sum_{i=f,\bar{f},G} \int_{x}^{1} \frac{d\xi}{\xi} \ C_{1}^{(i)}\left(\frac{x}{\xi},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) \phi_{i/h}(\xi,\mu^{2})$$

■ Factorization → scale dependence

$$\mu \frac{d^2}{d\mu^2} \phi_{i/h}(x,\mu^2) = \sum_{j=f,\bar{f},G} \int_x^1 \frac{d\xi}{\xi} P_{ij}(\frac{x}{\xi},\alpha_s(\mu^2)) \phi_{j/h}(\xi,\mu^2)$$
$$\frac{d}{d\mu} \ln \bar{\phi} \left(n,\alpha_s(\mu^2)\right) = -\gamma_n \left(\alpha_s(\mu^2)\right) \qquad \bar{f}(n) \equiv \int_0^1 dx \ x^{n-1} f(x)$$
Scale dependence \rightarrow resummation

$$\bar{\phi}^{(\text{val})}(n,\mu^2) = \bar{\phi}^{(\text{val})}(n,\mu_0^2) \exp\left\{-\frac{1}{2}\int_0^{\ln\mu^2/\mu_0^2} dt \,\gamma_n\left(\alpha_s(\mu_0^2 e^t)\right)\right\}$$

anomalous dimension:
$$\int_{0}^{1} d\xi \, \xi^{n-1} P_{ij}(\xi, \alpha_s) = -\gamma_{ij}(n)$$
7/14/18 24

Quark-quark splitting

0 0 0 0 0 0 0 0

$$\mathcal{P}_{qq} = C_F \left[\frac{1+x^2}{(1-x)_+} + \delta(1-x) \right]$$

Quark-gluon splitting

Incoming quark on-shell, gluon is off-shell

$$\mathcal{P}_{g/q} = C_F \left[\frac{1 + (1 - x)^2}{x} \right]$$

7/14/18

26

Gluon-quark splitting

Incoming gluon is on-shell, physical polarization

$$\mathcal{P}_{q/g} = T_F \left[(1-x)^2 + x^2 \right]$$

Gluon-gluon splitting

Physical polarizations for the gluons

$$\mathcal{P}_{gg}(x) = \frac{x}{(1-x)_{+}} + \frac{1-x}{x} + x(1-x) + \delta(x-1)\beta_{0}$$

7/14/18

These evolutions describe the HERA data

7/14/18

29

Reverse the DIS: Drell-Yan

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

7/14/18

Drell-Yan lepton pair production

$$\sigma(pp \to \ell^+ \ell^- + X) = \int dx_1 dx_2 \phi_{q/p}(x_1) \phi_{\bar{q}/p}(x_2) \hat{\sigma}(q\bar{q} \to \ell^+ \ell^-)$$

- The same parton distributions as DIS
 Universality
- Partonic cross section

$$\sigma(e^+e^- \to q\bar{q}) = N_c \frac{4\pi}{3} \frac{\alpha^2}{Q^2} e_q^2$$

$$\implies \hat{\sigma}(q\bar{q} \to \ell^+ \ell^-) = \frac{4\pi}{3} \frac{\alpha^2}{Q^2} e_q^2 \frac{1}{N_c}$$

Profound results

Universality Perturbative QCD at work

7/14/18

More general hadronic process

$$\sigma(pp \to c + X) = \int dx_1 dx_2 \phi_{a/p}(x_1) \phi_{b/p}(x_2) \hat{\sigma}(ab \to c + X)$$

All these processes have been computed up to next-to-leading order, some at NNLO, few at N³LO

Parton picture of the nucleon

Beside valence quarks, there are sea and gluons

Precisions on the PDFs are very much relevant for LHC physics: SM/New Physics

$\sigma(gg ightarrow L)$	$H), \sqrt{(s)}$	= 13 TeV	2015 Gluon-Gluon, luminosity
CT14	MMHT2014	NNPDF3.0	1.2 VS = 1.30e+04 GeV 1.15
42.68 pb	42.70 pb	42.97 pb	휦.05 1
+2.0% -2.4%	+1.3% -1.8%	+1.9% DIS -1.9% sum	0.95 0.97 very good agreement now; especially important now that 0.85 ggF known to NNNLO 10 ² ML (GeVI 10 ³

Parton distribution when nucleon is polarized?

