New directions for LHC searches

LianTao Wang U. Chicago

TeV working group meeting. NanKai University, Tanjin. August 19, 2018

From gravity to the Higgs we're still waiting for new physics

Annual physics jamboree Rencontres de Moriond has a history of revealing exciting results from colliders, and this year new theories and evidence abound

Guardian

Road ahead at the LHC

Luminosity [cm⁻²s⁻¹]

Integrated luminosity [fb⁻¹]

LHC is pushing ahead.

Exp. collaborations are pursuing a broad and comprehensive physics program: SUSY, composite H, extra Dim, etc.

As data accumulates

New directions?

heavier NP particle

particle

Example: Long Lived particles (LLP)

- Very weakly coupled to the SM.
 - Connection with dark matter, neutrino, etc.
- Displaced-Long lived, soft, kink,
 ... Covered by LHC searches
 already.

Here, I focus on: decay length >> 10 meters

tons of models

Optimal place to catch LLP

Number of particle decayed within detector volume:

$$\#_{\rm in} \simeq \#_{\rm produced} \times \frac{\Delta \Omega}{4\pi} \times \frac{\Delta L}{d} e^{-L/d}$$

 $d = \gamma c \tau$ decay length $d \gg \Delta L, L$ Very long lived: $d \ge 100$ s meters

Optimal place to catch LLP

Number of particle decayed within detector volume:

$$\#_{\rm in} \simeq \#_{\rm produced} \times \frac{\Delta \Omega}{4\pi} \times \frac{\Delta L}{d} e^{-L/d} \qquad d = \gamma c \tau$$

Optimal place to catch LLP

$$\#_{\text{in}} \simeq \#_{\text{produced}} \times \frac{\Delta \Omega}{4\pi} \times \frac{\Delta L}{d} e^{-L/d} \qquad d = \gamma c \tau$$

ATLAS/CMS (LHCb)Far detectors $\Delta \Omega$ ~ 4π < 0.1</td> ΔL 1 - 10 meters1 - 10 metersL1 - 10 meters10 - 100 meters

Advantage of far detector? Far away from interaction point, less background.

We propose to use timing information Significantly lower background near interaction point.

Time delay

Good for massive LLP produced with small or moderate boost

 $\beta_X < 1$

Time delay

- timing layers considered here:
 - CMS EC search: LT1 = 0.2 m, LT2 = 1.2 m (EC = Electromagnetic Calorimeter)
 - Resolution: $\delta t = 30 \text{ ps}$
 - MS search (hypothetical): LT1 = 4.2 m, LT2 = 10.6m (MS = Muon Spectrometer)
 - Resolution: don't need to be as good (detail later)

ISNSR jet providersSthe time for the hard collision

2. LLP decay before reaching timing layer.

$$\square$$
 measurement of Δt

background

Time delay from resolution of timing detector.

Time delay from spread of the proton bunch ~ 190 ps

Search based on EC

After timing cut: $\Delta t > 0.8$ ns

Back ground dominated by pile up

 $\#_{\text{background}} \sim 1$

Search based on MS

Pile up background smaller, shielded by HCAL etc.

Before timing cut: ~ 50

After timing cut: $\Delta t > 0.4$ ns $\#_{\text{background}} \sim 1$

Further away, larger Δt for signal.

Search based on MS

Sensitivity to Higgs portal

Jia Liu, Zhen Liu, LTW

Sensitivity to SUSY

Slower moving LLP, timing cuts can be further relaxed.

Summary of LLP searches

- Timing information can significantly improve the reach.
- The result shown are based on generic cuts (ISR+ any delayed decay).
 - Broadly applicable.
 - Further optimization possible for specific decay channel.
- Designing effective triggering strategy is crucial next step.

Precision era at the LHC

Importance of precision measurement

- No clear indication where new physics might be.
 - Precision measurement can give crucial guidance.
- Lots of data still to come
 - Room to improve! Statistics and systematics.
- Will be a important part of the legacy of the LHC.
 - ▶ LEP taught us a lot. LHC will do the same.

Higgs Standard Model-like

Agree to about 10-20%

Not entirely surprising

In general, deviation induced by new physics is of the form

$$\delta \simeq c rac{v^2}{M_{
m NP}^2}$$
 $M_{
m NP}$: mass of new physics c: O(1) coefficient

- Current LHC precision: 10% \Rightarrow sensitive to M_{NP} < 500-700 GeV</p>
- At the same time, direct searches constrain new physics below TeV already.
- Unlikely to see O(1) deviation.

Significant improvement with high lumi

4-5% on Higgs coupling, reach TeV new physics

Precision measurement with distribution

Low S/B, systematic dominated. Room to improve.