- The story of the proton spin began with the quark model in 60's
- In the simple Quark Model, the nucleon is made of three quarks (nothing else)
- Because all the quarks are in the sorbital, its spin (½) should be carried by the three quarks
- European Muon Collaboration: 1988
 "Spin Crisis" ---- proton spin carried by quark spin is rather small

Proton spin: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$ emerging phenomena?

- We know fairly well how much quark helicity contributions, ΔΣ=0.3±0.05
- With large errors we know gluon helicity contribution plays an important role
- No direct information on quark and gluon orbital angular momentum contributions

The orbital motion:

- Orbital motion of quarks and gluons must be significant inside the nucleons!
 - This is in contrast to the naive non-relativistic quark model
- Orbital motion shall generate direct orbital Angular Momentum which must contribute to the spin of the proton
- Orbital motion can also give rise to a range of interesting physical effects (Single Spin Asymmetries)

New ways to look at partons

- We not only need to know that partons have long. momentum, but must have transverse degrees of freedom as well
- Partons in transverse coordinate space
 Generalized parton distributions (GPDs)
- Partons in transverse momentum space
 Transverse-momentum distributions (TMDs)
 Both? Wigner distributions!

Unified view of the Nucleon

Wigner distributions (Belitsky, Ji, Yuan)

Zoo of TMDs & GPDs

	U	L	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- NOT directly accessible
- Their extractions require measurements of x-sections and

asymmetries in a large kinematic domain of x_B , t, Q^2 (GPD) and x_B , Q^2 , z (TMD)

What can we learn

 3D Imaging of partons inside the nucleon (non-trivial correlations)

Try to answer more detailed questions as Rutherford was doing 100 years ago

QCD dynamics involved in these processes
 Transverse momentum distributions: universality, factorization, evolutions,...
 Small-x: BFKL vs Sudakov?

Deformation when nucleon is transversely polarized

Quark Sivers function fit to the SIDIS Data, Anselmino, et al. 2009

Lattice Calculation of the transvese density Of Up quark, QCDSF/UKQCD Coll., 2006

Parton's orbital motion through the Wigner Distributions

Phase space distribution:

Projection onto p (x) to get the momentum (probability) density

Quark orbital angular momentum

$$L(x) = \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) d^2 \vec{b}_{\perp} d^2 \vec{k}_{\perp}$$

Well defined in QCD: Ji, Xiong, Yuan, PRL, 2012; PRD, 2013 Lorce, Pasquini, Xiong, Yuan, PRD, 2012 Lorce-Pasquini 2011 Hatta 2011

Where can we study: Deep Inelastic Scattering

- Inclusive DIS
 - Parton distributions
- Semi-inclusive DIS, measure additional hadron in final state
 - □ Kt-dependence
- Exclusive Processes, measure recoiled nucleon
 - Nucleon tomography

What we have learned

- Unpolarized transverse momentum (coordinate space) distributions from, mainly, DIS, Drell-Yan, W/Z boson productions, (HERA exp.)
- Indications of polarized quark distributions from low energy DIS experiments (HERMES, COMPASS, JLab)

What we are missing

Precise, detailed, mapping of polarized quark/gluon distribution

Universality/evolution more evident

- Spin correlation in momentum and coordinate space/tomography
 - Crucial for orbital motion
- Small-x: links to other hot fields (Color-Glass-Condensate)

Perspectives

- HERA (ep collider) is limited by the statistics, and is not polarized
- Existing fixed target experiments are limited by statistics and kinematics
- JLab 12 will provide un-precedent data with high luminosity
- Ultimate machine will be the Electron-Ion-Collider (EIC): kinematic coverage with high luminosity

We need a new machine: EIC Proposals in US

PROTON SPIN

Proton Spin

- Emerging property of the fundamental building block of the universe
 - Spin sum rule in parton model and QCD
 - Exp. vs Lattice
- Emerging phenomena
 - Parity violating, electro-weak interaction, SM
 - (naïve) time-reversal odd Single trandverse spin asymmetries
 - □ Under extreme conditions: small vs large x

Ultimate goal of spin physics?

Spin sum rule

7/15/18

EMC experiment at CERN

Polarized muon + p deep inelastic scattering,

- Virtual photon can only couple to quarks with opposite spin, because of angular momentum conservation
- Select q⁺(x) or q⁻(x) by changing the spin direction of the nucleon or the incident lepton
- The polarized structure function measures the quark spin density

$$g_1(x) \sim \left(\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}\right) \propto \sum_q e_q^2 \left(q^+(x) - q^-(x)\right)$$

Summary of the polarized DIS data

 $\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$ ≈ 0.25

How to access the OAM

- Generalized Parton Distributions
- Transverse Momentum Dependent Distributions
- Wigner Distributions

Hunting for L_q :

Generalised Parton Distributions (GPDs)

$$\int (H + E) x \, dx = J_q = \frac{1}{2} \Delta \Sigma + L_z \qquad Ji,96$$

- A new type of parton "distributions" contains much more information
 - Can be measured in deeply virtual compton scattering and other hard exclusive processes
 - Related to form factors and parton distributions

Mueller et al., 94; Ji, 96; Radyushkin, 96

General Comments

- Gauge invariant
- Frame independent
- Works for L/T polarizations of nucleon
- Physical accessible

Proton spin decomposition

• Angular momentum density \rightarrow spin vector

 $J^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x M^{0jk}$ $\overset{M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu}}{T_{q}^{\mu\nu} = \frac{1}{2} \left[\bar{\psi}\gamma^{(\mu}i\overline{D^{\nu})}\psi + \bar{\psi}\gamma^{(\mu}i\overline{D^{\nu})}\psi \right]}$ $T_{g}^{\mu\nu} = \frac{1}{4} g^{\mu\nu}F^{2} - F^{\mu\alpha}F_{\alpha}^{\nu}$ $\vec{J}_{g} = \int d^{3}x \left\{ \psi^{\dagger}\vec{\gamma}\gamma_{5}\psi + \psi^{\dagger}(\vec{x}\times i\vec{D})\psi \right\}$ $\vec{J}_{g} = \int d^{3}x \left(\vec{x}\times (\vec{E}\times\vec{B}) \right)$

 $J_{q,g}(Q^2) 2\vec{S} = \langle PS | \vec{J}_{q,g}(Q^2) | PS \rangle$

Angular momentum density

$$\langle PS| \int d^4\xi M^{\mu\alpha\beta}(\xi) | PS \rangle = J \frac{2S_{\rho}P_{\sigma}}{M^2} (2\pi)^4 \delta^4(0)$$
$$\left(\epsilon^{\alpha\beta\rho\sigma}P^{\mu} + \epsilon^{[\alpha\mu\rho\sigma}P^{\beta]} - (\text{trace})\right) + \cdots ,$$

- Partonic interpretation works in the infinite momentum frame (IMF)
- In this frame, the leading component is P⁺,S⁺
- Next-to-leading component, S^T

Leading component
$$M^{++T}$$

 $\langle PS| \int d^4\xi M^{++\perp} | PS \rangle = J \left[\frac{3(P^+)^2 S^{\perp'}}{M^2} \right] (2\pi)^4 \delta^4(0)$

- Because of antisymmetric of α,β . The leading term is $\alpha = +,\beta = T$, which related to the transverse spin of the nucleon
- Transverse spin of nucleon has leadingtwist interpretation in parton language
 However, individual spin is obscure

Next-to-leading: M^{+TT}

 $\langle PS| \int d^3 \vec{\xi} M^{+12} | PS \rangle = J(2S^+)(2\pi)^3 \delta^3(0)$

- Because of two transverse indices, it inevitably involves twist-three operators
- However, it does lead to the individual spin contribution, e.g., from the quark
 Jaffe-Manohar spin decomposition

Angular Momentum density (T)

Define the momentum density

$$\rho^{+}(x,\xi,S^{\perp}) = x \int \frac{d\lambda}{4\pi} e^{i\lambda x} \langle PS^{\perp} | \overline{\psi}(-\frac{\lambda n}{2},\xi) \gamma^{+} \psi(\frac{\lambda n}{2},\xi) | PS^{\perp} \rangle$$