Diboson production at the LHC

 $q\bar{q} \rightarrow VV, \quad V = W, Z, h.$

New physics contribution

New physics effect encoded in the non-renormalizable operators:

 Λ : new physics scale

Precision measurement at the LHC possible?

LEP precision tests probe NP about 2 TeV

$$\frac{\delta\sigma}{\sigma_{\rm SM}} \sim \frac{m_W^2}{\Lambda^2} \sim 2 \times 10^{-3} \quad \to \Lambda \ge 2 \text{ TeV}$$

At LHC, new physics effect grows with energy

$$\frac{\delta\sigma}{\sigma_{\rm SM}} \sim \frac{E^2}{\Lambda^2} \sim 0.25 \qquad E \sim 1 \text{ TeV}, \ \Lambda \sim 2 \text{ TeV}$$

LHC needs to make a 20% measurement to beat LEP LHC has potential. Precision measurement at the LHC possible?

At LHC, interference with SM crucial

Signal-SM interference

Without interference

$$\frac{\delta\sigma}{\sigma_{\rm SM}}\sim \frac{E^2}{\Lambda^2}\sim 0.25$$

$$\frac{\delta\sigma}{\sigma_{\rm SM}} \sim \frac{E^4}{\Lambda^4} \sim 0.05$$

I. WZ final states, only longitudinal mode useful

2. W/Z+h

Will be challenging

SM WW, WZ processes are dominated by transverse modes

$$\sigma_{SM}^{total}/\sigma_{SM}^{LL}\sim 15-50$$

New technique such as polarization tagging of W/Z crucial

Wh/Zh(bb) channels have large reducible background LHC @ 8 TeV : $\sigma_b^{red}/\sigma_{SM}^{Wh}\sim 200-10$

Difficult measurement. Large improvement needed. Room for developing new techniques

Operators: d=6

name	structure	coefficient (power counting)
\mathcal{O}_H	$rac{1}{2}\left(\partial_{\mu} H ^{2} ight)^{2}$	c_H/f^2
\mathcal{O}_y	$y\bar{Q}_LHu_R H ^2$	c_y/f^2
\mathcal{O}_W	$ig\left(H^{\dagger}\sigma^{a}\overleftrightarrow{D}^{\mu}H\right)D^{\nu}W^{a}_{\mu\nu}$	c_W/m_*^2
\mathcal{O}_B	$ig'(H^{\dagger} \overleftrightarrow{D}^{\mu} H) D^{\nu} B_{\mu\nu}$	c_B/m_*^2
\mathcal{O}_{HW}	$ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$c_{HW}/m_*^2 \times (g_*/4\pi)^2$
\mathcal{O}_{HB}	$ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$c_{HB}/m_*^2 \times (g_*/4\pi)^2$
O_L^q	$ig^2 (H^\dagger \overleftrightarrow{D}_{\mu} H) \bar{Q}_L \gamma^{\mu} Q_L$	$c_q/m_*^2 imes \epsilon_q^2$
$O_L^{q,3}$	$ig^{2}(H^{\dagger}\sigma^{a}\widetilde{D}_{\mu}H)\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L}$	$c_{q,3}/m_*^2 imes \epsilon_q^2$
O_R^u	$ig^2 (H^\dagger D_\mu H) \bar{u}_R \gamma^\mu u_R$	$c_u/m_*^2 imes \epsilon_u^2$
O_R^u	$ig^2 \left(H^\dagger D_\mu H \right) \bar{d}_R \gamma^\mu d_R$	$c_d/m_*^2 imes \epsilon_d^2$
O_T	$\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)^2$	c_T/f^2
\mathcal{O}_6	$ H ^6$	λ_3/f^2

Projections

Possible to reach 4 TeV. D. Liu, LTW Better than LEP, and many LHC direct searches

> See also: Alioli, Farina, Pappadopulo, Ruderman, Franceschini, Panico, Pomarol, Riva, Wulzer, Azatov, Elias-Miro, Regimuaji, Venturini

Conclusion

- LHC still has a lot to say.
 - ▶ 15+ years of operation, 95+% of data to come.
- Need to think about how to new searches with this data. (In addition to looking else where.)
- I discussed two directions
 - Long lived particles, with timing information.
 - Precision measurement.
- More work (and originality) needed.

Could reach T≈10⁴⁻⁵ m

Exotic Higgs decays

V. Gligorov, SK, M. Papucci, D. Robinson: 1708.02243

ATLAS reach: A. Coccaro, et al.: 1605.02742

 γ_d

Higgs coupling vs direct search

Late comers will be spotted easily:

35 6/19/18 Zhen Liu LLP @ LHC LPC TOTW

Late comers will be spotted easily:

Probing EW phase transition