AM depending momentum fraction x,

 $J_q(x) = \frac{M^2}{2(P^+)^2 S^{\perp'}(2\pi)^2 \delta^2(0)} \int d^2\xi \xi^{\perp} \rho^+(x,\xi,S^{\perp}) = \frac{x}{2}(q(x) + E(x))$

Which gives the angular momentum density for quark with longitudinal momentum x

In more detail

• Calculate $\rho^+(x,\xi,S^T)$

 $\rho^+(x,\xi,S^\perp)/P^+ = xq(x) + \frac{1}{2}x\left(q(x) + E(x)\right)\lim_{\Delta_\perp \to 0} \frac{S^{\perp'}}{M^2}\partial^{\perp_\xi} e^{i\xi_\perp \Delta_\perp}$

- Integrate out ξ, second term drops out, we obtain the momentum density
- Integral with weight ξ_T , the first term drops out, \rightarrow Angular Momentum density

Longitudinal (helicity)

$$J^{3} = \int d^{3}\vec{\xi} M^{+12}(\xi)$$
$$= \int d^{3}\vec{\xi} \left[\overline{\psi}\gamma^{+}(\frac{\Sigma^{3}}{2})\psi + \overline{\psi}\gamma^{+}\left(\xi^{1}(iD^{2}) - \xi^{2}(iD^{1})\right)\psi \right]$$

Quark spin explicitly OAM, twist-three nature

Wigner function: Phase Space Distributions Define as Wigner 1933

$$W(x,p) = \int \psi^*(x-\eta/2)\psi(x+\eta/2)e^{ip\eta}d\eta \ ,$$

- When integrated over x (p), one gets the momentum (probability) density
- Not positive definite in general, but is in classical limit

Any dynamical variable can be calculated as

$$\langle O(x,p)\rangle = \int dx dp O(x,p) W(x,p)$$

Wigner distribution for the quark

The quark operator Ji: PRL91,062001(2003)

 $\hat{W}_{\Gamma}(\vec{r},k) = \int \overline{\Psi}(\vec{r}-\eta/2)\Gamma\Psi(\vec{r}+\eta/2)e^{ik\cdot\eta}d^4\eta$
 Wigner distributions

$$\begin{split} W_{\Gamma}(\vec{r},k) \;&=\; \frac{1}{2M_N} \int \frac{d^3 \vec{q}}{(2\pi)^3} \left\langle \vec{q}/2 \left| \hat{\mathcal{W}}_{\Gamma}(\vec{r},k) \right| - \vec{q}/2 \right\rangle \\ &=\; \frac{1}{2M_N} \int \frac{d^3 \vec{q}}{(2\pi)^3} \mathrm{e}^{-i\vec{q}\cdot\vec{r}} \left\langle \vec{q}/2 \left| \hat{\mathcal{W}}_{\Gamma}(0,k) \right| - \vec{q}/2 \right\rangle \end{split}$$

After integrating over r, one gets TMD After integrating over k, one gets Fourier transform of GPDs

Importance of the gauge links

- Gauge invariance
- Depends on the processes
- Comes from the QCD factorization

$$\Psi_{LC}(\xi) = P\left[\exp\left(-ig\int_0^\infty d\lambda n \cdot A(\lambda n + \xi)\right)\right]\psi(\xi)$$

And partonic interpretation as well

Fixed point gauge link

$$\Psi_{FS}(\xi) = P \left[\exp\left(-ig \int_{0}^{\infty} d\lambda \xi \cdot A(\lambda \xi)\right) \right] \psi(\xi)$$
Becomes unit in ξ . A=0 gauge
Moment gives the quark OAM

$$L(x) = \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) d^{2} \vec{b}_{\perp} d^{2} \vec{k}_{\perp}$$
OPE

$$\int x^{n-1} L_{FP}(x) dx = \langle PS | \int d^{3} \vec{r} \sum_{i=0}^{n-1} \frac{1}{n} \overline{\psi}(\vec{r}) (in \cdot D)^{i} \\ \times (\vec{r}_{\perp} \times i \vec{D}_{\perp}) (in \cdot D)^{n-1-i} \psi(\vec{r}) | PS \rangle.$$
(16)

Quark OAM

Any smooth gauge link results the same OAM for the partons

$$\frac{\langle PS|\int d^{3}\vec{r} \ \overline{\psi}(\vec{r})\gamma^{+}(\vec{r}_{\perp} \times i\vec{D}_{\perp})\psi(\vec{r})|PS\rangle}{\langle PS|PS\rangle}$$
$$= \int (\vec{b}_{\perp} \times \vec{k}_{\perp})W_{FS}(x,\vec{b}_{\perp},\vec{k}_{\perp})dxd^{2}\vec{b}_{\perp}d^{2}\vec{k}_{\perp}$$

Light-cone gauge link

$$\Psi_{LC}(\xi) = P\left[\exp\left(-ig\int_0^\infty d\lambda n \cdot A(\lambda n + \xi)\right)\right]\psi(\xi)$$

- it comes from the physical processes
 DIS: future pointing
 Drell-Yan: to -∞
- Cautious: have light-cone singularities, and need to regulate
- Moments related to twist-three PDFs, and GPDs

Light-cone decomposition

$$J^{3} = \int d^{3}\vec{\xi} \left[\overline{\psi}\gamma^{+}(\vec{\xi} \times i\vec{\partial})^{3}\psi + \frac{1}{2}\overline{\psi}\gamma^{+}\Sigma^{3}\psi + E^{i}(\vec{\xi} \times \vec{\partial})^{3}A^{i} + (\vec{E} \times \vec{A})^{3} \right] ,$$

Quark OAM only contains the partial derivative

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \tilde{L}_q + \Delta G + \tilde{L}_g .$$
$$\tilde{L}^q(x) = \int \frac{d\lambda}{2\pi} e^{ix\lambda} d^2\xi \langle PS|\overline{\psi}(-\frac{\lambda n}{2},\xi)\gamma \rangle \times (\xi^1 i\partial^2 - \xi^2 i\partial^1)\psi(\frac{\lambda n}{2},\xi)|PS|$$

+

Gauge Invariant Extension

GIE is not unique

$$i\partial_{\xi}^{\perp} = iD_{\xi}^{\perp} + \int^{\xi^{-}} d\eta^{-} L_{[\xi^{-},\eta^{-}]} gF^{+\perp}(\eta^{-},\xi_{\perp}) L_{[\eta^{-},\xi^{-}]}$$

Canonical OAM can be calculated

$$\tilde{L}_q = \frac{\langle PS | \int d^3 \vec{r} \ \overline{\psi}(\vec{r}) \gamma^+ (\vec{r}_\perp \times i \vec{\partial}_\perp) \psi(\vec{r}) | PS \rangle}{\langle PS | PS \rangle}$$
$$= \int (\vec{b}_\perp \times \vec{k}_\perp) W_{LC}(x, \vec{b}_\perp, \vec{k}_\perp) dx d^2 \vec{b}_\perp d^2 \vec{k}_\perp \ .$$

OAM from Wigner distribution

 $\tilde{L}_q(x) = \int (\vec{b}_\perp \times \vec{k}_\perp) W_{LC}(x, \vec{b}_\perp, \vec{k}_\perp) d^2 \vec{b}_\perp d^2 \vec{k}_\perp$

- Can be measured from hard processes
- Moments access to the canonical OAM
 To the and of day, dependent wist 2
- In the end of day, depends on twist-3 GPDs
 - Might be studied in many processes

Wigner Distributions

Define the net momentum projection

$$\mathcal{K}(\vec{r}_{\perp}) = \int d^2 k_{\perp} \vec{k}_{\perp} \mathcal{H}(\vec{r}_{\perp}, \vec{k}_{\perp})$$

Quark oribital angular momentum

$$L_q = \int d^2 r_{\perp} d^2 k_{\perp} \vec{r}_{\perp} \times \vec{k}_{\perp} \mathcal{H}(\vec{r}_{\perp}, \vec{k}_{\perp})$$

Lorce, Pasquini, arXiv:1106.0139 Lorce, Pasquini, Xiong, Yuan, arXiv:1111.482 Hatta, arXiv:1111.3547

7/16/18

OAMs: Light-cone Wave Functions

They are building blocks for the hadron structure

$$|P\rangle = \sum_{n,\lambda_i} \int \overline{\Pi}_i \frac{dx_i d^2 k_{\perp i}}{\sqrt{x_i} 16\pi^3} \phi_n(x_i, k_{\perp i}, \lambda_i) |n : x_i, k_{\perp i}, \lambda_i\rangle$$

Which can be used to calculate the integrated parton distributions, GPDs, and hard exclusive scattering amplitudes, including the Compton scattering amplitudes

General Structure

Starting from any general structure for a Fock state, $I_z + \lambda = \Lambda$, with $I_z = \sum_{i=1}^{n-1} I_{zi}$

$$\int \prod_{i=1}^{n} d[i] \quad (k_{1\perp}^{\pm})^{|l_{z1}|} (k_{2\perp}^{\pm})^{|l_{z2}|} \dots (k_{(n-1)\perp}^{\pm})^{|l_{z(n-1)}|}$$

 $\times \psi_n(x_i, k_{\perp i}, \lambda_i, l_{zi}) a_1^{\dagger} a_2^{\dagger} ... a_n^{\dagger} |0\rangle$,

$$\int \prod_{i=1}^{n} d[i] \quad (k_{1\perp}^{+})^{l_{z1}} (k_{2\perp}^{+})^{l_{z2}} \dots (k_{(n-1)\perp}^{+})^{l_{z(n-1)}} \\ \times \left(\psi_{n} + \sum_{i < j=1 \mid l_{zi} = l_{zj} = 0}^{n-1} i \epsilon^{\alpha \beta} k_{i\alpha} k_{j\beta} \psi_{n(ij)} \right) \quad a_{1}^{\dagger} a_{2}^{\dagger} \dots a_{n}^{\dagger} | 0 \rangle$$

$$\frac{7/16/18}{2}$$

Asymptotic Behavior

The asymptotic behavior for the lightcone wave function can be studied from hard diagrams

$$\psi_n^A(x_i, k_{i\perp}, l_{zi}) = \int H_{AB} \otimes \psi_{n'}^B(y_i, k'_{i\perp}, l'_{zi}),$$

$$\psi_n^{(A)}(x_i, k_{\perp i}, l_{zi}) \sim \frac{1}{(k_\perp^2)^{[n+|l_z|+\min(n'+|l_z'|)]/2-1}}$$

Nucleon's 3-quarks WF

According to the general structure, there are six independent light-cone wave functions for three quarks component: $L_z=0$ (2), $L_z=1$ (3), $L_z=2$ (1)

The power counting rule gives, asymptotically,

$$\begin{array}{c} \psi \mid_{l_{z}=0} \sim 1/k_{T}^{4} \\ \psi \mid_{l_{z}=1} \sim 1/k_{T}^{6} \\ \psi \mid_{l_{z}=2} \sim 1/k_{T}^{8} \end{array}$$

Three Quark Light Cone Amplitudes

Quark OAM (Jaffe-Manohar)

Definition

$$\mathcal{L}_q(x) = \int \frac{d\xi^-}{2\pi} e^{ik^+\xi^-} \int d^2r \langle P|\psi(0)i\left(r^1\partial_\perp^2 - r^2\partial_\perp^2\right)\psi(\xi^-)|P\rangle$$

Using light-cone quantization

$$\psi(\xi) = \int \frac{d^2k_{\perp}}{(2\pi)^3} \frac{dk^+}{2k^+} u_{\lambda}(k) d_{\lambda}(k) e^{-ik \cdot \xi}$$

$$\mathcal{L}_{q}(x) = \int \frac{d^{2}k_{1\perp}dk_{1}^{+}}{(2\pi)^{3}2k_{1}^{+}} \frac{d^{2}k_{2\perp}dk_{2}^{+}}{(2\pi)^{3}2k_{2}^{+}} \delta(k^{+} - k_{2}^{+}) \int d^{2}r_{\perp}e^{-i(k_{2\perp} - k_{1\perp})\cdot r_{\perp}} u_{\lambda_{1}}^{\dagger}(k_{1}) \left(-r^{x}k_{2\perp}^{y} + r^{y}k_{2\perp}^{x}\right) u_{\lambda_{2}}(k_{2}) \langle P|d_{\lambda_{1}}^{\dagger}(k_{1})d_{\lambda_{2}}(k_{2})|P\rangle .$$

Distribution in x of Orbital Angular Momentum

Definition of Jaffe and Manohar: contribution from different

Comparison between the results with the Jaffe-Manohar definiton and the results with the Ji definition (total results for the sum of up and down quark contribution)

Definition of Jaffe and Manohar: contribution from different par $\langle P \uparrow | \sum_{q} L^{q} | P \uparrow \rangle = {}^{L_{z}=0} \langle P, \uparrow | \sum_{q} L^{q} | P \uparrow \rangle^{L_{z}=0} + {}^{L_{z}=-1} \langle P, \uparrow | \sum_{q} L^{q} | P \uparrow \rangle^{L_{z}=-1}$ $+ {}^{L_{z}=+1} \langle P, \uparrow | \sum_{q} L^{q} | P \uparrow \rangle^{L_{z}=+1} + {}^{L_{z}=+2} \langle P, \uparrow | \sum_{q} L^{q} | P \uparrow \rangle^{L_{z}=+2}$ $= 0 \cdot + {}^{L_{z}=0} \langle P, \uparrow | P \uparrow \rangle^{L_{z}=0} + (-1) \cdot {}^{L_{z}=-1} \langle P, \uparrow | P \uparrow \rangle^{L_{z}=-1}$ $+ (+1) \cdot {}^{L_{z}=+1} \langle P, \uparrow | P \uparrow \rangle^{L_{z}=+1} + (+2) \cdot {}^{L_{z}=+2} \langle P, \uparrow | P \uparrow \rangle^{L_{z}=+2}$

 $= 0 \times 0.62 + (-1) \times 0.14 + (+1) \times 0.23 + (+2) \times 0.018 = 0.126$

Definition of Ji:

$$\sum_{q} L^{q} = \frac{1}{2} \sum_{q} \left[\int dx \left(xH^{q} + xE^{q} \right) - \Sigma^{q} \right]$$
$$= \frac{1}{2} \left[1 + 0 - 0.74 \right] = 0.126$$

TMD Parton Distributions

The definition contains explicitly the gauge links

Collins-Soper 1981, Collins 2002, Belitsky-Ji-Yuan 2002

$$f(x,k_{\perp}) = \frac{1}{2} \int \frac{d\xi^{-}d^{2}\xi_{\perp}}{(2\pi)^{3}} e^{-i(\xi^{-}k^{+}-\vec{\xi}_{\perp}\cdot\vec{k}_{\perp})} \\ \times \langle PS|\overline{\psi}(\xi^{-},\xi_{\perp})L_{\xi_{\perp}}^{\dagger}(\xi^{-})\gamma^{+}L_{0}(0)\psi(0)|PS\rangle$$

The polarization and kt dependence provide rich structure in the quark and gluon distributions

Mulders-Tangerman 95, Boer-Mulders 98

Generalized Parton Distributions

Mueller, et al. 1994; Ji, 1996, Radyushkin 1996

 Off-diagonal matrix elements of the quark operator (along light-cone)

$$\begin{split} F_q(x,\xi,t) &= \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle P' \left| \overline{\psi}_q \left(-\frac{\lambda}{2} n \right) \not n \mathcal{P} e^{-ig \int_{\lambda/2}^{-\lambda/2} d\alpha \ n \cdot A(\alpha n)} \psi_q \left(\frac{\lambda}{2} n \right) \right| P \right\rangle \\ &= H_q(x,\xi,t) \ \frac{1}{2} \overline{U}(P') \ \not n U(P) + E_q(x,\xi,t) \ \frac{1}{2} \overline{U}(P') \frac{i\sigma^{\mu\nu} n_\mu \Delta_\nu}{2M} U(P) \end{split}$$

It depends on quark momentum fraction x and skewness ξ, and nucleon momentum transfer t

$$egin{array}{lll} \xi &= -n \cdot (P'-P)/2 \ t &= \Delta^2 \equiv (P-P')^2 \end{array}$$

